JPH0645069A - Thin film el element - Google Patents

Thin film el element

Info

Publication number
JPH0645069A
JPH0645069A JP4196969A JP19696992A JPH0645069A JP H0645069 A JPH0645069 A JP H0645069A JP 4196969 A JP4196969 A JP 4196969A JP 19696992 A JP19696992 A JP 19696992A JP H0645069 A JPH0645069 A JP H0645069A
Authority
JP
Japan
Prior art keywords
area
light emitting
emitting layer
concentration region
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4196969A
Other languages
Japanese (ja)
Inventor
Masahiro Matsui
正宏 松井
Hiroyoshi Matsuyama
博圭 松山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP4196969A priority Critical patent/JPH0645069A/en
Publication of JPH0645069A publication Critical patent/JPH0645069A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

PURPOSE:To increase luminance of EL element by using an EL element in which the distributions of luminescence center in low density area and high density area are continuous. CONSTITUTION:A light emitting layer 4 containing luminescence center such as a small amount of a rare earth element in a SrS base material is formed of a low density area 4a of luminescence center and high density area 4c to the film thickness direction, and it is also provided with a transition area 4b of 10nm or more in which the density of luminescence center is continuously increased or decreased with a proper gradient. Thus, since electrons are efficiently accelerated in the highly crystallized area 4a, and these electrons excite the luminescence center of the area 4c, a high luminance EL element can be provided. By providing the area 4b, crystallinities of the area 4a, 4c become continuous, the level for trapping the electrons on the critical surface of both the areas is minimized, the electrons accelerated in the area 4a efficiently excite the luminescence center of the area 4c, and the luminance can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電界の印加に応じて発光
を示す薄膜EL(エレクトロルミネッセンス)素子に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film EL (electroluminescence) element which emits light in response to an applied electric field.

【0002】[0002]

【従来の技術】ZnSやZnSe等の化合物半導体にM
n等の発光中心をドープしたものに高電圧を印加するこ
とで発光するエレクトロルミネッセンスの現象は古くか
ら知られている。近年二重絶縁層型EL素子の開発によ
り、輝度および寿命が飛躍的に向上し、薄膜EL素子は
薄型ディスプレイに応用されるようになり、現在市販さ
れるまでに至った。
2. Description of the Related Art M is used for compound semiconductors such as ZnS and ZnSe.
The phenomenon of electroluminescence in which light is emitted by applying a high voltage to a material doped with a light-emitting center such as n has been known for a long time. In recent years, due to the development of the double insulating layer type EL device, the brightness and the life have been dramatically improved, and the thin film EL device has been applied to a thin display, and has come to the market now.

【0003】EL素子の発光色は、発光層を構成する半
導体母体と、ドープされる発光中心の組合せで決まる。
例えば、ZnS母体に発光中心としてMnをドープする
と黄橙色、叉、Tbを添加すると緑色のエレクトロルミ
ネッセンス発光が得られる。しかしながら、現在実用レ
ベルの輝度に達しているものはZnS母体にMnをドー
プした黄橙色の系のみである。フルカラーの薄膜型ディ
スプレイをEL素子を用いて作製する場合、青、緑、赤
の3原色を発光するEL素子が必要であり、各色を高輝
度に発光するEL素子の開発が精力的に進められてい
る。このようなカラーEL素子を開発するにあたりSr
Sは母体材料として有用であり、例えばSrSにCeを
ドープしたSrS:Ce発光層で青緑色、SrSにEu
をドープしたSrS:Eu発光層で赤色発光が得られる
ことが知られている。
The emission color of the EL element is determined by the combination of the semiconductor matrix forming the light emitting layer and the doped emission center.
For example, when the ZnS host is doped with Mn as an emission center, yellow-orange emission is obtained, and when Tb is added, green emission is obtained. However, only the yellow-orange system in which the ZnS matrix is doped with Mn has reached the brightness of a practical level at present. When manufacturing a full-color thin-film display using EL elements, EL elements that emit the three primary colors of blue, green, and red are required, and the development of EL elements that emit each color with high brightness is energetically advanced. ing. In developing such a color EL device, Sr
S is useful as a base material, for example, SrS: Ce light-emitting layer in which SrS is doped with Ce is blue green, and SrS is Eu.
It is known that red emission can be obtained in a SrS: Eu light emitting layer doped with.

