JPH0645068A - Thin film electroluminescent element - Google Patents

Thin film electroluminescent element

Info

Publication number
JPH0645068A
JPH0645068A JP4195204A JP19520492A JPH0645068A JP H0645068 A JPH0645068 A JP H0645068A JP 4195204 A JP4195204 A JP 4195204A JP 19520492 A JP19520492 A JP 19520492A JP H0645068 A JPH0645068 A JP H0645068A
Authority
JP
Japan
Prior art keywords
emission
electrode
light emitting
emitting layer
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4195204A
Other languages
Japanese (ja)
Inventor
Hiroyoshi Matsuyama
博圭 松山
Kazuo Yoshida
一男 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP4195204A priority Critical patent/JPH0645068A/en
Publication of JPH0645068A publication Critical patent/JPH0645068A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

PURPOSE:To provide a high luminance EL element by using a transparent electrode as an upper electrode, and taking out EL emission from the upper electrode side. CONSTITUTION:In the element structure of a thin film electroluminescent element having a light emitting layer 4 consisting of a low density area 4a of luminescence center and high density area 4b, in order, to the film thickness direction directing from the upper side to the lower side, a transparent electrode 3 patterned to the form according to a display pattern is used as an upper electrode, and EL emission is taken out from the electrode 3 side. When a transparent base is used as a base 1, a transparent electrode is used as a lower electrode 2, and EL emission is taken out from the electrode 2 side in the element having the light emitting layer 4, the taking out is arrested by the high density area 4b of luminescence center. By using the transparent electrode in the upper electrode 3 and taking out EL emission from the upper electrode 3 side, EL emission can be efficiently taken out, and the luminance of the EL element is also enhanced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電界の印加に応じて発光
を示す薄膜エレクトロルミネッセンス素子(以下、EL
素子と略記する。)の素子構造に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film electroluminescent device (hereinafter referred to as EL device) which emits light in response to the application of an electric field.
It is abbreviated as an element. ) Related to the device structure.

【0002】[0002]

【従来の技術】ZnSやZnSe等の化合物半導体にM
n等の発光中心をドープしたものに高電圧を印加するこ
とで発光するエレクトロルミネッセンスの現象は古くか
ら知られている。近年二重絶縁層型EL素子の開発によ
り、輝度および寿命が飛躍的に向上し、薄膜EL素子は
薄型ディスプレイに応用されるようになり、現在市販さ
れるまでに至った。
2. Description of the Related Art M is used for compound semiconductors such as ZnS and ZnSe.
The phenomenon of electroluminescence in which light is emitted by applying a high voltage to a material doped with a light-emitting center such as n has been known for a long time. In recent years, due to the development of the double insulating layer type EL device, the brightness and the life have been dramatically improved, and the thin film EL device has been applied to a thin display, and has come to the market now.

【0003】EL素子の発光色は、発光層を構成する半
導体母体と、ドープされる発光中心の組合せで決まる。
例えば、ZnS母体に発光中心としてMnをドープする
と黄橙色、叉、Tbを添加すると緑色のエレクトロルミ
ネッセンス発光(以下EL発光と略記する。)が得られ
る。叉、SrS母体に発光中心としてCeをドープする
と青緑色、CaS母体に発光中心としてEuをドープす
ると赤色のそれぞれEL発光が得られる。
The emission color of the EL element is determined by the combination of the semiconductor matrix forming the light emitting layer and the doped emission center.
For example, when ZnS host is doped with Mn as an emission center, yellow electroluminescence is obtained, and when Tb is added, green electroluminescence emission (hereinafter abbreviated as EL emission) is obtained. EL light emission is obtained when the SrS host is doped with Ce as the emission center and blue is emitted when the CaS host is doped with Eu as the emission center.

