JPH0644646B2 - Method for cleaning surface of solid-state laser device body - Google Patents

Method for cleaning surface of solid-state laser device body

Info

Publication number
JPH0644646B2
JPH0644646B2 JP12648790A JP12648790A JPH0644646B2 JP H0644646 B2 JPH0644646 B2 JP H0644646B2 JP 12648790 A JP12648790 A JP 12648790A JP 12648790 A JP12648790 A JP 12648790A JP H0644646 B2 JPH0644646 B2 JP H0644646B2
Authority
JP
Japan
Prior art keywords
solid
state laser
laser element
element body
cleaning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12648790A
Other languages
Japanese (ja)
Other versions
JPH0425082A (en
Inventor
秀晴 大上
功 関口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP12648790A priority Critical patent/JPH0644646B2/en
Publication of JPH0425082A publication Critical patent/JPH0425082A/en
Publication of JPH0644646B2 publication Critical patent/JPH0644646B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Lasers (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、固体レーザ素子体の反射防止被膜形成工程に
おいて、固体レーザ素子体の表面を清浄化する方法に関
する。
Description: TECHNICAL FIELD The present invention relates to a method for cleaning the surface of a solid-state laser element body in a step of forming an antireflection coating on the solid-state laser element body.

[従来の技術] 近年、固体レーザ装置の高出力化に伴い、固体レーザ素
子体に各種の効果を導く為に固体レーザ素子体の表面に
構成されている反射防止膜がレーザ光の照射によって破
壊される事が問題視されて来た。
[Prior Art] With the recent increase in output of solid-state laser devices, the antireflection film formed on the surface of the solid-state laser device body is destroyed by laser light irradiation in order to bring various effects to the solid-state laser device body. What has been done has been regarded as a problem.

固体レーザ素子体の表面に構成されている反射防止膜が
レーザ光の照射によって破壊されると、共振器を構成す
るレーザ素子体の内部で光学的なエネルギー損失を発生
する様になり、固体レーザの発振効率が大きく低下する
事は容易に予測出来るものである。
When the antireflection film formed on the surface of the solid-state laser element body is destroyed by the irradiation of laser light, optical energy loss occurs inside the laser element body that constitutes the resonator. It is easily predictable that the oscillation efficiency of the will greatly decrease.

そこで、レーザを長期に亘って安定して利用しょうとす
れば、固体レーザ素子体の表面には、レーザ損傷しきい
値の高い固体レーザ素子体用反射防止膜が構成されてい
なければならなくなって来ている。
Therefore, if the laser is to be used stably over a long period of time, the solid-state laser element body must have an antireflection coating for the solid-state laser element body, which has a high laser damage threshold value, on the surface thereof. It is coming.

光学ガラスや石英ガラスについては、レーザ損傷しきい
値の高い反射防止膜の構成方法として、紫外線照射、レ
ーザ照射、蝕刻、プラズマ洗浄等の表面処理方法が各種
研究されているものの、固体レーザ素子体については、
十分な性能を持ったレーザ損傷しきい値の高い反射防止
膜が未だ実現されて居なかった。
Regarding optical glass and quartz glass, although various surface treatment methods such as ultraviolet irradiation, laser irradiation, etching, and plasma cleaning have been studied as a method for forming an antireflection film having a high laser damage threshold value, a solid-state laser element body about,
An antireflection film with a sufficient laser damage threshold and a sufficient performance has not yet been realized.

また、固体レーザ素子体の表面を機械的に精密研磨した
後、洗剤、純水、アルコールの順序に従って、超音波洗
浄法による洗浄処理を施した後、フロンを用いた蒸気乾
燥処理に入り、その後、真空蒸気法によって、単層ある
いは多層の反射防止膜を施すので一般的であった。
In addition, after mechanically precision polishing the surface of the solid-state laser element body, after performing a cleaning treatment by an ultrasonic cleaning method in the order of detergent, pure water, and alcohol, a steam drying treatment using Freon is performed, and then, It is common because a single layer or a multilayer antireflection film is applied by the vacuum vapor method.

しかしながら、この様な洗浄方法では、固体レーザ素子
体の表面に付着しているカーボン等の汚染物質や、固体
レーザ素子体の精密研磨に使用したコロイダルシリカ、
酸化セリウム等の研磨剤を固体レーザ素子体の表面から
完全に取り除く事は出来なかった。
However, in such a cleaning method, contaminants such as carbon adhering to the surface of the solid-state laser element body, colloidal silica used for precision polishing of the solid-state laser element body,
It was not possible to completely remove the polishing agent such as cerium oxide from the surface of the solid-state laser element body.

