JP6662288B2 - Glass substrate, glass substrate manufacturing method, and black matrix substrate - Google Patents

Glass substrate, glass substrate manufacturing method, and black matrix substrate Download PDF

Info

Publication number
JP6662288B2
JP6662288B2 JP2016521089A JP2016521089A JP6662288B2 JP 6662288 B2 JP6662288 B2 JP 6662288B2 JP 2016521089 A JP2016521089 A JP 2016521089A JP 2016521089 A JP2016521089 A JP 2016521089A JP 6662288 B2 JP6662288 B2 JP 6662288B2
Authority
JP
Japan
Prior art keywords
glass substrate
value
glass
cleaning
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016521089A
Other languages
Japanese (ja)
Other versions
JPWO2015178339A1 (en
Inventor
小林 大介
大介 小林
敦義 竹中
敦義 竹中
高橋 秀幸
秀幸 高橋
佳孝 前柳
佳孝 前柳
智章 石川
智章 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Publication of JPWO2015178339A1 publication Critical patent/JPWO2015178339A1/en
Application granted granted Critical
Publication of JP6662288B2 publication Critical patent/JP6662288B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C15/00Surface treatment of glass, not in the form of fibres or filaments, by etching
    • C03C15/02Surface treatment of glass, not in the form of fibres or filaments, by etching for making a smooth surface
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C19/00Surface treatment of glass, not in the form of fibres or filaments, by mechanical means
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Surface Treatment Of Glass (AREA)
  • Liquid Crystal (AREA)
  • Glass Compositions (AREA)
  • Laminated Bodies (AREA)

Description

本発明は、ガラス基板、ガラス基板の製造方法およびブラックマトリクス基板に関する。   The present invention relates to a glass substrate, a method for manufacturing a glass substrate, and a black matrix substrate.

液晶表示装置(LCD)等のFPD(Flat Panel Display)に用いられるガラス基板は、例えば、フロート法やフュージョン法により溶融ガラスからガラスリボンに成形され、ガラスリボンから切り出されて製造される。このようなガラス基板の表面には、OH基を過剰に含む親水性の高い層(以下、OHリッチ親水層という。)が形成されることがある。
特に溶融ガラスから板状に成形されたガラスを、自転および公転する研磨具で研磨する場合に顕著である。研磨工程では表面の微小な凹凸やうねりを除去することによって、FPD用ガラス基板に要求される平坦度を満足する所定の厚さ(例えば、0.1〜1.1mm)の薄板状に形成している。
A glass substrate used for an FPD (Flat Panel Display) such as a liquid crystal display device (LCD) is manufactured by, for example, forming a glass ribbon from molten glass by a float method or a fusion method, and cutting out the glass ribbon. On the surface of such a glass substrate, a layer having a high hydrophilicity containing an excess of OH groups (hereinafter referred to as an OH-rich hydrophilic layer) may be formed.
This is particularly remarkable when the glass formed into a plate shape from molten glass is polished with a polishing tool that rotates and revolves. In the polishing step, by removing fine irregularities and undulations on the surface, a thin plate having a predetermined thickness (for example, 0.1 to 1.1 mm) satisfying the flatness required for the FPD glass substrate is formed. ing.

このようなガラス基板の研磨には、例えば、砥粒として酸化セリウム粒子を含有する研磨剤(スラリー)が使用されている。また、研磨後は、ガラス基板の表面に付着している砥粒等の残留物を、洗浄液により洗浄し除去している(例えば、特許文献1参照)。   For polishing such a glass substrate, for example, an abrasive (slurry) containing cerium oxide particles as abrasive grains is used. Further, after polishing, residues such as abrasive grains adhering to the surface of the glass substrate are removed by cleaning with a cleaning liquid (for example, see Patent Document 1).