【0004】しかしながら、現在実用レベルの輝度に達
しているものはZnS母体にMnをドープした黄橙色の
系のみである。フルカラーの薄膜型ディスプレイをEL
素子を用いて作製する場合、青、緑、赤の3原色を発光
するEL素子が必要であり、各色を高輝度に発光するE
L素子の開発が精力的に進められている。発光層の成膜
方法としては、抵抗加熱蒸着法、電子線加熱蒸着法、ス
パッタ蒸着法、MOCVD法(有機金属ガス気相成長
法)、MBE法(モレキュラー・ビーム・エピタキシャ
ル)、ALE法(原子層エピタキシャル)法などが用い
られている。これらの方法で形成された発光層の結晶性
とEL素子の輝度の関係として、高結晶化した発光層を
有するEL素子の輝度が高いことが知られている。これ
は、発光層に印加された電界により加速された電子が効
率良く発光中心を励起するためであると推定されてい
る。MOCVD法、ALE法、MBE法を用いて作成さ
れたZnS:Mn発光層で高結晶性の薄膜が得られ、高
輝度に発光するEL素子が作製されている。しかし、Z
nS以外の化合物半導体を母体として用いた系、例えば
青色発光を示すSrS:Ce発光層では、高輝度に発光
する素子は得られていない。
However, only the yellow-orange system in which the ZnS matrix is doped with Mn has reached the brightness of the practical level at present. EL full-color thin film display
In the case of manufacturing using an element, an EL element that emits three primary colors of blue, green, and red is required, and E that emits each color with high brightness is required.
The development of the L element is being actively pursued. The light emitting layer is formed by a resistance heating vapor deposition method, an electron beam heating vapor deposition method, a sputter vapor deposition method, a MOCVD method (metal organic gas vapor phase epitaxy method), an MBE method (molecular beam epitaxial method), an ALE method (atomic method). Layer epitaxial method is used. As a relationship between the crystallinity of the light emitting layer formed by these methods and the brightness of the EL element, it is known that the EL element having a highly crystallized light emitting layer has high brightness. It is presumed that this is because the electrons accelerated by the electric field applied to the light emitting layer efficiently excite the luminescence center. A highly crystalline thin film is obtained from a ZnS: Mn light emitting layer formed by using the MOCVD method, the ALE method, and the MBE method, and an EL element which emits light with high brightness is manufactured. But Z
In a system using a compound semiconductor other than nS as a host, for example, a SrS: Ce light emitting layer that emits blue light, an element that emits light with high brightness has not been obtained.

【0005】MOCVD法、ALE法、MBE法は高結
晶性の薄膜を作製するための有望な方法ではあるが、発
光中心を均一に分散させることが困難であること、大面
積のEL発光層を経済的に作製することが困難であるこ
と等の面では、電子線加熱蒸着法やスパッタ蒸着法に比
べて劣っているという問題点がある。高輝度発光を示す
EL素子を製造するための1つの有望な条件である発光
層の高結晶化を図るため、発光層の作製時の基板温度を
高くしたり、発光層作製後に真空中或いは不活性ガス雰
囲気下で高温熱処理するなどの方法がとられてきた。し
かし、発光層の母体としてSrSという硫化物を用いる
場合、高温熱処理により膜中のSの量が減少し化学量論
的組成からずれ、又、Sの抜けによる欠陥のために高結
晶化した発光層を作ることができないことも大きな問題
点であった。
The MOCVD method, the ALE method, and the MBE method are promising methods for producing a highly crystalline thin film, but it is difficult to uniformly disperse the emission centers, and a large-area EL emission layer is formed. There is a problem that it is inferior to the electron beam heating vapor deposition method and the sputter vapor deposition method in that it is economically difficult to manufacture. In order to increase the crystallization of the light-emitting layer, which is one of the promising conditions for manufacturing an EL device exhibiting high-brightness emission, the substrate temperature during the production of the light-emitting layer is increased, or after the light-emitting layer is produced in a vacuum or at Methods such as high temperature heat treatment in an active gas atmosphere have been taken. However, when a sulfide called SrS is used as a host material of the light emitting layer, the amount of S in the film is decreased by the high temperature heat treatment to deviate from the stoichiometric composition, and the light emission is highly crystallized due to defects due to the escape of S. The inability to create layers was also a major problem.

【0006】SrSを母体とする発光層において発光層
を高結晶化させる手段として発光層を成膜後H2 S中で
熱処理することが、特公昭63ー46117号公報、特
開平1ー272093号公報および特開平3−2257
92明細書に記載されている。特に、特開平3−225
792号明細書には650℃以上、1時間以上の熱処理
により、SrS:Ce系で最高輝度12000cd/m
2 であり、SrS:Ce,Eu系で7000cd/m2
という非常に高い輝度の得られることが記載されてい
る。しかしながら、これらは熱処理後の発光中心の膜厚
方向の濃度分布およびEL発光の取りだし方向について
は言及していない。実施例においても一般的にガラス基
板と下側透明電極を用いて、下部電極側からEL発光が
取り出されている。しかるに、成膜段階でSrS発光層
中の膜厚方向に発光中心を均一に分散させ、その後H2
S中で熱処理すると、発光層中の膜厚方向の発光中心の
分布が均一ではなくなる、すなわち、発光中心が発光層
と下部絶縁層の界面方向に拡散してそこに濃縮し、発光
中心の低濃度領域と高濃度領域ができる傾向がある。
In a light emitting layer having SrS as a matrix, as a means for highly crystallizing the light emitting layer, heat treatment in H 2 S after forming the light emitting layer is disclosed in JP-B-63-46117 and JP-A-1-272093. Japanese Patent Laid-Open No. 3-2257
92 specification. In particular, JP-A-3-225
According to the specification of No. 792, the maximum brightness of SrS: Ce system is 12000 cd / m by heat treatment at 650 ° C. or higher for 1 hour or longer.
2 and 7000 cd / m 2 in SrS: Ce, Eu system
It is described that a very high brightness can be obtained. However, these do not mention the concentration distribution in the film thickness direction of the emission center after heat treatment and the EL emission extraction direction. Also in the examples, generally, a glass substrate and a lower transparent electrode are used, and EL light emission is taken out from the lower electrode side. However, the emission centers are uniformly dispersed in the film thickness direction in the SrS emission layer during the film formation step, and then H 2
When the heat treatment is performed in S, the distribution of the emission centers in the thickness direction in the light emitting layer is not uniform, that is, the emission centers are diffused toward the interface between the light emitting layer and the lower insulating layer and concentrated there, so that the emission center There is a tendency to have a high density region and a high density region.