固体レーザ素子体の表面に付着しているこれらの研磨剤
粒子が残存したまま反射防止膜が形成されると、固体レ
ーザ素子体の表面に付着しているこれらの研磨剤粒子が
レーザを吸収して発熱する様になり、研磨剤粒子と接触
する被膜が局部的に焼損を受ける事になる。
If the antireflection film is formed while these abrasive particles adhering to the surface of the solid-state laser element body remain, these abrasive particles adhering to the surface of the solid-state laser element body will absorb the laser. As a result, heat is generated and the coating film that comes into contact with the abrasive particles is locally burned.

固体レーザ素子体の表面に付着しているこれら研磨剤粒
子の残存度が多いほど反射防止膜の損傷は大きく、レー
ザ損傷しきい値も低下させてしまう事になる。
The greater the residual amount of these abrasive particles attached to the surface of the solid-state laser element body, the greater the damage to the antireflection film and the lower the laser damage threshold value.

そこで、反射防止膜の形成前に清浄な表面を得る技術の
出現が永らく待たれていたのである。
Therefore, the advent of a technique for obtaining a clean surface before forming an antireflection film has long been awaited.

[発明が解決しようとする課題] 前述の如く、固体レーザ素子体の表面に於けるレーザ損
傷しきい値を向上させる為には、固体レーザ素子体の表
面に対して固体レーザ素子体用反射防止膜を構成する以
前に於ける固体レーザ素子体表面の処理状況が重要なも
のになって来る。
[Problems to be Solved by the Invention] As described above, in order to improve the laser damage threshold value on the surface of the solid-state laser element body, antireflection for the solid-state laser element body is applied to the surface of the solid-state laser element body. The state of treatment of the surface of the solid-state laser device body before forming the film becomes important.

この場合、表面処理を施す事によって、固体レーザ素子
体の表面に反射防止膜を構成させる直前の固体レーザ素
子体の表面粗さが大きく変化する事がないのが望まし
く、更に、一方では、固体レーザ素子体表面から固体レ
ーザ素子体表面の汚染源である指紋、埃、脂肪分、カー
ボン等の汚染物質や、更に、精密研磨に使用したコロイ
ダルシリカ、酸化セリウム等の研磨剤までも完全に除去
されていなければならない。
In this case, it is desirable that the surface roughness of the solid-state laser element body immediately before forming the antireflection film on the surface of the solid-state laser element body is not significantly changed by performing the surface treatment. The contaminants such as fingerprints, dust, fat and carbon that are the pollution sources on the surface of the laser element body to the solid state laser element surface, as well as the colloidal silica used for precision polishing and the polishing agent such as cerium oxide are completely removed. Must be

本発明は、固体レーザ素子体の表面に反射防止膜を構成
させる直前に、固体レーザ素子体の表面粗さが大きく阻
害される事がないまま、固体レーザ素子体表面の汚染源
である指紋、埃、脂肪分、カーボン等の汚染物質や、更
に、固体レーザ素子の精密研磨に使用されたコロイダル
シリカ、酸化セリウム等の研磨剤までも固体レーザ素子
体表面から、完全に除去するために、固体レーザ素子体
の表面を洗浄して、清浄化する方法の提供を目的とする
ものである。
The present invention, just before forming an antireflection film on the surface of the solid-state laser element body, fingerprints, dust, which is a source of contamination on the surface of the solid-state laser element body, without greatly impairing the surface roughness of the solid-state laser element body. In order to completely remove contaminants such as fat, carbon and the like, and further polishing agents such as colloidal silica and cerium oxide used for precision polishing of the solid-state laser element from the surface of the solid-state laser element, the solid-state laser The purpose of the present invention is to provide a method for cleaning the surface of an element body to clean it.

[課題を解決するための手段] 本発明者等は、前述の目的を達成する為に鋭意研究を重
ねた結果、固体レーザ素子体の表面に構成される反射防
止膜の構成直前に、固体レーザ素子体の表面を燐酸と硫
酸とを混合して得られた洗浄液に浸し、その後、真空蒸
着法によって、固体レーザ素子の端面に反射防止膜を達
成させる事によって、目的を達成出来る事を見出だし本
発明に至った。
[Means for Solving the Problems] The inventors of the present invention have conducted extensive studies to achieve the above-mentioned object, and as a result, immediately before the formation of the antireflection film formed on the surface of the solid-state laser element body, the solid-state laser It has been found that the objective can be achieved by immersing the surface of the device body in a cleaning solution obtained by mixing phosphoric acid and sulfuric acid, and then achieving an antireflection film on the end face of the solid-state laser device by the vacuum deposition method. The present invention has been completed.