そして、このような酸化セリウム粒子の砥粒を含む研磨剤等の残留物を除去するために、有機ホスホン酸のような有機酸を含む酸性の洗浄液が有効である。   An acidic cleaning solution containing an organic acid such as organic phosphonic acid is effective for removing residues such as abrasives containing abrasive grains of such cerium oxide particles.

しかしながら、LCD用等のアルミノホウケイ酸ガラスからなるガラス基板を酸性の洗浄液で洗浄した場合、リーチング(leaching、浸出)作用により、ガラス基板の表面(表層)においてアルミニウムイオン等のガラス成分が抜け出すことがある。その結果、ガラス基板の表面には、OHリッチ親水層が形成されやすくなる。   However, when a glass substrate made of aluminoborosilicate glass for an LCD or the like is washed with an acidic cleaning solution, a glass component such as aluminum ions may escape from the surface (surface layer) of the glass substrate due to a leaching action. is there. As a result, an OH-rich hydrophilic layer is easily formed on the surface of the glass substrate.

以上のように表面にOHリッチ親水層が形成されたガラス基板では、その表面上に、カーボンブラックのような黒色顔料を含有する樹脂組成物を用いてカラーフィルター用のブラックマトリクス膜(以下、BM膜ともいう。)を形成する工程で、OHリッチ親水層と樹脂系のBM膜との界面に現像液が浸入し、OHリッチ親水層からBM膜が剥れやすいという問題があった。   In the glass substrate having the OH-rich hydrophilic layer formed on the surface as described above, a black matrix film (hereinafter, referred to as BM) for a color filter is formed on the surface by using a resin composition containing a black pigment such as carbon black. In the process of forming a BM film, there is a problem that the developer penetrates into the interface between the OH-rich hydrophilic layer and the resin-based BM film, and the BM film is easily peeled off from the OH-rich hydrophilic layer.

特開2009−215093号公報JP 2009-215093 A

本発明は、上記問題を解決するためになされたもので、表面に形成される樹脂系のBM膜(以下、樹脂BM膜ともいう。)の密着性が高く、樹脂BM膜の剥れが生じにくいガラス基板の提供を目的としている。
また、本発明は、研磨後のガラス基板の表面を洗浄するにあたり、洗浄後のガラス基板の表面に形成される樹脂BM膜の密着性低下を抑制して、樹脂BM膜の剥れを防止することが可能なガラス基板の製造方法を提供することを目的としている。
The present invention has been made in order to solve the above-mentioned problem, and has high adhesion of a resin-based BM film (hereinafter, also referred to as a resin BM film) formed on the surface, and the resin BM film may be peeled off. The purpose is to provide a difficult glass substrate.
Further, in cleaning the surface of the polished glass substrate, the present invention suppresses a decrease in adhesion of the resin BM film formed on the surface of the polished glass substrate, thereby preventing the resin BM film from peeling. It is an object of the present invention to provide a method for manufacturing a glass substrate that can perform the method.

本発明のガラス基板は、アルミニウムを含むケイ酸ガラスからなるガラス基板であり、X線光電子分光法により測定された、前記ガラス基板の内部におけるアルミニウムの原子濃度(以下、Al濃度という。)とケイ素の原子濃度(以下、Si濃度という。)との比の値(以下、Al/Si値という。)から、前記ガラス基板の表面におけるAl/Si値を引いた値(以下、ΔAl/Si値という。)が、0.25以下であることを特徴とする。   The glass substrate of the present invention is a glass substrate made of silicate glass containing aluminum, and has an atomic concentration of aluminum (hereinafter, referred to as an Al concentration) inside the glass substrate and silicon measured by X-ray photoelectron spectroscopy. Of the glass substrate surface (hereinafter referred to as ΔAl / Si value) from the value of the ratio (hereinafter referred to as Al / Si value) to the atomic concentration (hereinafter referred to as Si concentration). ) Is 0.25 or less.