【0007】また、SrS等の化合物半導体からなる発
光層に発光中心をドープした場合、発光層を構成する原
子の格子位置をイオン半径の異なる発光中心となる原子
が置換したり、格子間に発光中心が入ったりすることに
より、EL発光を示す発光中心自身が発光層の高結晶化
を妨げていると考えられることから、発光層を発光中心
のドープされていない層とドープされた層、もしくは発
光中心を低濃度含む低濃度層と多量にドープされている
層の積み重ねによる多層積層構造とし、発光中心のドー
プされていない層もしくは低濃度層を良質な電子加速層
とする構造が特開昭63−29489号公報、特開昭6
2−97295号公報に記載されている。しかしなが
ら、これらにおいても、EL発光の取り出し方向につい
ては、実施例において一般的にガラス基板と下側透明電
極を用いて、下部電極側からEL発光が取り出されてい
る。
Further, when the light emitting layer made of a compound semiconductor such as SrS is doped with the light emitting center, the lattice positions of the atoms forming the light emitting layer are replaced by the atoms serving as the light emitting centers having different ionic radii, or light is emitted between the lattices. Since it is considered that the center of the light emission causes the light emitting center itself which exhibits EL light emission to prevent the light emitting layer from being highly crystallized, the light emitting layer may be an undoped layer and a doped layer of the light emitting center, or A multilayer structure is formed by stacking a low-concentration layer containing a low concentration of an emission center and a heavily doped layer, and a structure in which an undoped layer or a low-concentration layer of the emission center is a high-quality electron acceleration layer. 63-29489, JP-A-6-63
2-97295. However, also in these cases, regarding the direction of taking out the EL light emission, in the embodiment, the EL light emission is generally taken out from the lower electrode side by using the glass substrate and the lower transparent electrode.

【0008】上述のような発光層中の下部に発光中心の
高濃度領域が存在する素子において、従来、一般にガラ
ス基板と下側透明電極を用いて、下部電極側からEL発
光が取り出されているが、EL発光を下側電極側から取
り出す場合、発光中心の低濃度領域からのEL発光が発
光中心の高濃度領域を通過する際に吸収、散乱が起き、
外部に取り出せるEL強度が減少するという問題があ
る。
In an element having a high-concentration region of a light emission center in the lower part of the light emitting layer as described above, conventionally, generally, a glass substrate and a lower transparent electrode are used to take out EL light emission from the lower electrode side. However, when EL emission is taken out from the lower electrode side, absorption and scattering occur when EL emission from the low concentration region of the emission center passes through the high concentration region of the emission center,
There is a problem that the EL intensity that can be taken out to the outside is reduced.

【0009】[0009]

【発明が解決しようとする課題】本発明は前記問題点を
解決するために、上部電極として透明電極を用い、上部
電極側からEL発光を取り出すことにより、より高輝度
に発光するEL素子を提供することを目的とする。
In order to solve the above-mentioned problems, the present invention provides an EL device which emits EL light with higher brightness by using a transparent electrode as the upper electrode and extracting EL light emission from the upper electrode side. The purpose is to do.

【0010】[0010]

【課題を解決するための手段】かかる状況下において、
本発明者らは、高輝度発光を示すEL素子の素子構造に
ついて鋭意検討した結果、上部電極を透明電極とし、上
部電極側からEL発光を取り出すことによってEL素子
の輝度が大幅に向上することを見いだし本発明をなすに
至った。
[Means for Solving the Problems] Under such circumstances,
As a result of diligent studies on the element structure of an EL element that exhibits high-luminance emission, the present inventors have found that the luminance of the EL element is significantly improved by using the upper electrode as a transparent electrode and extracting the EL emission from the upper electrode side. The present invention has been completed.

【0011】すなわち、本発明は基板上に下部電極、下
部絶縁層、発光中心をドープした発光層、上部絶縁層、
上部電極という順序で積層して作製された薄膜エレクト
ロルミネッセンス素子において、前記発光層が上側から
下側に向かう膜厚方向に対して、順に発光中心の低濃度
領域と高濃度領域を有し、且つ、上部電極が透明電極で
あることを特徴とする上部電極側から光を取り出す薄膜
エレクトロルミネッセンス素子である。
That is, according to the present invention, a lower electrode, a lower insulating layer, a light emitting layer doped with an emission center, an upper insulating layer, and
In a thin film electroluminescent element produced by stacking in the order of an upper electrode, the light emitting layer has a low concentration region and a high concentration region of emission centers in order with respect to the thickness direction from the upper side to the lower side, and The upper electrode is a transparent electrode, which is a thin film electroluminescent element for extracting light from the upper electrode side.