以下に、本発明の詳細を述べる。The details of the present invention will be described below.

即ち、本発明は固体レーザ素子体の表面に反射防止被膜
が構成されるべき表面を、燐酸と硫酸との混合液に浸漬
または接触させる事を特徴とする固体レーザ素子体の表
面の清浄化方法であって、好ましくは、当該混合液が燐
酸の硫酸に耐する重量混合比0.6〜0.3を有し、か
つ、温度150゜C〜220゜Cである事を特徴とし、特
に、、固体レーザ素子体がNd;YAG結晶である事を
内容とするものである。
That is, the present invention is a method for cleaning the surface of a solid-state laser element body, which comprises immersing or contacting the surface of the solid-state laser element body on which an antireflection coating is to be formed in a mixed solution of phosphoric acid and sulfuric acid. It is preferable that the liquid mixture has a weight mixing ratio of 0.6 to 0.3 that resists sulfuric acid of phosphoric acid, and a temperature of 150 ° C to 220 ° C, and particularly, The solid-state laser element body is Nd; YAG crystal.

[作用] 本発明による洗浄方法の実施前においては、固体レーザ
素子体の表面には、精密研磨工程で付着し、その後の予
備洗浄によっても除去されない微量の研磨剤粒子が残存
しているが、本発明の洗浄液である燐酸−硫酸の混合液
は固体レーザ素子体の表面から付着粒子を除去し、固体
レーザ素子体の表面を清浄化する。
[Operation] Before the cleaning method according to the present invention is carried out, a small amount of abrasive particles, which adhere to the surface of the solid-state laser element body in the precision polishing step and are not removed even by the subsequent preliminary cleaning, remain, The phosphoric acid-sulfuric acid mixed solution, which is the cleaning solution of the present invention, removes adhered particles from the surface of the solid-state laser element body and cleans the surface of the solid-state laser element body.

この場合、コロイダルシリカは混合液の脱水反応によっ
て凝集しやすい状態に変えられ、固体レーザ素子体の表
面から除去される。
In this case, the colloidal silica is changed into a state where it is easily aggregated by the dehydration reaction of the mixed liquid, and is removed from the surface of the solid-state laser element body.

また、固体レーザ素子体の取扱い中に、表面に付着する
油脂や、カーボン粒子や、有機性の粉塵等は上記混合液
の酸化力によって固体レーザ素子体の表面から除去され
る。
Further, during handling of the solid-state laser element body, oil and fat, carbon particles, organic dust and the like adhering to the surface are removed from the surface of the solid-state laser element body by the oxidizing power of the mixed liquid.

しかしながら、これらの反応は、洗浄として燐酸または
硫酸を単独で使用した場合には十分な効果が得られるも
のではなく、両者を混合して用いる事によってはじめて
効果が示されるものである。
However, these reactions do not show a sufficient effect when phosphoric acid or sulfuric acid is used alone for washing, and the effect is exhibited only when both are mixed and used.

固体レーザ素子体の表面に付着した粒子に対する燐酸−
硫酸混合の洗浄液の反応速度は、一般に、洗浄液の温度
が高い程大きくなると共に、液温が高い程洗浄時間を短
く出来るものである。
Phosphoric acid for particles attached to the surface of the solid-state laser device-
Generally, the reaction rate of the cleaning solution containing sulfuric acid increases as the temperature of the cleaning solution increases, and the cleaning time can be shortened as the temperature of the cleaning solution increases.

しかしながら、液温が高すぎた場合には、燐酸−硫酸混
合の洗浄液が固体レーザ素子体の表面自体を局部的選択
的に溶解する様になる結果、表面の平滑精度を悪化させ
る危険が生じて来る。
However, if the liquid temperature is too high, the cleaning solution of phosphoric acid-sulfuric acid mixture locally and selectively dissolves the surface of the solid-state laser element body, resulting in the risk of degrading the surface smoothness. come.

以上のことから、燐酸−硫酸混合の洗浄液の組成と処理
温度は、固体レーザ素子体の表面清浄性、固体レーザ素
子体の種類、平滑精度の程度、および、洗浄時間等を要
素として定めなければならない。
From the above, the composition and treatment temperature of the phosphoric acid-sulfuric acid mixture cleaning solution must be determined by factors such as the surface cleanability of the solid-state laser element body, the type of the solid-state laser element body, the degree of smoothing accuracy, and the cleaning time. I won't.