【0004】従来から薄膜EL素子ではCe等の発光中
心を一定濃度で有するSrS等の発光母材を発光層とし
て使用している。しかしながら、発光輝度が不十分とい
う問題点があった。このように十分な発光輝度が得られ
ない原因としてSrS等の化合物半導体からなる発光層
に発光中心をドープした場合、発光層を構成する原子の
格子位置をイオン半径の異なる発光中心となる原子が置
換したり、格子間に発光中心が入ったりすることによ
り、EL発光を示す発光中心自身が発光層の高結晶化を
妨げ、発光層に印加された電界により効率よく電子が加
速されるのを妨げることがあげられる。また、発光中心
が発光層中で加速された電子の散乱中心となり、電子の
高加速化を妨げていることもあげられる。
Conventionally, in a thin film EL element, a luminescent base material such as SrS having a luminescent center such as Ce at a constant concentration is used as a luminescent layer. However, there is a problem that the emission brightness is insufficient. As described above, when a light emitting layer made of a compound semiconductor such as SrS is doped with a light emitting center as a cause of not obtaining sufficient light emission brightness, the lattice position of the atoms forming the light emitting layer may be changed to a light emitting center having different ion radii. By the substitution or the inclusion of an emission center between the lattices, the emission center itself showing EL emission hinders the crystallization of the emission layer from becoming highly crystallized, and electrons are efficiently accelerated by the electric field applied to the emission layer. It can be hindered. Another reason is that the emission center becomes a scattering center of accelerated electrons in the light emitting layer, which hinders high acceleration of electrons.

【0005】発光層を発光中心のドープされていない層
とドープされた層、もしくは発光中心を低濃度含む低濃
度層と多量にドープされている層の積み重ねによる多層
積層構造とし、発光中心のドープされていない層もしく
は低濃度層を良質な電子加速層とする構造は特開昭63
−29489号公報、特開昭62−97295号公報に
記載されている。しかしながら、これらにおいては電子
加速層で加速された電子が発光層の発光中心を効率よく
励起せず、実用に供するに充分な輝度のEL素子は得ら
れていない。
The light emitting layer has a multi-layer structure in which an undoped layer having a light emitting center and a doped layer, or a low-concentration layer containing a low concentration of a light emitting center and a heavily doped layer are stacked to form a light emitting center. A structure in which an unaccelerated layer or a low-concentration layer is used as a high-quality electron acceleration layer is disclosed in JP-A-63-63
-29489 and JP-A-62-97295. However, in these, the electrons accelerated in the electron accelerating layer do not efficiently excite the emission center of the light emitting layer, and an EL element having sufficient brightness for practical use has not been obtained.

【0006】[0006]

【発明が解決しようとする課題】本発明は、より高輝度
に発光するEL素子を提供することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide an EL device which emits light with higher brightness.

【0007】[0007]

【課題を解決するための手段】かかる状況下において、
本発明者らは、高輝度発光を示すためのEL素子の発光
層中における発光中心の濃度分布について鋭意検討した
結果、低濃度領域と高濃度領域における発光中心の分布
が連続的である素子を作製することにより、EL素子の
輝度が大幅に増加することを見いだし本発明をなすに至
った。
[Means for Solving the Problems] Under such circumstances,
As a result of diligent studies on the concentration distribution of emission centers in the emission layer of an EL element for exhibiting high-luminance emission, the present inventors have found an element in which the distribution of emission centers in a low concentration region and a high concentration region is continuous. It was found that the brightness of the EL element was significantly increased by the fabrication, and the present invention was completed.

【0008】すなわち本発明は、SrS母材に発光中心
をドープした発光層の両側を絶縁薄膜ではさみ、さらに
その両側を電極ではさむ構造を有し、かつ該電極の少な
くとも一方が光透過性の電極である薄膜EL素子におい
て、上記発光層が膜厚方向に対して発光中心の低濃度領
域と、高濃度領域からなり、かつこの発光中心の低濃度
領域と高濃度領域の間に、発光中心の濃度が連続的に増
加又は減少する遷移領域を10nm以上有することを特
徴とする薄膜EL素子である。
That is, the present invention has a structure in which both sides of a light emitting layer in which a luminescent center is doped in an SrS base material is sandwiched by insulating thin films, and both sides thereof are sandwiched by electrodes, and at least one of the electrodes is light transmissive. In the thin film EL element as an electrode, the light emitting layer is composed of a low concentration region and a high concentration region of the emission center in the film thickness direction, and the emission center is between the low concentration region and the high concentration region of the emission center. Is a thin film EL element having a transition region of 10 nm or more in which the concentration of C increases or decreases continuously.