【0012】以下に図をもとにして本発明を詳細に説明
する。図1は、この発明の一具体例を示す二重絶縁構造
の薄膜EL素子である。図1中、1はガラス板などから
なる基板、2は厚みが100〜300nm程度のIT
O、MoSix 等の導電薄膜からなる電極、3は上側薄
膜透明電極で、表示パターンに応じた形状にパターン化
されている。上側透明電極の材料は特に限定されず、I
TO、ZnO:Al、GaN、SnO2 等を選択するこ
とができる。上側透明電極の膜厚は特に限定されない
が、好ましくは50〜1000nmの範囲であり、より
好ましくは100nm〜500nmの範囲である。4は
ZnS、CdS、Znx Cd1-x S等のIIb族硫化物
やSrS、CaS、BaS等のアルカリ土類金属の硫化
物、Znx Sr1-x S等の混合組成物等からなる半導体
母体中に少量の希土類元素やMnなどの発光中心をドー
プさせたもの、例えば、SrS:Ce、SrS:Ce,
Eu、CaS:Eu、BaS:Euなどからなる発光層
であり、かつ、上側から下側に向かう膜厚方向に対し
て、順に発光中心の低濃度領域(4a)と高濃度領域
(4b)からなる発光層である。低濃度領域と高濃度領
域の界面における発光中心の分布は特に限定されず、連
続的でも不連続でも良い。低濃度領域と高濃度領域を合
わせた全発光層の膜厚は特に限定されないが、薄すぎる
と発光輝度が低く、厚すぎると発光開始電圧が高くなる
ため、好ましくは50〜3000nmの範囲であり、よ
り好ましくは100〜1500nmの範囲である。5、
6は上記発光層4の下部及び上部に隣接する絶縁層であ
る。本発明のEL素子に用いられる絶縁層としては特に
限定されないが、例えば、SiO2 、Y2 3 、TiO
2 、Al2 3 、HfO2 、Ta2 5 、BaTa2
5 、PbTiO3 、Si3 4 、ZrO2 等やこれらの
混合膜または2種以上の積層膜を挙げることができる。
The present invention will be described in detail below with reference to the drawings. FIG. 1 is a thin-film EL element having a double insulation structure showing one embodiment of the present invention. In FIG. 1, 1 is a substrate made of a glass plate or the like, and 2 is an IT having a thickness of about 100 to 300 nm.
O, electrodes made of a conductive thin film such as MoSi x, 3 is an upper thin transparent electrode is patterned into a shape corresponding to the display pattern. The material of the upper transparent electrode is not particularly limited, and I
TO, ZnO: Al, GaN, SnO 2 or the like can be selected. The film thickness of the upper transparent electrode is not particularly limited, but is preferably in the range of 50 to 1000 nm, more preferably 100 nm to 500 nm. Reference numeral 4 is composed of a Group IIb sulfide such as ZnS, CdS, or Zn x Cd 1-x S, an alkaline earth metal sulfide such as SrS, CaS, or BaS, or a mixed composition such as Zn x Sr 1-x S. A semiconductor matrix doped with a small amount of a rare earth element or an emission center such as Mn, for example, SrS: Ce, SrS: Ce,
It is a light emitting layer made of Eu, CaS: Eu, BaS: Eu, etc., and from the low-concentration region (4a) and the high-concentration region (4b) of the emission center in order in the film thickness direction from the upper side to the lower side. It is a light emitting layer. The distribution of emission centers at the interface between the low-concentration region and the high-concentration region is not particularly limited, and may be continuous or discontinuous. The thickness of the entire light emitting layer including the low concentration region and the high concentration region is not particularly limited. , And more preferably in the range of 100 to 1500 nm. 5,
Reference numeral 6 is an insulating layer adjacent to the lower and upper portions of the light emitting layer 4. The insulating layer used in the EL device of the present invention is not particularly limited, but examples thereof include SiO 2 , Y 2 O 3 , and TiO 2.
2 , Al 2 O 3 , HfO 2 , Ta 2 O 5 , BaTa 2 O
5 , PbTiO 3 , Si 3 N 4 , ZrO 2 and the like, a mixed film thereof, or a laminated film of two or more kinds can be mentioned.

【0013】また、絶縁層と発光層の間には、成膜時、
加熱処理時などの際に両者の反応を防ぐためにバッファ
ー層を用いることが好ましい。バッファー層としては特
に限定されないが、金属硫化物、中でもZnS、Cd
S、SrS、CaS、BaS、CuS等が挙げられる。
バッファー層の膜厚は特に限定されないが10〜100
0nmの範囲であり、より好ましくは50〜300nm
の範囲である。
A film is formed between the insulating layer and the light emitting layer during film formation.
It is preferable to use a buffer layer in order to prevent the reaction between the two during heat treatment. The buffer layer is not particularly limited, but metal sulfides, especially ZnS and Cd
S, SrS, CaS, BaS, CuS, etc. are mentioned.
The thickness of the buffer layer is not particularly limited, but is 10-100
The range is 0 nm, and more preferably 50 to 300 nm.
Is the range.