本発明においては、固体レーザ素子体、特に、Nd:Y
AG系単結晶体を対象とする場合には、燐酸の硫酸に対
する重量混合比が0.6〜3.0の組成範囲であって、
液温が150〜220゜Cの範囲にある洗浄液が利用され
ることが好ましい。
In the present invention, a solid-state laser device body, particularly Nd: Y
In the case of targeting an AG-based single crystal, the weight mixing ratio of phosphoric acid to sulfuric acid is in the composition range of 0.6 to 3.0,
It is preferable to use a cleaning liquid having a liquid temperature in the range of 150 to 220 ° C.

本発明で、固体レーザ素子体の表面に被膜を構成させる
直前に、固体レーザ素子体の表面を洗浄する洗浄液の液
温を150〜220゜Cと限定したのは、洗浄液の液温が
150゜C未満では固体レーザ素子体の表面にシリカ膜が
残存する事が多くなって、結果的にレーザ損傷しきい値
を下げる事になるからであり、洗浄液の液温が220゜C
を超えると、洗浄液への浸漬時間が100秒程度でも、
固体レーザ素子体の表面自体が溶解されて固体レーザ素
子体の表面精度を悪化させるようになり、固体レーザ素
子体の表面に於ける表面粗さが大きくなってしまうから
である。
In the present invention, the temperature of the cleaning liquid for cleaning the surface of the solid-state laser element body is limited to 150 to 220 ° C. immediately before forming the coating film on the surface of the solid-state laser element body. If it is less than C, the silica film often remains on the surface of the solid-state laser element body, and as a result, the laser damage threshold value is lowered, and the cleaning liquid temperature is 220 ° C.
If it exceeds, even if the immersion time in the cleaning liquid is about 100 seconds,
This is because the surface itself of the solid-state laser element body is melted to deteriorate the surface accuracy of the solid-state laser element body, and the surface roughness on the surface of the solid-state laser element body increases.

また、上述の温度範囲にある洗浄液は、燐酸の硫酸に対
する重量混合比が0.6〜3.0の範囲にあれば、浸漬
時間40〜100秒の洗浄処理によっても完全な洗浄効
果が示され、洗浄後の固体レーザ素子体の表面には何等
の異物も観察されず清浄な表面状態が確保される。
In addition, if the weight mixing ratio of phosphoric acid to sulfuric acid is in the range of 0.6 to 3.0, the cleaning liquid in the above temperature range shows a complete cleaning effect even by the cleaning treatment for the immersion time of 40 to 100 seconds. No foreign matter is observed on the surface of the solid-state laser element body after cleaning, and a clean surface state is secured.

固体レーザ素子体の表面洗浄方法としては、固体レーザ
素子体を洗浄液に直接浸漬する方法が採られるが、固体
レーザ素子体の表面に洗浄液を落下させる方法または固
体レーザ素子体の表面に洗浄液を噴霧させる方法も可能
である。
As a method of cleaning the surface of the solid-state laser element body, a method of directly immersing the solid-state laser element body in a cleaning liquid is adopted, but a method of dropping the cleaning liquid on the surface of the solid-state laser element body or spraying the cleaning liquid on the surface of the solid-state laser element body The method of making it possible is also possible.

洗浄作業を終了させるには、洗浄液から固体レーザ素子
体を取りだし、速やかに冷純水中に浸漬する。
To complete the cleaning operation, the solid-state laser element body is taken out of the cleaning liquid and immediately immersed in cold pure water.

[実施例] 本発明の実施例を以下に述べる。[Examples] Examples of the present invention will be described below.

[実施例1] 先づ、固体レーザ素子体として直径30mm、厚さ5mmの
NdドープYAl12(Nd:YAG)をインゴ
ットより切り出し、この固体レーザ素子体の表面をコロ
イダルシリカを研磨材として用いる精密研磨方法により
研磨し、表面粗さが自乗平均平方根表面粗さ(RMS)
にて0.5nmの試料を用意し、予備洗浄として、洗剤、
純水で超音波洗浄を行った。
Example 1 First, as a solid-state laser element body, Nd-doped Y 3 Al 5 O 12 (Nd: YAG) having a diameter of 30 mm and a thickness of 5 mm was cut out from an ingot, and the surface of the solid-state laser element body was polished with colloidal silica. The surface roughness is the root mean square surface roughness (RMS).
Prepare a 0.5 nm sample at
Ultrasonic cleaning was performed with pure water.