本発明のガラス基板において、前記ΔAl/Si値は0.19以下が好ましい。また、前記ガラス基板の表面の算術平均表面粗さは0.2nm以下であることが好ましい。
また、前記アルミニウムを含むケイ酸ガラスが、SiO、Al、B、およびアルカリ土類金属の酸化物を含む組成を有するアルミノホウケイ酸ガラスであることが好ましく、前記アルミニウムを含むケイ酸ガラスは、アルカリ金属成分を実質的に含有しないアルミノホウケイ酸ガラスであることが好ましい。
In the glass substrate of the present invention, the ΔAl / Si value is preferably 0.19 or less. The arithmetic average surface roughness of the surface of the glass substrate is preferably 0.2 nm or less.
Preferably, the silicate glass containing aluminum is an aluminoborosilicate glass having a composition containing SiO 2 , Al 2 O 3 , B 2 O 3 , and an oxide of an alkaline earth metal. The silicate glass containing is preferably an aluminoborosilicate glass substantially containing no alkali metal component.

本発明のガラス基板の製造方法は、前記本発明のガラス基板を製造する方法であり、砥粒を含有する研磨剤により研磨されたガラス基板を、pHが2.7より大きい水系洗浄液により洗浄することを特徴とする。本発明のガラス基板の製造方法において、前記砥粒は酸化セリウム粒子であることが好ましい。   The method for producing a glass substrate of the present invention is a method for producing the glass substrate of the present invention, wherein a glass substrate polished with an abrasive containing abrasive grains is washed with an aqueous cleaning liquid having a pH of more than 2.7. It is characterized by the following. In the method for producing a glass substrate of the present invention, the abrasive grains are preferably cerium oxide particles.

本発明のブラックマトリクス基板は、本発明のガラス基板上にBM膜が形成されてなることを特徴とする。   The black matrix substrate of the present invention is characterized in that a BM film is formed on the glass substrate of the present invention.

本発明のガラス基板およびブラックマトリクス基板によれば、表面に形成される樹脂BM膜の密着性が良好であり、樹脂BM膜の剥れが防止される。
また、本発明のガラス基板の製造方法によれば、表面に形成される樹脂BM膜の密着性が良好であり、樹脂BM膜の剥れが生じにくいガラス基板を得ることができる。
According to the glass substrate and the black matrix substrate of the present invention, the adhesion of the resin BM film formed on the surface is good, and peeling of the resin BM film is prevented.
Further, according to the method for manufacturing a glass substrate of the present invention, it is possible to obtain a glass substrate in which the adhesion of the resin BM film formed on the surface is good and the resin BM film does not easily peel off.

本発明のガラス基板を得るための、洗浄方法の一実施形態を示す図である。It is a figure showing one embodiment of a cleaning method for obtaining a glass substrate of the present invention. 実施例1で得られたガラス基板におけるAl濃度およびSi濃度と、測定の際のスパッタ時間との関係を表すグラフである。5 is a graph showing the relationship between the Al concentration and the Si concentration in the glass substrate obtained in Example 1 and the sputtering time at the time of measurement. 実施例1〜3および比較例1における洗浄液のpHの値と、洗浄後のガラス基板のΔAl/Si値との関係を表すグラフである。5 is a graph showing the relationship between the pH value of the cleaning solution in Examples 1 to 3 and Comparative Example 1 and the ΔAl / Si value of the glass substrate after cleaning. 実施例1〜3および比較例1で得られたガラス基板のΔAl/Si値と、樹脂BM膜の残し解像度との関係を表すグラフである。4 is a graph showing the relationship between the ΔAl / Si values of the glass substrates obtained in Examples 1 to 3 and Comparative Example 1 and the remaining resolution of the resin BM film.

以下、本発明の実施形態について説明する。本発明はこの実施形態に限定されるものではなく、本発明の趣旨に合致する限り、他の実施形態も本発明の範疇に属し得る。   Hereinafter, embodiments of the present invention will be described. The present invention is not limited to this embodiment, and other embodiments can be included in the scope of the present invention as long as the spirit of the present invention is met.