【0009】以下に本発明を詳細に説明する。図1は、
この発明の一具体例を示す二重絶縁構造の薄膜EL素子
である。図中、1はガラス板などからなる透明基板、2
は厚みが 100〜300nm程度のITO薄膜などか
らなる透明電極、3はAl薄膜やITO薄膜などからな
る厚みが100〜500nm程度の背面電極で、表示パ
ターンに応じた形状にパターン化されている。4はSr
S母材中に少量の希土類元素等の発光中心を含有させた
もの、例えばSrS:Ce、SrS:Eu、SrS:C
e、Euなどからなる発光層であり、この発光層のう
ち、4aは発光中心の低濃度領域、4cは発光中心の高
濃度領域である。
The present invention will be described in detail below. Figure 1
It is a thin film EL element having a double insulation structure showing one specific example of the present invention. In the figure, 1 is a transparent substrate made of a glass plate or the like, 2
Is a transparent electrode made of an ITO thin film having a thickness of about 100 to 300 nm, 3 is a back electrode made of an Al thin film or an ITO thin film having a thickness of about 100 to 500 nm, and is patterned into a shape corresponding to a display pattern. 4 is Sr
S base material containing a small amount of a luminescent center such as a rare earth element, for example, SrS: Ce, SrS: Eu, SrS: C
The light emitting layer is made of e, Eu or the like. In the light emitting layer, 4a is a low concentration region of the emission center and 4c is a high concentration region of the emission center.

【0010】発光中心においては低濃度領域と高濃度領
域での分布の連続性が重要であり、4bは前記低濃度領
域から高濃度領域へ発光中心濃度が連続的に増加する遷
移領域である。本発明において遷移領域とは低濃度領域
と高濃度領域の境界において発光中心濃度が連続的に増
加又は減少する領域を指し、増加又は減少の始まった地
点から終わった地点までを言う。
In the emission center, continuity of distribution in the low concentration region and the high concentration region is important, and 4b is a transition region in which the concentration of the emission center continuously increases from the low concentration region to the high concentration region. In the present invention, the transition region refers to a region where the emission center concentration continuously increases or decreases at the boundary between the low concentration region and the high concentration region, and refers to the point from the start point to the end point of the increase or decrease.

【0011】低濃度領域、高濃度領域の順序は特に限定
されない。発光中心の低濃度領域と高濃度領域を合わせ
た全発光層の膜厚は特に限定されないが、薄すぎると発
光輝度が低く、厚すぎると発光開始電圧が高くなるた
め、好ましくは50〜3000nmの範囲であり、より
好ましくは100〜1500nmの範囲である。4aの
低濃度領域の膜厚は10〜2000nmの範囲であり、
より好ましくは50〜1000nmの範囲である。ま
た、4cの高濃度領域の膜厚は10〜1000nmの範
囲であり、より好ましくは50〜800nmの範囲であ
る。4bの低濃度領域から高濃度領域へ発光中心濃度が
連続的に増加する遷移領域の膜厚は10nm以上必要で
ある。本発明において、遷移領域の膜厚の上限は特には
ないが、実用的な範囲としては800nm以下が好まし
く、より好ましくは50nm以上500nm以下であ
る。
The order of the low concentration region and the high concentration region is not particularly limited. The thickness of the entire light-emitting layer including the low-concentration region and the high-concentration region of the luminescence center is not particularly limited, but if it is too thin, the emission brightness is low, and if it is too thick, the light emission starting voltage is high, so that it is preferably 50 to 3000 nm. The range is more preferable, and the range of 100 to 1500 nm is more preferable. The film thickness in the low concentration region of 4a is in the range of 10 to 2000 nm,
More preferably, it is in the range of 50 to 1000 nm. The film thickness of the high-concentration region 4c is in the range of 10 to 1000 nm, more preferably 50 to 800 nm. The film thickness of the transition region where the emission center concentration continuously increases from the low concentration region 4b to the high concentration region 4b is required to be 10 nm or more. In the present invention, the upper limit of the film thickness of the transition region is not particularly limited, but the practical range is preferably 800 nm or less, more preferably 50 nm or more and 500 nm or less.