次いで、純度85%以上の燐酸と、純度95%以上の硫
酸とを重量比で1:1(重量混合比約1.1に相当)の
割合に混合した洗浄液を用意し、この洗浄液を180゜C
に加熱した状態で上記の試料を60秒間浸漬した後引上
げ、超純水の流水を用いて10分間の水洗浄を行い、更
に、超音波洗浄器を用いて純水、アルコールの順に洗浄
工程を重ね、さらに、フロン蒸気により乾燥させて試験
試料を得た。
Next, a cleaning liquid prepared by mixing phosphoric acid having a purity of 85% or more and sulfuric acid having a purity of 95% or more in a weight ratio of 1: 1 (corresponding to a weight mixing ratio of about 1.1) was prepared. C
The sample is immersed in the heated state for 60 seconds, then pulled up, washed with running water of ultrapure water for 10 minutes, and further washed with pure water and alcohol in this order with an ultrasonic cleaner. The test samples were obtained by stacking and further drying with Freon vapor.

上記の試験試料を電子ビーム真空蒸着装置に取り付け、
1.0×10−6torrまで排気した後、基板の加熱
温度を300゜Cとして、光学的膜厚が266nmであり、
屈折率が1.36であり、レーザ媒質の発振波長が10
64nmであるMgFの反射防止膜を上記の試験試料上
に蒸着した。
The above test sample was attached to an electron beam vacuum deposition apparatus,
After exhausting to 1.0 × 10 −6 torr, the substrate heating temperature is set to 300 ° C., and the optical film thickness is 266 nm.
The refractive index is 1.36 and the oscillation wavelength of the laser medium is 10
A 64 nm MgF 2 anti-reflective coating was deposited on the above test sample.

上記の様に反射防止膜が施された試験試料に対して、波
長が1064nmであり、パルス幅が1nsであるN
d′:YAGレーザを用いて、1ショット毎にレーザの
照射位置を変えるワン・オン・ワン法によりレーザ損傷
しきい値の測定を行ったところ、8J/cm2という値が
示された。
For the test sample coated with the antireflection film as described above, N having a wavelength of 1064 nm and a pulse width of 1 ns
When a laser damage threshold value was measured by a one-on-one method in which a laser irradiation position was changed for each shot using a d ': YAG laser, a value of 8 J / cm 2 was shown.

[実施例2] 固体レーザ素子体として、直径30mm、厚さ5mmのNd
ドープYAl12(Nd:YAG)をインゴット
より切り出して基板試料とすると共に、高速で回転して
いる基板上に流動性のある液体を垂らし、回転している
基板の遠心力を利用する事によって基板上に液体を薄
く、しかも、均一に塗布して行く「スピンコータ」を用
いて、このNd:YAG基板試料の表面に研磨剤である
コロイダルシリカを1ミクロンの厚さで塗布した後、1
00゜Cの乾燥器内で10時間に亘って加熱し、水分を蒸
発させて、洗浄試験用の試料とした。
Example 2 As a solid-state laser element body, Nd having a diameter of 30 mm and a thickness of 5 mm
Dope Y 3 Al 5 O 12 (Nd: YAG) is cut out from an ingot to make a substrate sample, and a fluid liquid is dripped on the substrate rotating at high speed, and the centrifugal force of the rotating substrate is used. After applying the colloidal silica, which is a polishing agent, to the surface of this Nd: YAG substrate sample with a thickness of 1 micron by using a "spin coater" that applies the liquid thinly and uniformly on the substrate by 1
The sample was heated in a dryer at 00 ° C. for 10 hours to evaporate the water and used as a sample for a cleaning test.

別途用意した純度85%以上の燐酸と、純度95%以上
の硫酸とを重量比で1:1の割合に混合した得られた洗
浄液について、液温が180゜Cになる様に加熱された洗
浄液中へ、上記の洗浄試験用の試料を60秒間に亘って
浸漬した後、洗浄作用を停止させるために超純水中で1
0分間に亘る試料の洗浄処理を施し、さらに、超音波洗
浄器を用いて純水、アルコールの順に洗浄し、フロン蒸
気で乾燥して得られた試料について、試料表面に残存し
ているシリカ膜の総量を、洗浄処理前後の重量変化を測
定して算出したところ、シリカは全く検出する事が出来
なかった。
Separately prepared phosphoric acid with a purity of 85% or more and sulfuric acid with a purity of 95% or more were mixed in a weight ratio of 1: 1 to obtain a cleaning liquid, which was heated to a liquid temperature of 180 ° C. After immersing the above-mentioned sample for cleaning test therein for 60 seconds, the sample was immersed in ultrapure water to stop the cleaning action.
A silica film remaining on the sample surface of the sample obtained by performing a cleaning treatment on the sample for 0 minutes, further cleaning with pure water and alcohol in that order using an ultrasonic cleaner, and drying with fluorocarbon vapor. When the total amount of the above was calculated by measuring the weight change before and after the washing treatment, silica could not be detected at all.