<ガラス基板>
本発明の実施形態に係るガラス基板は、アルミニウムを含むケイ酸ガラスからなるガラス基板であり、X線光電子分光法により測定された、ガラス基板の内部のAl/Si値から、同じくX線光電子分光法により測定された、ガラス基板の表面のAl/Si値を差し引いた値であるΔAl/Si値が、0.25以下のものである。ΔAl/Si値は、0(ゼロ)に近いほど好ましい。具体的には、ΔAl/Si値は0.19以下が好ましく、0.15以下がより好ましい。
<Glass substrate>
The glass substrate according to the embodiment of the present invention is a glass substrate made of silicate glass containing aluminum, and is also X-ray photoelectron spectroscopic based on the Al / Si value inside the glass substrate measured by X-ray photoelectron spectroscopy. The ΔAl / Si value, which is a value obtained by subtracting the Al / Si value on the surface of the glass substrate measured by the method, is 0.25 or less. The ΔAl / Si value is preferably closer to 0 (zero). Specifically, the ΔAl / Si value is preferably 0.19 or less, more preferably 0.15 or less.

実施形態のガラス基板は、例えば、LCDのようなFPD用のガラス基板である。このガラス基板を構成するガラスは、アルミニウム成分を含むケイ酸ガラスからなるものであれば、組成は限定されないが、SiO、Al、B、およびアルカリ土類金属の酸化物を含む組成を有するアルミノホウケイ酸ガラスが好ましく、ガラス組成にアルカリ金属成分を実質的に含有しない、いわゆる無アルカリのアルミノホウケイ酸ガラスがより好ましい。なお、アルカリ金属成分を実質的に含有しないとは、ガラス組成中におけるアルカリ金属酸化物の含有量が合計で1質量%以下、好ましくは0.1質量%以下であることをいう。
例えば、本発明の実施形態に係るガラス基板は、歪点が630℃以上、好ましくは650℃以上で、組成が、酸化物基準の質量百分率表示で、
SiO:54〜73
Al:10〜23
:0 〜12
MgO:0〜12
CaO:0〜15
SrO:0〜16
BaO:0〜15
MgO+CaO+SrO+BaO:8〜26
を含有する無アルカリガラスが好ましい。
The glass substrate of the embodiment is, for example, a glass substrate for an FPD such as an LCD. The composition of the glass constituting the glass substrate is not limited as long as the glass is composed of silicate glass containing an aluminum component. However, oxides of SiO 2 , Al 2 O 3 , B 2 O 3 , and alkaline earth metals are used. Aluminoborosilicate glass having a composition containing is preferred, and a so-called alkali-free aluminoborosilicate glass containing substantially no alkali metal component in the glass composition is more preferred. Here, the phrase "contains substantially no alkali metal component" means that the total content of alkali metal oxides in the glass composition is 1% by mass or less, preferably 0.1% by mass or less.
For example, the glass substrate according to the embodiment of the present invention has a strain point of 630 ° C. or higher, preferably 650 ° C. or higher, and has a composition expressed in terms of mass percentage based on oxide.
SiO 2 : 54 to 73
Al 2 O 3 : 10 to 23
B 2 O 3: 0 ~12
MgO: 0 to 12
CaO: 0 to 15
SrO: 0 to 16
BaO: 0 to 15
MgO + CaO + SrO + BaO: 8 to 26
Is preferable.