【0012】発光層中の低濃度領域の発光中心の濃度は
特に限定されないが、低濃度領域においてはあまり多す
ぎると、結晶性が悪くなって輝度が上がらない。好まし
くは母材に対して0〜2mol%、より好ましくは0〜
1mol%の範囲である。発光層中の高濃度領域の発光
中心の濃度についても特に限定されないがあまり少ない
と発光輝度が上がらず、あまり多すぎると濃度消光が起
こって輝度が上がらない。好ましくは母材に対して0.
01〜5mol%、より好ましくは0.05〜2mol
%の範囲である。発光中心については膜厚方向に対する
低濃度領域と高濃度領域の存在、かつその境界において
適度な勾配を持って連続的に変化する領域の存在が必要
である。
The concentration of the emission center in the low concentration region in the light emitting layer is not particularly limited, but if it is too high in the low concentration region, the crystallinity deteriorates and the luminance does not rise. Preferably 0 to 2 mol% with respect to the base material, more preferably 0 to
It is in the range of 1 mol%. The concentration of the luminescent center in the high-concentration region in the light-emitting layer is not particularly limited, but if it is too low, the emission brightness does not increase, and if it is too high, concentration quenching occurs and the brightness does not increase. It is preferably 0.
01-5 mol%, more preferably 0.05-2 mol
% Range. Regarding the emission center, it is necessary to have a low-concentration region and a high-concentration region in the film thickness direction and a region that continuously changes with an appropriate gradient at the boundary.

【0013】上記4a、4b、4cのような発光層を作
製する方法は特に限定されないが、例えば、母材の成膜
速度を一定にし、発光中心のドープ速度を連続的に変化
させる方法などがあげられる。尚、成膜後、結晶性向上
のために熱処理を行ってもかまわない。発光層の成膜方
法としては、特に限定されず、電子線加熱蒸着、スパッ
タ蒸着、MBE、MOCVD、ALE法など多くの方法
が選択できる。
The method for producing a light emitting layer such as the above 4a, 4b, 4c is not particularly limited, but for example, a method in which the film forming rate of the base material is kept constant and the doping rate of the luminescence center is continuously changed, and the like. can give. After the film formation, heat treatment may be performed to improve crystallinity. The method for forming the light emitting layer is not particularly limited, and many methods such as electron beam heating vapor deposition, sputter vapor deposition, MBE, MOCVD, and ALE can be selected.

【0014】5、6は上記発光層4の表面及び背面に隣
接する絶縁層である。本発明のEL素子に用いられる絶
縁層としては特に限定されない。例えば、SiO2 、Y
2 3 、TiO2 、Al2 3 、HfO2 、Ta
2 5 、BaTa2 5 、PbTiO3 、Si3 4
ZrO2 等やこれらの混合膜または2種以上の積層膜を
挙げることができる。また、絶縁層と発光層の間には、
成膜時、加熱処理時に両者の反応を防ぐためにバッファ
ー層を用いることが好ましい。バッファー層としては特
に限定されないが、金属硫化物、中でもZnS、Cd
S、SrS、CaS、BaS、CuS等が挙げられる。
バッファー層の膜厚は特に限定されないが10〜100
0nmの範囲であり、より好ましくは50〜300nm
の範囲である。
Reference numerals 5 and 6 are adjacent to the front surface and the back surface of the light emitting layer 4.
Insulating layer in contact. Insulation used in the EL device of the present invention
The edge layer is not particularly limited. For example, SiO2, Y
2O 3, TiO2, Al2O3, HfO2, Ta
2OFive, BaTa2OFive, PbTiO3, Si3NFour,
ZrO2Etc. or a mixed film of these or a laminated film of two or more kinds
Can be mentioned. In addition, between the insulating layer and the light emitting layer,
A buffer to prevent both reactions during film formation and heat treatment
Layer is preferably used. Special as a buffer layer
Metal sulfides, especially ZnS, Cd
S, SrS, CaS, BaS, CuS, etc. are mentioned.
The thickness of the buffer layer is not particularly limited, but is 10-100
The range is 0 nm, and more preferably 50 to 300 nm.
Is the range.