【0014】上側透明電極の成膜方法としては、電子線
加熱蒸着、スパッタ蒸着、MBE、MOCVD、ALE
法など多くの方法が選択できる。発光層の成膜方法とし
ては、電子線加熱蒸着、スパッタ蒸着、MBE、MOC
VD、ALE法など多くの方法が選択できる。SrS発
光層薄膜を高結晶化させ、上側から下側に向かう膜厚方
向に対して、順に発光中心の低濃度領域と高濃度領域か
らなる発光層を作製する硫化性ガス雰囲気における熱処
理に使われる硫化性ガスとしては、硫化水素、二硫化炭
素、硫黄蒸気、エチルメルカプタン、メチルメルカプタ
ン、ジメチル硫黄、ジエチル硫黄等があり、中でも硫化
水素ガスは輝度向上効果が大きく好ましい。硫化性ガス
雰囲気化での熱処理濃度としては、特に限定されない
が、0.01〜100%、より好ましくは0.1〜30
%である。希釈ガスとしてはアルゴン、ヘリウム等の不
活性ガスが用いられる。また、硫化性ガスの効果が顕著
に現れるためには、熱処理の温度が650℃以上、時間
は1時間以上が必要である。また、800℃以上の温度
で熱処理を行うことは、基板ガラスの歪や透明電極とし
て用いているITOの高抵抗化や高価な石英ガラス基板
を用いなくてはならないことなどの問題がある。
As the film forming method of the upper transparent electrode, electron beam heating vapor deposition, sputter vapor deposition, MBE, MOCVD, ALE
Many methods such as method can be selected. The light emitting layer is formed by electron beam heating vapor deposition, sputter vapor deposition, MBE, MOC.
Many methods such as VD and ALE can be selected. Used for heat treatment in a sulfide gas atmosphere to highly crystallize the SrS light-emitting layer thin film, and to fabricate a light-emitting layer composed of a low-concentration region and a high-concentration region of the emission center in the film thickness direction from the upper side to the lower side. Examples of the sulfide gas include hydrogen sulfide, carbon disulfide, sulfur vapor, ethyl mercaptan, methyl mercaptan, dimethyl sulfur, diethyl sulfur, and the like. Among them, hydrogen sulfide gas is preferable because it has a large effect of improving brightness. The heat treatment concentration in the sulfide gas atmosphere is not particularly limited, but is 0.01 to 100%, more preferably 0.1 to 30.
%. An inert gas such as argon or helium is used as the diluent gas. Further, in order for the effect of the sulfurizing gas to be prominent, the heat treatment temperature must be 650 ° C. or higher and the time must be 1 hour or longer. Further, the heat treatment at a temperature of 800 ° C. or higher has problems such as strain of the substrate glass, high resistance of ITO used as a transparent electrode, and necessity of using an expensive quartz glass substrate.

【0015】本発明の特徴は、上側から下側に向かう膜
厚方向に対して、順に発光中心の低濃度領域と高濃度領
域からなる発光層を有する薄膜エレクトロルミネッセン
ス素子の素子構造において、上部電極を透明電極とし、
上部電極側からEL発光を取り出すことにある。上記の
ような発光層を有する薄膜エレクトロルミネッセンス素
子において、基板を透明基板、下部電極を透明電極と
し、下部電極側からEL発光を取り出すと、発光中心の
高濃度領域の存在によりEL発光の取りだしが阻害され
る傾向があり、むしろ、上部電極として透明電極を用
い、上部電極側からEL発光を取り出すことにより効率
よくEL発光を取り出すことができ、EL素子の輝度も
さらに高くなる。
A feature of the present invention is that in the element structure of a thin film electroluminescent element having a light emitting layer consisting of a low concentration region and a high concentration region of an emission center in the thickness direction from the upper side to the lower side, the upper electrode As a transparent electrode,
EL emission is taken out from the upper electrode side. In a thin film electroluminescent device having a light emitting layer as described above, when the substrate is a transparent substrate and the lower electrode is a transparent electrode, and EL emission is taken out from the lower electrode side, EL emission is taken out due to the presence of a high-concentration region at the emission center. Rather, it tends to be disturbed, and rather, by using a transparent electrode as the upper electrode and taking out EL light emission from the upper electrode side, EL light emission can be efficiently taken out, and the brightness of the EL element is further increased.

【0016】[0016]

【実施例】以下に、この発明の実施例を具体的に説明す
る。実施例中におけるEL素子の輝度の測定は、暗室に
おいて、LUMINANCE COLORIMETER
BM−7(TOPCON社製)を用いて行った。
EXAMPLES Examples of the present invention will be specifically described below. Luminance of the EL element in the examples was measured in a dark room using LUMINANCE COLORIMTER.
It was performed using BM-7 (manufactured by TOPCON).