ガラス基板の内部および表面におけるAl濃度およびSi濃度は、X線光電子分光法により測定された値とする。ここで、ガラス基板の内部のAl濃度およびSi濃度を測定する点の表面からの深さは、以下に示すようにして決定した深さとすることが好ましい。
すなわち、C60イオンスパッタリングを用いてガラス基板に凹穴(クレータ)を形成しながら、いろいろな深さの凹穴の底部でAl濃度およびSi濃度を測定し、各原子濃度の深さ方向の分布を求める。そして、Al濃度およびSi濃度の深さ方向の分布が一定になる深さを求め、その深さで測定したAl濃度とSi濃度との比の値を、ガラス基板の内部のAl/Si値とし、この値からガラス基板の表面のAl/Si値を差し引いた値であるΔAl/Si値を求める。
The Al concentration and the Si concentration inside and on the surface of the glass substrate are values measured by X-ray photoelectron spectroscopy. Here, the depth from the surface at the point where the Al concentration and the Si concentration are measured inside the glass substrate is preferably the depth determined as described below.
That is, while forming a recess hole (crater) on a glass substrate by using a C 60 ion sputtering to measure the Al concentration and Si concentration at the bottom of the concave hole of varying depth, the distribution in the depth direction of each atom concentration Ask for. Then, a depth at which the distribution of the Al concentration and the Si concentration in the depth direction becomes constant is determined, and the value of the ratio between the Al concentration and the Si concentration measured at that depth is defined as the Al / Si value inside the glass substrate. Then, a ΔAl / Si value, which is a value obtained by subtracting the Al / Si value of the surface of the glass substrate from this value, is obtained.

このように、本発明の実施形態のガラス基板においては、ガラス基板の内部のAl/Si値に対するガラス基板の表面のAl/Si値の低下の度合いが、所定の値(0.25)以下に抑えられているので、ガラス基板の表面に形成される樹脂BM膜の密着性が良好であり、樹脂BM膜の剥れが生じにくい。   As described above, in the glass substrate according to the embodiment of the present invention, the degree of decrease in the Al / Si value on the surface of the glass substrate with respect to the Al / Si value inside the glass substrate is equal to or less than the predetermined value (0.25). Since the resin BM film is suppressed, the adhesion of the resin BM film formed on the surface of the glass substrate is good, and the resin BM film hardly peels off.

前記したように、ガラス基板の研磨後の洗浄において、ガラス基板の表面(表層)のAl成分の抜け出し量が多いほど、ガラス基板の表面にOHリッチ親水層が形成される。そして、ガラス基板の表面のAl/Si値が、前記したAl成分の抜け出しのないガラス基板の内部のAl/Si値に比べて、どの程度低いかを示すΔAl/Si値は、OHリッチ親水層の形成の度合いを示す。すなわち、ΔAl/Si値が低いほど、ガラス基板の表面におけるAl成分の欠乏が少ないことを意味し、ガラス基板の表面のOH基に起因する親水性が低いことを示している。   As described above, in the cleaning after polishing of the glass substrate, an OH-rich hydrophilic layer is formed on the surface of the glass substrate as the escape amount of the Al component from the surface (surface layer) of the glass substrate increases. The ΔAl / Si value indicating how much the Al / Si value on the surface of the glass substrate is lower than the Al / Si value inside the glass substrate from which the Al component does not escape is the OH-rich hydrophilic layer. Shows the degree of formation. That is, the lower the ΔAl / Si value, the lower the deficiency of the Al component on the surface of the glass substrate, and the lower the hydrophilicity due to the OH groups on the surface of the glass substrate.

具体的には、ガラス基板の内部のAl/Si値からガラス基板の表面のAl/Si値を差し引いた値であるΔAl/Si値が0.25以下の場合には、ガラス基板の表面のOH基に起因する親水性が低い。そのため、ガラス基板上に樹脂BM膜を形成する際に、ガラス基板とBM形成用樹脂組成物膜との界面への現像液の浸入が抑えられ、樹脂BM膜の密着性が向上し膜剥れが防止される。   Specifically, when the ΔAl / Si value, which is a value obtained by subtracting the Al / Si value on the surface of the glass substrate from the Al / Si value inside the glass substrate, is 0.25 or less, the OH on the surface of the glass substrate is Low hydrophilicity due to groups. Therefore, when the resin BM film is formed on the glass substrate, the intrusion of the developer into the interface between the glass substrate and the resin composition film for forming the BM is suppressed, and the adhesion of the resin BM film is improved and the film is peeled. Is prevented.