【0015】本発明の特徴は、発光層が膜厚方向に対し
て発光中心の低濃度領域と高濃度領域からなり、更にこ
の発光中心の低濃度領域と高濃度領域の境界において、
発光中心の濃度が適度な勾配で連続的に増加或いは減少
する10nm以上の遷移領域を有することである。この
ような構造にすることにより、高結晶化した低濃度領域
で効率よく電子が加速され、その加速された電子が効率
よく高濃度領域の発光中心を励起するするため高輝度発
光するEL素子を作製することができる。
The feature of the present invention is that the light-emitting layer is composed of a low-concentration region and a high-concentration region at the emission center in the film thickness direction, and further at the boundary between the low-concentration region and the high-concentration region at the emission center
That is, it has a transition region of 10 nm or more in which the concentration of the emission center continuously increases or decreases with an appropriate gradient. With such a structure, electrons are efficiently accelerated in a highly crystallized low-concentration region, and the accelerated electrons efficiently excite emission centers in the high-concentration region, so that an EL element that emits light with high luminance can be obtained. Can be made.

【0016】発光層を発光中心のドープされていない層
とドープされた層、もしくは発光中心を低濃度含む低濃
度層と多量にドープされている層の積み重ねによる多層
積層構造とし、発光中心のドープされていない層もしく
は低濃度層を良質な電子加速層とする構造とした時に
は、電子加速層で加速された電子が発光層の発光中心を
効率よく励起するのを妨げる傾向があり、充分な輝度を
有するEL素子を作製することが難しい。本発明におい
ては低濃度領域と高濃度領域の境界における発光中心の
濃度が連続的に増加又は減少する遷移領域の膜厚を10
nm以上とすることにより、発光中心の低濃度領域と高
濃度領域の結晶性が連続的となり、両領域の界面で電子
をトラップするような準位が比較的少なく、低濃度領域
で加速された電子が効率よく高濃度領域の発光中心を励
起するためにEL素子の輝度を向上させることができる
ものと思われる。
The light emitting layer has a multi-layered structure in which an undoped layer having a light emitting center and a doped layer, or a low-concentration layer containing a low concentration of a light emitting center and a heavily doped layer are stacked to form a light emitting center. When a structure in which an unaccelerated layer or a low-concentration layer is formed as a high-quality electron acceleration layer has a tendency to prevent the electrons accelerated in the electron acceleration layer from efficiently exciting the emission center of the light-emitting layer, sufficient brightness is obtained. It is difficult to manufacture an EL element having In the present invention, the film thickness of the transition region where the concentration of the emission center is continuously increased or decreased at the boundary between the low concentration region and the high concentration region is 10
When the thickness is not less than nm, the crystallinity of the low-concentration region and the high-concentration region of the emission center becomes continuous, and there are relatively few levels for trapping electrons at the interface between the two regions, which accelerates in the low-concentration region. It is thought that the brightness of the EL element can be improved because the electrons efficiently excite the emission center in the high concentration region.

【0017】[0017]

【実施例】以下に、この発明の実施例を具体的に説明す
る。
EXAMPLES Examples of the present invention will be specifically described below.

【0018】[0018]