[実施例3] 洗浄試験用の試料を洗浄液に浸漬する時間を80秒とし
た以外は全て、実施例2と同様に処理された試料につい
て、試料表面に残存しているシリカ膜の総量を測定した
ところ、全く検出する事が出来なかった。
[Example 3] The total amount of the silica film remaining on the sample surface was measured for all the samples treated in the same manner as in Example 2 except that the time for immersing the cleaning test sample in the cleaning liquid was 80 seconds. However, it could not be detected at all.

[実施例4] 洗浄試験用の試料を洗浄液に浸漬する時間を40秒と
し、洗浄液の加熱温度を200゜Cとした以外は全て、実
施例2と同様に処理された試料について、試料表面に残
存しているシリカ膜の総量を測定したところ、全く検出
する事が出来なかった。
[Example 4] A sample treated in the same manner as in Example 2 except that the time for immersing the sample for the cleaning test in the cleaning liquid was 40 seconds and the heating temperature of the cleaning liquid was 200 ° C was applied to the sample surface. When the total amount of the remaining silica film was measured, it could not be detected at all.

[実施例5] 洗浄試験用の試料を洗浄液に浸漬する時間を60秒と
し、洗浄液の加熱温度を200゜Cとした以外は全て、実
施例2と同様に処理された試料について、試料表面に残
存しているカーボン量をオージェ電子分光法で測定した
ところ、試料表面から得られたオージェスペクトル線上
にはカーボンの存在を示すピークが全く検出されなかっ
た。
Example 5 A sample treated in the same manner as in Example 2 except that the time for immersing the sample for the cleaning test in the cleaning liquid was 60 seconds and the heating temperature of the cleaning liquid was 200 ° C. When the amount of remaining carbon was measured by Auger electron spectroscopy, no peak indicating the presence of carbon was detected on the Auger spectrum line obtained from the sample surface.

[比較例1] 純度85%以上の燐酸と、純度95%以上の硫酸とを重
量比1:1の割合に混合した洗浄液による浸漬処理を施
さなかった以外は全て実施例と同様に処理された試験試
料について、実施例と同様に測定されたレーザ損傷しき
い値は3J/cm2であった。
[Comparative Example 1] All were treated in the same manner as in Example except that the dipping treatment was not performed by using a cleaning solution in which phosphoric acid having a purity of 85% or more and sulfuric acid having a purity of 95% or more were mixed at a weight ratio of 1: 1. For the test sample, the laser damage threshold measured in the same manner as in the example was 3 J / cm 2 .

[比較例2] 洗浄液による浸漬処理温度を250゜Cとした以外は全て
実施例1と同様に処理した場合の試験試料の表面粗さは
1.8nmとなって、浸漬処理を施す前の表面粗さであっ
た0.5nmに比較した大幅な粗さ増加を示した。
[Comparative Example 2] The surface roughness of the test sample was 1.8 nm when treated in the same manner as in Example 1 except that the temperature of the immersion treatment with the cleaning liquid was 250 ° C. It showed a significant increase in roughness compared to the roughness which was 0.5 nm.

[比較例3] 洗浄試験用の試料を洗浄液に浸漬する時間を20秒と
し、洗浄液の加熱温度を180゜Cとした以外は全て、実
施例2と同様に処理された試料について、試料表面に残
存しているシリカ膜の総量を測定したところ、洗浄処理
が十分でなく、27%ものシリカ膜が試料表面に残存し
ている事が認められた。
[Comparative Example 3] A sample treated in the same manner as in Example 2 except that the time for immersing the sample for the cleaning test in the cleaning liquid was 20 seconds and the heating temperature of the cleaning liquid was 180 ° C was measured. When the total amount of the remaining silica film was measured, it was found that the cleaning treatment was insufficient and 27% of the silica film remained on the sample surface.