【0017】[0017]

【実施例1】ガラス基板[ホーヤ(株)製、NA−4
0]上に、スパッタ法により、厚さ約100nmのMo
Six 下側電極を形成した。その上に、Taターゲット
及びSiO2 ターゲットを用いて、厚さ400nmのT
2 5 と厚さ100nmのSiO2 をスパッタ蒸着法
により順次形成し絶縁層とした。続いてバッファ−層と
して、厚さ約100nmのZnS薄膜を、ZnSターゲ
ットを用いたアルゴンガス中のスパッタ蒸着により作製
した。次に、SrSとSrSに対して0.3mol%の
CeF3 及びKClを混合したターゲットを用い、基板
温度をを約300℃に保ちながらスパッタ蒸着を行い、
厚さ約800nmの薄膜を形成した。その後2mol%
の硫化水素を含むアルゴンガス雰囲気中、700℃で4
時間熱処理を行った。前記発光層の母材を構成するSr
原子、発光中心であるCe原子の発光層中における前記
熱処理前後の発光層膜厚方向の分布をSIMS分析によ
って求めた結果を各々図2、図3に示す。発光中心が熱
処理によって移動し、膜厚方向に対して発光中心の低濃
度領域と高濃度領域が形成されている。さらに発光層の
上には、ZnS、SiO2 、Ta2 5 の順に上記の方
法で積層膜を形成し、二重絶縁構造を構築した。最後に
ITO透明電極を電子線加熱蒸着法により、金属マスク
を用いてストライプ状に形成し、この上側電極側からE
L発光を取りだした。
Example 1 Glass substrate [Hoya Co., Ltd., NA-4
0] on top of the Mo layer with a thickness of about 100 nm by sputtering.
A Si x lower electrode was formed. On top of that, a Ta target and a SiO 2 target are used to form a T film having a thickness of 400 nm.
a 2 O 5 and SiO 2 having a thickness of 100 nm were sequentially formed by a sputter deposition method to form an insulating layer. Subsequently, a ZnS thin film having a thickness of about 100 nm was prepared as a buffer layer by sputter deposition in an argon gas using a ZnS target. Next, using a target in which SrS and SrS were mixed with 0.3 mol% CeF 3 and KCl, sputter deposition was performed while maintaining the substrate temperature at about 300 ° C.
A thin film having a thickness of about 800 nm was formed. Then 2 mol%
4 at 700 ℃ in an argon gas atmosphere containing hydrogen sulfide
Heat treatment was performed for an hour. Sr constituting the base material of the light emitting layer
The results obtained by SIMS analysis of the distributions of the atoms and Ce atoms, which are the luminescence centers, in the thickness of the light emitting layer before and after the heat treatment in the light emitting layer are shown in FIGS. 2 and 3, respectively. The luminescence center moves by heat treatment, and a low-concentration region and a high-concentration region of the luminescence center are formed in the film thickness direction. Further, a laminated film was formed on the light emitting layer in the order of ZnS, SiO 2 , and Ta 2 O 5 by the above method to construct a double insulating structure. Finally, an ITO transparent electrode was formed into a stripe shape by using an electron beam heating vapor deposition method using a metal mask.
L emission was taken out.

【0018】このEL素子の最高輝度は、5kHz s
in波駆動で16500cd/m2であった。
The maximum brightness of this EL element is 5 kHz s
It was 16500 cd / m 2 by in-wave drive.

【0019】[0019]

【比較例1】下側電極として、反応性スパッタ法により
形成した厚さ約100nmのITO電極を用い、下側電
極側からEL発光を取り出したこと以外は実施例1と同
様にして素子を作製し、輝度を測定した。このEL素子
の最高輝度は、5kHzsin波駆動で12000cd
/m2 であった。
[Comparative Example 1] An element was manufactured in the same manner as in Example 1 except that an ITO electrode having a thickness of about 100 nm formed by a reactive sputtering method was used as the lower electrode and EL light emission was taken out from the lower electrode side. Then, the brightness was measured. The maximum brightness of this EL element is 12000 cd with 5 kHz sin wave drive.
/ M 2 .

【0020】[0020]

【実施例2】発光層の成膜方法として、SrSのターゲ
ットと、CeF3 とKClを等モル混合したターゲット
を用いた基板温度450℃での二元スパッタ法を用い、
SrSのスパッタ速度を一定に保ち、CeF3 及びKC
lのスパッタ速度を連続的に変化させて、上側から下側
に向かう膜厚方向に対して、順に発光中心の低濃度領域
と高濃度領域からなる厚さ800nmの発光層薄膜を作
製したこと、および、発光層成膜後の熱処理を施さなか
ったこと以外は実施例1と同様にして素子を作製し、輝
度を測定した。作製したEL素子の最高輝度は、5kH
z sin波駆動で3000cd/m2 であった。
Example 2 As a method for forming a light emitting layer, a dual sputtering method at a substrate temperature of 450 ° C. using a target of SrS and a target of equimolar mixture of CeF 3 and KCl is used.
Keeping the SrS sputtering rate constant, CeF 3 and KC
The emissive layer thin film having a thickness of 800 nm composed of a low-concentration region and a high-concentration region at the emission center was sequentially formed in the film thickness direction from the upper side to the lower side by continuously changing the sputtering rate of l. Further, an element was produced in the same manner as in Example 1 except that the heat treatment after forming the light emitting layer was not performed, and the luminance was measured. The maximum brightness of the manufactured EL element is 5 kHz
It was 3000 cd / m 2 when driven by z sin wave.