【実施例1】ガラス基板上〔ホーヤ(株)製、NA−4
0〕に、反応性スパッタ法により、厚さ約100nmの
ITO電極を形成した。その上に、Taターゲット及び
SiO2 ターゲットを用いて、厚さ400nmのTa2
5 と厚さ100nmのSiO2 をスパッタ蒸着法によ
り順次形成し絶縁層とした。続いてバッファ−層とし
て、厚さ約100nmのZnS薄膜を、ZnSターゲッ
トを用いたアルゴンガス中のスパッタ蒸着により作製し
た。次に、発光層として、SrSのターゲットとCeF
3 のターゲットを用い、2vol%のH2 Sを含むAr
ガスを導入して、基板温度を450℃に保ちながら、二
源同時スパッタ蒸着を行い、厚さ約1000nmの薄膜
を形成した。この際、図2に示したような発光中心Ce
の濃度分布を持つように、SrSのスパッタ速度を一定
に保ち、CeF3 のスパッタ速度を連続的に変化させ
た。作製した発光層は膜厚方向に対して発光中心である
Ceの低濃度領域と高濃度領域からなり、かつ、前記低
濃度領域と高濃度領域の間に、発光中心Ceの濃度が連
続的に増加する遷移領域を200nm有する。SrSに
対するCeF3 の濃度は、低濃度領域で0.1mol
%、高濃度領域は極大点で0.5mol%となるように
した。さらに発光層の上には、ZnS、SiO2 、Ta
2 5 の順に上記の方法で積層膜を形成し、二重絶縁構
造を構築した。最後にAl電極を抵抗加熱蒸着法によ
り、金属マスクを用いてストライプ状に形成した。下部
電極は、発光層及び絶縁層の一部を剥離させてITO電
極を露出させ、これを用いた。 この発光層から作製し
たEL素子の最高輝度は、5kHz sin波駆動で6
000cd/m2 であった。
[Example 1] On a glass substrate [Hoya Co., Ltd., NA-4
0], an ITO electrode having a thickness of about 100 nm was formed by the reactive sputtering method. Then, a Ta target and a SiO 2 target are used to form a Ta 2 film having a thickness of 400 nm.
O 5 and SiO 2 having a thickness of 100 nm were sequentially formed by a sputter deposition method to form an insulating layer. Subsequently, a ZnS thin film having a thickness of about 100 nm was prepared as a buffer layer by sputter deposition in an argon gas using a ZnS target. Next, as a light emitting layer, a target of SrS and CeF
Ar containing 2 vol% H 2 S using 3 targets
While introducing a gas and keeping the substrate temperature at 450 ° C., two-source simultaneous sputtering vapor deposition was performed to form a thin film having a thickness of about 1000 nm. At this time, the emission center Ce as shown in FIG.
The sputter rate of SrS was kept constant and the sputter rate of CeF 3 was continuously changed so as to have a concentration distribution of. The produced light emitting layer is composed of a low-concentration region and a high-concentration region of Ce, which are emission centers in the film thickness direction, and the concentration of the emission center Ce is continuously between the low-concentration region and the high-concentration region. It has an increasing transition region of 200 nm. The concentration of CeF 3 with respect to SrS was 0.1 mol in the low concentration region.
%, And the high concentration region was set to 0.5 mol% at the maximum point. Further, on the light emitting layer, ZnS, SiO 2 , Ta
A laminated film was formed by the above method in the order of 2 O 5 to construct a double insulating structure. Finally, Al electrodes were formed in a stripe shape by a resistance heating vapor deposition method using a metal mask. As the lower electrode, a part of the light emitting layer and the insulating layer was peeled off to expose the ITO electrode, which was used. The maximum brightness of the EL device manufactured from this light emitting layer is 6 when driven by a 5 kHz sin wave.
It was 000 cd / m 2 .

【0019】[0019]

【比較例1】CeF3 がSrSに対して0.3mol%
となるように、SrSとCeF3 のスパッタ速度を各々
一定に保ちながら発光層を作製したこと以外は、実施例
1と同様にして素子を作製した。図3に示すように、作
製した発光層は、膜厚方向のCeの濃度分布が均一であ
った。この発光層から作製したEL素子の最高輝度は、
5kHz sin波駆動で1000cd/m2 であっ
た。
[Comparative Example 1] CeF 3 is 0.3 mol% with respect to SrS.
Thus, an element was produced in the same manner as in Example 1 except that the light emitting layer was produced while keeping the sputtering rates of SrS and CeF 3 constant. As shown in FIG. 3, the produced light emitting layer had a uniform Ce concentration distribution in the film thickness direction. The maximum brightness of the EL device made from this light emitting layer is
It was 1000 cd / m 2 when driven by a 5 kHz sin wave.