このように、ΔAl/Si値が0.25以下である本発明のガラス基板は、以下の方法で得ることができる。   Thus, the glass substrate of the present invention having a ΔAl / Si value of 0.25 or less can be obtained by the following method.

<ガラス基板の製造方法>
本発明の実施形態に係るガラス基板は、フロート法やフュージョン法により溶融ガラスから板状のガラスリボンに成形され、ガラスリボンから所定の大きさに切り出されて製造される。また、必要に応じて板状に成形されたガラスを研磨する。
本発明の実施形態のガラス基板の製造方法は、研磨工程を有するものとして以下に説明する。実施形態のガラス基板の製造方法は、ガラス基板を砥粒を含有する研磨剤により研磨する研磨工程と、研磨されたガラス基板を洗浄する洗浄工程とを備える。そして、砥粒を含有する研磨剤により研磨されたガラス基板を、pHが2.7より大きい水系洗浄液により洗浄することにより、前記した本発明のガラス基板を得ることができる。水系洗浄液のpHは、3.0以上が好ましく、3.5以上がより好ましい。
<Glass substrate manufacturing method>
The glass substrate according to the embodiment of the present invention is manufactured by forming a plate-shaped glass ribbon from molten glass by a float method or a fusion method, and cutting out the glass ribbon into a predetermined size. Further, if necessary, the glass formed into a plate shape is polished.
A method for manufacturing a glass substrate according to an embodiment of the present invention will be described below assuming that the method includes a polishing step. The method for manufacturing a glass substrate according to the embodiment includes a polishing step of polishing the glass substrate with an abrasive containing abrasive grains, and a cleaning step of cleaning the polished glass substrate. Then, the glass substrate polished with the abrasive containing abrasive grains is washed with an aqueous cleaning solution having a pH of more than 2.7, whereby the above-described glass substrate of the present invention can be obtained. The pH of the aqueous cleaning solution is preferably 3.0 or more, more preferably 3.5 or more.

洗浄対象物であるガラス基板は、LCDのようなFPD用のガラス基板であり、砥粒を含有する研磨剤で研磨されたものである。
ガラス基板を構成するガラスは、前記したように、SiO、Al、B、およびアルカリ土類金属の酸化物を含む組成を有するアルミノホウケイ酸ガラスが好ましく、ガラス組成にアルカリ金属成分を実質的に含有しないアルミノホウケイ酸ガラスがより好ましい。
The glass substrate to be cleaned is a glass substrate for an FPD such as an LCD, and is polished with an abrasive containing abrasive grains.
As described above, the glass constituting the glass substrate is preferably an aluminoborosilicate glass having a composition containing SiO 2 , Al 2 O 3 , B 2 O 3 , and an oxide of an alkaline earth metal. Aluminoborosilicate glass substantially free of metal components is more preferred.

洗浄前の研磨では、このようなガラス基板の表面を、例えば、研磨パッドを使用し、砥粒を含む研磨剤(スラリー)により研磨する。研磨剤に含有される砥粒は特には限定されず、シリカ粒子、アルミナ粒子、酸化セリウム粒子、チタニア粒子、ジルコニア粒子および酸化マンガン粒子等の粒子が挙げられるが、研磨効率の点で、特に酸化セリウム粒子が好ましい。砥粒の平均粒径は、例えば0.8〜1.0μmの範囲が好ましい。このような研磨工程を経ることにより、ガラス基板の表面の算術平均表面粗さRa(JIS B0601−2013)は、0.2nm以下となることが好ましい。   In polishing before cleaning, the surface of such a glass substrate is polished with a polishing agent (slurry) containing abrasive grains using, for example, a polishing pad. The abrasive particles contained in the abrasive are not particularly limited, and include particles such as silica particles, alumina particles, cerium oxide particles, titania particles, zirconia particles, and manganese oxide particles. Cerium particles are preferred. The average grain size of the abrasive grains is preferably, for example, in the range of 0.8 to 1.0 μm. Through such a polishing step, the arithmetic average surface roughness Ra (JIS B0601-2013) of the surface of the glass substrate is preferably 0.2 nm or less.