【0021】[0021]

【比較例2】下側電極として、反応性スパッタ法により
形成した厚さ約100nmのITO電極を用い、下側電
極側からEL発光を取り出したこと以外は実施例2と同
様にして素子を作製し、輝度を測定した。このEL素子
の最高輝度は、5kHzsin波駆動で1500cd/
2 であった。
[Comparative Example 2] An element was prepared in the same manner as in Example 2 except that an ITO electrode having a thickness of about 100 nm formed by the reactive sputtering method was used as the lower electrode, and EL emission was taken out from the lower electrode side. Then, the brightness was measured. The maximum brightness of this EL element is 1500 cd / s when driven by a 5 kHz sin wave.
It was m 2 .

【0022】[0022]

【実施例3】上側透明電極として、反応性スパッタ法に
よって作製されたZnO:Al薄膜を用いたこと以外は
実施例1と同様にして素子を作製し、輝度を測定した。
このEL素子の最高輝度は、5kHz sin波駆動で
16500cd/m2 であった。
Example 3 A device was prepared in the same manner as in Example 1 except that a ZnO: Al thin film prepared by the reactive sputtering method was used as the upper transparent electrode, and the brightness was measured.
The maximum luminance of this EL device was 16500 cd / m 2 when driven by a 5 kHz sin wave.

【0023】[0023]

【実施例4】発光層をスパッタ蒸着により形成する際、
SrSとSrSに対して0.3mol%のCeF3 とK
Cl、及び0.02mol%のEuF3 を混合したター
ゲットを用いたこと以外は、実施例1と同様にしてSr
S:Ce,Eu白色EL素子を作製し、輝度を測定し
た。この素子の最高輝度は、5kHz sin波駆動で
9200cd/m2 であった。
Example 4 When forming a light emitting layer by sputtering deposition,
0.3 mol% CeF 3 and K for SrS and SrS
Sr was used in the same manner as in Example 1 except that a target containing Cl and 0.02 mol% EuF 3 was used.
A S: Ce, Eu white EL device was prepared and the brightness was measured. The maximum luminance of this device was 9200 cd / m 2 when driven by a 5 kHz sin wave.

【0024】[0024]

【比較例3】下側電極として、反応性スパッタ法により
形成した厚さ約100nmのITO電極を用い、下側電
極側からEL発光を取り出したこと以外は実施例4と同
様にして素子を作製し、輝度を測定した。このEL素子
の最高輝度は、5kHzsin波駆動で7000cd/
2 であった。
[Comparative Example 3] An element was manufactured in the same manner as in Example 4 except that an ITO electrode having a thickness of about 100 nm formed by a reactive sputtering method was used as the lower electrode, and EL emission was taken out from the lower electrode side. Then, the brightness was measured. The maximum brightness of this EL element is 7000 cd / in 5kHz sin wave drive.
It was m 2 .

【0025】[0025]

【実施例5】発光層をスパッタ蒸着により形成する際、
CaSとCaSに対して0.3mol%のEuF3 とK
Clを混合したターゲットを用いたこと以外は、実施例
1と同様にしてCaS:Eu赤色EL素子を作製し、輝
度を測定した。この素子の最高輝度は、5kHz si
n波駆動で3500cd/m2 であった。
Fifth Embodiment When forming a light emitting layer by sputtering deposition,
0.3 mol% EuF 3 and K for CaS and CaS
A CaS: Eu red EL device was produced in the same manner as in Example 1 except that a target mixed with Cl was used, and the brightness was measured. The maximum brightness of this device is 5 kHz si
It was 3500 cd / m 2 when driven by n-wave.

【0026】[0026]

【比較例4】下側電極として、反応性スパッタ法により
形成した厚さ約100nmのITO電極を用い、下側電
極側からEL発光を取り出したこと以外は実施例5と同
様にして素子を作製し、輝度を測定した。このEL素子
の最高輝度は、5kHzsin波駆動で2500cd/
2 であった。
[Comparative Example 4] An element was manufactured in the same manner as in Example 5 except that an ITO electrode having a thickness of about 100 nm formed by a reactive sputtering method was used as the lower electrode and EL emission was taken out from the lower electrode side. Then, the brightness was measured. The maximum brightness of this EL element is 2500 cd / s when driven by a 5 kHz sin wave.
It was m 2 .