【0020】[0020]

【比較例2】SrSとCeF3 のスパッタ速度を各々一
定に保ちながら、CeF3 がSrSに対して0.5mo
l%含まれる厚さ約300nmの薄膜を形成した後、S
rSのスパッタ速度はそのままで、CeF3 のスパッタ
速度のみ低くしてかつ一定に保ち、CeF3 がSrSに
対して0.1mol%含まれる薄膜を、さらに約700
nm形成することにより発光層を作製したこと以外は、
実施例1と同様にして素子を作製した。発光層中のCe
の濃度分布は図4のようであり、Ceの低濃度領域と高
濃度領域の間の遷移領域の膜厚は10nmに満たない。
この発光層から作製したEL素子の最高輝度は、5kH
z sin波駆動で2500cd/m2であった。
[Comparative Example 2] CeF 3 was 0.5 mo with respect to SrS while keeping the sputtering rates of SrS and CeF 3 constant.
After forming a thin film containing 1% and having a thickness of about 300 nm, S
sputter rate of rS is intact, kept constant and with low only sputter rate of CeF 3, a thin film CeF 3 is contained 0.1 mol% relative to SrS, further about 700
nm except that the light emitting layer is formed by forming
An element was produced in the same manner as in Example 1. Ce in the light emitting layer
4 is as shown in FIG. 4, and the film thickness of the transition region between the low concentration region and the high concentration region of Ce is less than 10 nm.
The maximum brightness of the EL device manufactured from this light emitting layer is 5 kHz.
It was 2500 cd / m 2 when driven by z sin wave.

【0021】[0021]

【実施例2】SrSのペレットとCeF3 のペレットを
蒸発源として用い、同時に抵抗加熱により硫黄を蒸発さ
せながら、EB蒸着法により図2のようなCeの濃度分
布を持つ発光層を作製した以外は、実施例1と同様にし
て素子を作製した。この発光層から作製したEL素子の
最高輝度は、5kHz sin波駆動で6500cd/
2 であった。
Example 2 A light emitting layer having a Ce concentration distribution as shown in FIG. 2 was prepared by EB vapor deposition while using SrS pellets and CeF 3 pellets as evaporation sources and simultaneously evaporating sulfur by resistance heating. A device was manufactured in the same manner as in Example 1. The maximum brightness of the EL element manufactured from this light emitting layer is 6500 cd / s when driven by a 5 kHz sin wave.
It was m 2 .

【0022】[0022]

【実施例3】発光層を作製する際に、SrSのターゲッ
トと、CeF3 とEuF3 を等モル混合したターゲット
を用いたこと以外は、実施例1と同様にして素子を作製
した。作製したEL素子の最高輝度は、5kHz si
n波駆動で5000cd/m 2 であった。
Example 3 A target of SrS was used when manufacturing a light emitting layer.
To and CeF3And EuF3Target with equimolar mixture of
A device was manufactured in the same manner as in Example 1 except that
did. The maximum brightness of the manufactured EL element is 5 kHz si
5000 cd / m with n-wave drive 2Met.

【0023】[0023]

【比較例3】発光層を作製する際に、SrSのターゲッ
トと、CeF3 とEuF3 を等モル混合したターゲット
を用いたこと以外は、比較例1と同様にして素子を作製
した。作製したEL素子の最高輝度は、5kHz si
n波駆動で800cd/m2であった。
[Comparative Example 3] An element was produced in the same manner as Comparative Example 1 except that a target of SrS and a target of equimolar mixture of CeF 3 and EuF 3 were used in producing the light emitting layer. The maximum brightness of the manufactured EL element is 5 kHz si
It was 800 cd / m 2 when driven by n-wave.

【0024】[0024]

【発明の効果】本発明によれば、発光層の膜厚方向に対
して発光中心濃度の低濃度領域、すなわち、良質な電子
加速層を有し、かつそこで加速された電子が、効率よく
高濃度領域の発光中心を励起するような発光層を得るこ
とができ、その結果、高輝度に発光するEL素子を作製
できる。
According to the present invention, a low-concentration region of the emission center concentration in the thickness direction of the light-emitting layer, that is, a high-quality electron accelerating layer is provided, and electrons accelerated there are efficiently increased. It is possible to obtain a light emitting layer that excites the light emission center in the concentration region, and as a result, it is possible to manufacture an EL element that emits light with high brightness.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明が適用されるEL素子を示す断面図であ
る。
FIG. 1 is a sectional view showing an EL device to which the present invention is applied.

【図2】実施例1における、発光層中のSr、Ceの膜
厚方向の濃度分布を示すグラフ図である。
FIG. 2 is a graph showing the concentration distribution of Sr and Ce in the light emitting layer in the film thickness direction in Example 1.