[比較例4] 洗浄試験用の試料を洗浄液に浸漬する時間を80秒と
し、洗浄液の加熱温度を100゜Cとした以外は全て、実
施例2と同様に処理された試料について、試料表面に残
存しているシリカ膜の総量を測定したところ、洗浄処理
が十分でなく、37%ものシリカ膜が試料表面に残存し
ている事が認められた。
[Comparative Example 4] A sample treated in the same manner as in Example 2 except that the time for immersing the sample for the cleaning test in the cleaning liquid was 80 seconds and the heating temperature of the cleaning liquid was 100 ° C was measured. When the total amount of the remaining silica film was measured, it was found that the cleaning treatment was insufficient and 37% of the silica film remained on the sample surface.

[比較例5] 洗浄試験用の試料を洗浄液に浸漬する作業が成されなか
った以外、実施例2と同様に処理された試料について、
試料表面に残存しているカーボン量をオージェ電子分光
法で測定したところ、試料表面から得られたオージェス
ペクトル線上には明らかにカーボンの存在を示すピーク
が認められた。
[Comparative Example 5] A sample treated in the same manner as in Example 2 except that the operation of immersing the cleaning test sample in the cleaning liquid was not performed.
When the amount of carbon remaining on the sample surface was measured by Auger electron spectroscopy, a peak showing the presence of carbon was clearly observed on the Auger spectrum line obtained from the sample surface.

以上の他、洗浄液としての燐酸と硫酸との混合比を、燐
酸1.5に対して硫酸0.5から燐酸0.8に対して硫
酸1.2の範囲で変動させても本発明と同様な結果が得
られて居る。
In addition to the above, even if the mixing ratio of phosphoric acid and sulfuric acid as the cleaning liquid is changed in the range of 0.5 for phosphoric acid to 0.5 to 1.2 for phosphoric acid and 0.8, the same as the present invention. The results have been obtained.

尚、レーザ損傷しきい値の測定方法としては、レーザを
照射する度にレーザの照射位置を変えると共に、レーザ
の照射された位置で、ノマルスキー微分干渉顕微鏡を用
いて200倍に拡大した状態で試料の裏側から膜の裏面
を観察し、レーザ損傷が確認される最低のレーザパワー
密度をレーザしきい値とした。
The laser damage threshold value is measured by changing the laser irradiation position each time the laser is irradiated, and at the laser irradiation position, a sample is magnified 200 times using a Nomarski differential interference microscope. The back side of the film was observed from the back side of, and the lowest laser power density at which laser damage was confirmed was taken as the laser threshold.

上記の結果から、精密研磨されたNd:YAGに対して
本発明を実施する事により、Nd:YAG端面に施され
たMgF反射防止膜のレーザ損傷しきい値は2倍以上
に向上した事が明らかになったと共に、固体レーザ素子
体を精密研磨する際に利用されるコロイダルシリカの洗
浄除去が十分に成される事が明らかになった。
From the above results, by carrying out the present invention on Nd: YAG precisely polished, the laser damage threshold value of the MgF 2 antireflection film applied to the end face of Nd: YAG is more than doubled. It became clear that the colloidal silica used in the precision polishing of the solid-state laser element body can be sufficiently cleaned and removed.

尚、この現象は、精密研磨されたNd:YAG素子に対
して、MgF以外の反射防止膜であるSiO/Ta
/SiO/Ta/SiOやSiO
Al/SiO等の多層反射防止膜が加工された
場合にも同様な効果が得られる。
It should be noted that this phenomenon is due to the fact that, with respect to the Nd: YAG element that has been precisely polished, SiO 2 / Ta which is an antireflection film other than MgF 2
2 O 5 / SiO 2 / Ta 2 O 5 / SiO 2 or SiO 2 /
The same effect can be obtained when a multilayer antireflection film such as Al 2 O 3 / SiO 2 is processed.