本発明の実施形態に使用される、pHが2.7より大きい水系洗浄液としては、以下に示す有機酸を含む酸性の洗浄液およびアルカリ性の洗浄液を挙げることができる。ガラス基板の表面の平坦性を確保するために、水系洗浄液のpHは11未満が好ましく、9未満がより好ましい。以上から、水系洗浄液のpHは、3.5以上9未満の範囲がより好ましい。   Examples of the aqueous cleaning liquid having a pH of more than 2.7 used in the embodiment of the present invention include an acidic cleaning liquid containing an organic acid and an alkaline cleaning liquid shown below. In order to ensure the flatness of the surface of the glass substrate, the pH of the aqueous cleaning solution is preferably less than 11, more preferably less than 9. From the above, the pH of the aqueous cleaning solution is more preferably in the range of 3.5 or more and less than 9.

(酸性の洗浄液)
酸性の洗浄液に含有される有機酸としては、例えば、アスコルビン酸、クエン酸のような有機カルボン酸や、有機ホスホン酸等が挙げられるが、これらに限定されない。洗浄液には、これらの有機酸とともに、無機酸(例えば、硫酸、リン酸、硝酸、フッ酸、塩酸など)を加えることができ、無機酸を単独で使用することも可能である。また、前記無機酸を使用した場合、pHの変動を抑制するために、無機酸とともにこれらの酸の塩を加えることも可能である。
(Acid cleaning solution)
Examples of the organic acid contained in the acidic cleaning solution include, but are not limited to, organic carboxylic acids such as ascorbic acid and citric acid, and organic phosphonic acids. An inorganic acid (for example, sulfuric acid, phosphoric acid, nitric acid, hydrofluoric acid, hydrochloric acid, etc.) can be added to the cleaning liquid together with these organic acids, and the inorganic acid can be used alone. When the inorganic acids are used, salts of these acids can be added together with the inorganic acids in order to suppress fluctuations in pH.

キレート効果を有する有機カルボン酸や有機ホスホン酸などの化合物は、洗浄性の観点から、洗浄液中に含んでもよい。一方、ガラスからのAl成分の抜け出しを促進する可能性があるため、樹脂BM膜の密着性の観点から、これらの化合物は洗浄液中に含有しない方がよい。   Compounds having a chelating effect, such as organic carboxylic acids and organic phosphonic acids, may be contained in the cleaning solution from the viewpoint of detergency. On the other hand, since there is a possibility that the escape of the Al component from the glass may be promoted, it is better not to include these compounds in the cleaning solution from the viewpoint of the adhesion of the resin BM film.

ここで、キレート効果を有する有機カルボン酸としては、ジカルボン酸系キレート剤、トリカルボン酸系キレート剤、グルコン酸系キレート剤、ニトリロ三酢酸系キレート剤、イミノコハク酸系キレート剤等を挙げることができる。   Here, examples of the organic carboxylic acid having a chelating effect include a dicarboxylic acid-based chelating agent, a tricarboxylic acid-based chelating agent, a gluconic acid-based chelating agent, a nitrilotriacetic acid-based chelating agent, and an iminosuccinic acid-based chelating agent.

有機ホスホン酸とは、式:−P(=O)(OH)で表わされるホスホン酸基が、炭素原子に結合した構造を有する有機化合物をいう。有機ホスホン酸1分子あたりの上記式で表わされるホスホン酸基の数は、2以上が好ましく、2〜8がより好ましく、2〜4が特に好ましい。The organic phosphonic acid refers to an organic compound having a structure in which a phosphonic acid group represented by the formula: -P (= O) (OH) 2 is bonded to a carbon atom. The number of phosphonic acid groups represented by the above formula per organic phosphonic acid molecule is preferably 2 or more, more preferably 2 to 8, and particularly preferably 2 to 4.