【図3】比較例1における、発光層中のSr、Ceの膜
厚方向の濃度分布を示すグラフ図である。
FIG. 3 is a graph showing a concentration distribution of Sr and Ce in a light emitting layer in a film thickness direction in Comparative Example 1.

【図4】比較例2における、発光層中のSr、Ceの膜
厚方向の濃度分布を示すグラフ図である。
FIG. 4 is a graph showing a concentration distribution of Sr and Ce in a light emitting layer in a film thickness direction in Comparative Example 2.

【符号の説明】[Explanation of symbols]

1.ガラス基板 2.透明電極 3.背面電極 4.発光層 4a.発光中心の低濃度領域 4b.発光中心濃度が連続的に変化する遷移領域 4c.発光中心の高濃度領域 5.絶縁層 6.絶縁層 1. Glass substrate 2. Transparent electrode 3. Back electrode 4. Light emitting layer 4a. Low concentration region of emission center 4b. Transition region where emission center concentration changes continuously 4c. High concentration region of luminescence center 5. Insulating layer 6. Insulation layer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 SrS母材に発光中心をドープした発光
層の両側を絶縁薄膜ではさみ、さらにその両側を電極で
はさむ構造を有し、かつ該電極の少なくとも一方が光透
過性の電極である薄膜EL素子において、上記発光層が
膜厚方向に対して発光中心の低濃度領域と高濃度領域か
らなり、かつこの発光中心の低濃度領域と高濃度領域の
間に、発光中心の濃度が連続的に増加又は減少する遷移
領域を10nm以上有することを特徴とする薄膜EL素
子。
1. A structure in which an SrS base material is doped with an emission center at both sides with an insulating thin film sandwiching both sides of the light emitting layer, and electrodes sandwiching both sides thereof, and at least one of the electrodes is a light transmissive electrode. In the thin film EL element, the light emitting layer is composed of a low concentration region and a high concentration region of the emission center in the film thickness direction, and the concentration of the emission center is continuous between the low concentration region and the high concentration region of the emission center. A thin-film EL device having a transition region of 10 nm or more that increases or decreases with time.
JP4196969A 1992-07-23 1992-07-23 Thin film el element Withdrawn JPH0645069A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4196969A JPH0645069A (en) 1992-07-23 1992-07-23 Thin film el element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4196969A JPH0645069A (en) 1992-07-23 1992-07-23 Thin film el element

Publications (1)

Publication Number Publication Date
JPH0645069A true JPH0645069A (en) 1994-02-18

Family

ID=16366664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4196969A Withdrawn JPH0645069A (en) 1992-07-23 1992-07-23 Thin film el element

Country Status (1)

Country Link
JP (1) JPH0645069A (en)

Similar Documents

Publication Publication Date Title
JPH06163157A (en) Manufacture of thin film el element
JPH0645069A (en) Thin film el element
JP2004071398A (en) Inorganic el device and manufacturing method thereof
JPH07272853A (en) Manufacture of multilayer electric field light emitting element
JP3294633B2 (en) Thin film EL display element
JPH05114483A (en) Manufacture of thin film electroluminescent element
JPH0645068A (en) Thin film electroluminescent element
JPH0265094A (en) Thin film el element and manufacture thereof
JPH0645072A (en) Thin film electroluminescent element and its manufacture
JP3349221B2 (en) Electroluminescent device and method for manufacturing the same
JPH0778685A (en) Manufacture of electroluminescence element
JPH02306591A (en) Manufacture of thin film electroluminescence element
JPH05114484A (en) Manufacture of thin film electroluminescent element
JPH0869881A (en) Manufacture of thin film el element
JP3445107B2 (en) Thin-film electroluminescence device and method for manufacturing the same
JPS61273894A (en) Thin film el element
JPH0562778A (en) Thin film electroluminescence element
JPH0645071A (en) Thin film electroluminescent element
JPH04341796A (en) Manufacture of thin film electroluminescent element
JPS6141111B2 (en)
JPH05211092A (en) Manufacture of thin film electroluminescence element
JPH07240278A (en) Thin film el element
JPH09129373A (en) El element and its manufacture
JPH0645070A (en) Sputter target for making light emitting layer of thin film electroluminescent element
JPH11102785A (en) El element

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19991005