[発明の効果] 本発明の実施により、精密研磨によって得られた固体レ
ーザ素子体の表面精度を悪化させる事なく、研磨工程で
固体レーザ素子体の表面に付着した粉塵等の汚染物質を
完全に除去して、清浄な固体レーザ素子体の表面を得る
事が可能になったばかりか、洗浄作業に要する処理時間
も、極く短時間で処理する事が出来、さらに、固体レー
ザ素子体に構成された反射防止膜のレーザ損傷しきい値
を大幅に向上する事が可能になり、電子機器業界に寄与
するところ大なるものがある。
[Effects of the Invention] By carrying out the present invention, contaminants such as dust adhering to the surface of the solid-state laser element body during the polishing process can be completely removed without deteriorating the surface accuracy of the solid-state laser element body obtained by precision polishing. Not only is it possible to obtain a clean surface of the solid-state laser element body by removing it, but also the processing time required for cleaning work can be treated in an extremely short time. In addition, the laser damage threshold of the antireflection film can be significantly improved, which is a great contribution to the electronic equipment industry.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】固体レーザ素子体の反射防止膜が形成され
るべき表面を、燐酸と硫酸とを混合して成る洗浄液に浸
漬または接触させる事を特徴とする固体レーザ素子体の
表面の清浄化方法。
1. Cleaning of the surface of a solid-state laser element body, characterized in that the surface of the solid-state laser element body on which an antireflection film is to be formed is immersed in or brought into contact with a cleaning liquid prepared by mixing phosphoric acid and sulfuric acid. Method.
【請求項2】固体レーザ素子がNd:YAGである事を
特徴とする請求項第1項記載の固体レーザ素子体の表面
の清浄化方法。
2. The method for cleaning the surface of a solid-state laser element according to claim 1, wherein the solid-state laser element is Nd: YAG.
【請求項3】当該洗浄液が、燐酸の硫酸に対する重量混
合比0.6〜3.0を有し、温度150〜220゜Cにあ
る事を特徴とする請求項第1項または第2項記載の固体
レーザ素子体の表面の清浄化方法。
3. The cleaning liquid according to claim 1 or 2, wherein the cleaning liquid has a weight mixing ratio of phosphoric acid to sulfuric acid of 0.6 to 3.0 and is at a temperature of 150 to 220 ° C. Method for cleaning the surface of a solid-state laser device body of.
JP12648790A 1990-05-16 1990-05-16 Method for cleaning surface of solid-state laser device body Expired - Lifetime JPH0644646B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12648790A JPH0644646B2 (en) 1990-05-16 1990-05-16 Method for cleaning surface of solid-state laser device body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12648790A JPH0644646B2 (en) 1990-05-16 1990-05-16 Method for cleaning surface of solid-state laser device body

Publications (2)

Publication Number Publication Date
JPH0425082A JPH0425082A (en) 1992-01-28
JPH0644646B2 true JPH0644646B2 (en) 1994-06-08

Family

ID=14936424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12648790A Expired - Lifetime JPH0644646B2 (en) 1990-05-16 1990-05-16 Method for cleaning surface of solid-state laser device body

Country Status (1)

Country Link
JP (1) JPH0644646B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5558127A (en) * 1992-10-09 1996-09-24 Kabushiki Kaisha Komatsu Seisakusho Hydraulic pilot valve

Also Published As

Publication number Publication date
JPH0425082A (en) 1992-01-28

Similar Documents

Publication Publication Date Title
US4781764A (en) Method of removing undesired particles from a surface of a substrate
US5972862A (en) Cleaning liquid for semiconductor devices
TWI386984B (en) Silicon electrode assembly surface decontamination by acidic solution
US4116714A (en) Post-polishing semiconductor surface cleaning process
CN105251745B (en) Cleaning method for optical elements after precise polishing
JPH04234118A (en) Reduction in introduced granular sub- stances on semiconductor wafer
US20060141787A1 (en) Cleaning methods for silicon electrode assembly surface contamination removal
JPH08236495A (en) Method of cleaning up hydrophobic silicon wafer
TWI703170B (en) Composition for semiconductor process and semiconductor process
KR100558164B1 (en) Etchant for etching nitride and method for removing nitride film of semiconductor device using the same
JPH0644646B2 (en) Method for cleaning surface of solid-state laser device body
JP6662288B2 (en) Glass substrate, glass substrate manufacturing method, and black matrix substrate
JP4318209B2 (en) Photomask blank manufacturing method and photomask manufacturing method
CN114496710A (en) Method for cleaning yttrium oxide coating of ceramic window of semiconductor equipment
JP3879827B2 (en) Photomask blank manufacturing method
JP4318561B2 (en) Photomask blank manufacturing method and photomask manufacturing method
JP2000500283A (en) Laser surface treatment method that does not damage
JP2001293442A (en) Method for cleaning optical device
JPH07211688A (en) Production of compound semiconductor substrate
JPH04298038A (en) Method for cleaning wafer
Stowers et al. Cleaning optical surfaces
JP2823077B2 (en) Cleaning method
JP3879828B2 (en) Photomask blank manufacturing method
Talim The preparation of optical surfaces for thin film deposition
JP3835768B2 (en) Precision optical element cleaning method