【0027】[0027]

【発明の効果】本発明によれば、素子内部で発光したE
L発光を効率よく外部に取り出すことができ、その結
果、従来技術を用いて作製した素子に比べて高輝度に発
光するEL素子を作製できる。
According to the present invention, E emitted inside the device
The L light emission can be efficiently extracted to the outside, and as a result, an EL element which emits light with higher brightness can be manufactured as compared with an element manufactured using a conventional technique.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明が適用されるEL素子を示す断面図であ
る。。
FIG. 1 is a sectional view showing an EL device to which the present invention is applied. .

【図2】実施例1における、硫化性ガス雰囲気下での熱
処理前の発光層中のSr、Ceの分布をSIMS分析に
よって求めた結果である。
FIG. 2 is a result obtained by SIMS analysis of distributions of Sr and Ce in a light emitting layer before heat treatment in a sulfide gas atmosphere in Example 1.

【図3】実施例1における、硫化性ガス雰囲気下、4時
間の熱処理後の発光層中のSr、Ceの分布をSIMS
分析によって求めた結果である。
FIG. 3 shows SIMS distribution of Sr and Ce in the light emitting layer after heat treatment for 4 hours in a sulfide gas atmosphere in Example 1.
This is the result obtained by analysis.

【符号の説明】[Explanation of symbols]

1…ガラス基板 2…透明電極 3…背面電極 4…発光層(4a:発光中心の低濃度領域 4b:発光中心の高濃度領域) 5、6…絶縁層 DESCRIPTION OF SYMBOLS 1 ... Glass substrate 2 ... Transparent electrode 3 ... Back electrode 4 ... Light emitting layer (4a: Low concentration region of emission center 4b: High concentration region of emission center) 5, 6 ... Insulating layer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 基板上に下部電極、下部絶縁層、発光中
心をドープした発光層、上部絶縁層、上部電極という順
序で積層して作製された薄膜エレクトロルミネッセンス
素子において、前記発光層が上側から下側に向かう膜厚
方向に対して、順に発光中心の低濃度領域と高濃度領域
を有し、且つ、上部電極が透明電極であることを特徴と
する上部電極側から光を取り出す薄膜エレクトロルミネ
ッセンス素子。
1. A thin film electroluminescent device produced by stacking a lower electrode, a lower insulating layer, a light emitting layer doped with an emission center, an upper insulating layer, and an upper electrode on a substrate in this order from the upper side. A thin-film electroluminescent device which has a low-concentration region and a high-concentration region in the order of emission in the film thickness direction toward the lower side, and the upper electrode is a transparent electrode for extracting light from the upper electrode side. element.
JP4195204A 1992-07-22 1992-07-22 Thin film electroluminescent element Withdrawn JPH0645068A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4195204A JPH0645068A (en) 1992-07-22 1992-07-22 Thin film electroluminescent element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4195204A JPH0645068A (en) 1992-07-22 1992-07-22 Thin film electroluminescent element

Publications (1)

Publication Number Publication Date
JPH0645068A true JPH0645068A (en) 1994-02-18

Family

ID=16337193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4195204A Withdrawn JPH0645068A (en) 1992-07-22 1992-07-22 Thin film electroluminescent element

Country Status (1)

Country Link
JP (1) JPH0645068A (en)

Similar Documents

Publication Publication Date Title
US5677594A (en) TFEL phosphor having metal overlayer
JP2000104061A (en) Luminescent material
JPH0645068A (en) Thin film electroluminescent element
JPH05114484A (en) Manufacture of thin film electroluminescent element
JPH08102359A (en) Manufacture of electroluminescent element
JPH0562778A (en) Thin film electroluminescence element
KR100340687B1 (en) white emitting multi-layer phosphor composed of same host material and AC TFELD using the same
JPH0645072A (en) Thin film electroluminescent element and its manufacture
JPH05114483A (en) Manufacture of thin film electroluminescent element
JPH0645069A (en) Thin film el element
JP3294633B2 (en) Thin film EL display element
JPS6244984A (en) Thin film electroluminescence element and manufacture thereof
JPH0645070A (en) Sputter target for making light emitting layer of thin film electroluminescent element
JP3941126B2 (en) ELECTROLUMINESCENT DEVICE AND MANUFACTURING METHOD THEREOF
JPH0869881A (en) Manufacture of thin film el element
JPH0645071A (en) Thin film electroluminescent element
JPH04121992A (en) Manufacture of electroluminescence element
JPH09129373A (en) El element and its manufacture
JP3027387B2 (en) High-brightness thin-film electroluminescence device and method of manufacturing the same
JPH0633106A (en) Production of sputtering target for production of light emitting layer of thin-film electroluminrescence element
JPH02306591A (en) Manufacture of thin film electroluminescence element
JPH02272087A (en) Production of thin-film electroluminescence element
JPS61273894A (en) Thin film el element
JP2005162831A (en) Fluorescent substance, method for producing the same and display device
JPS61253797A (en) Manufacture of electroluminescence element

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19991005