有機ホスホン酸としては、置換基を有してもよい炭化水素類の炭素原子に結合した水素原子を、ホスホン酸基に置換した構造を有する化合物、および、アンモニアやアミン類の窒素原子に結合した水素原子を、−CH−P(=O)(OH)で表わされるメチレンホスホン酸基に置換した構造を有する化合物が好ましい。
具体的には、有機ホスホン酸は、メチルジホスホン酸、1−ヒドロキシエタン−1,1−ジホスホン酸、アミノトリ(メチレンホスホン酸)、エチレンジアミンテトラ(メチレンホスホン酸)、ヘキサメチレンジアミンテトラ(メチレンホスホン酸)、プロピレンジアミンテトラ(メチレンホスホン酸)、ジエチレントリアミンペンタ(メチレンホスホン酸)、トリエチレンテトラミンヘキサ(メチレンホスホン酸)、トリス(2−アミノエチル)アミンヘキサ(メチレンホスホン酸)、トランス−1、2−シクロヘキサンジアミンテトラ(メチレンホスホン酸)、グリコールエーテルジアミンテトラ(メチレンホスホン酸)、およびテトラエチレンペンタミンヘプタ(メチレンホスホン酸)等を挙げることができる。
As the organic phosphonic acid, a compound having a structure in which a hydrogen atom bonded to a carbon atom of a hydrocarbon which may have a substituent is substituted with a phosphonic acid group, and a compound bonded to a nitrogen atom of ammonia or an amine a hydrogen atom, -CH 2 -P (= O) (OH) a compound having a structure resulting from substitution of the methylene phosphonic acid group represented by 2 is preferred.
Specifically, organic phosphonic acids include methyldiphosphonic acid, 1-hydroxyethane-1,1-diphosphonic acid, aminotri (methylenephosphonic acid), ethylenediaminetetra (methylenephosphonic acid), and hexamethylenediaminetetra (methylenephosphonic acid). ), Propylenediaminetetra (methylenephosphonic acid), diethylenetriaminepenta (methylenephosphonic acid), triethylenetetraminehexa (methylenephosphonic acid), tris (2-aminoethyl) aminehexa (methylenephosphonic acid), trans-1,2-cyclohexane Examples thereof include diamine tetra (methylene phosphonic acid), glycol ether diamine tetra (methylene phosphonic acid), and tetraethylene pentamine hepta (methylene phosphonic acid).

(アルカリ性の洗浄液)
アルカリ性の洗浄液は、塩基を含有し、塩基以外にキレート剤や界面活性剤を含有することができる。キレート剤は、洗浄性の観点から、洗浄液中に含んでもよい。一方、ガラスからのAl成分の抜け出しを促進する可能性があるため、樹脂BM膜の密着性の観点から、キレート剤は洗浄液中に含有しない方がよい。
(Alkaline cleaning solution)
The alkaline cleaning solution contains a base, and may contain a chelating agent or a surfactant in addition to the base. The chelating agent may be contained in the cleaning liquid from the viewpoint of detergency. On the other hand, since there is a possibility that the escape of the Al component from the glass may be promoted, it is better not to include the chelating agent in the cleaning liquid from the viewpoint of the adhesion of the resin BM film.

アルカリ性の洗浄液に含有される塩基としては、アルカリ金属水酸化物やアルカリ金属炭酸塩などのアルカリ金属化合物、アミン類、水酸化第4級アンモニウムなどが挙げられる。塩基としては、水酸化カリウムや水酸化ナトリウム等のアルカリ金属水酸化物が好ましい。   Examples of the base contained in the alkaline washing solution include alkali metal compounds such as alkali metal hydroxides and alkali metal carbonates, amines, and quaternary ammonium hydroxide. As the base, an alkali metal hydroxide such as potassium hydroxide or sodium hydroxide is preferable.

キレート剤としては、エチレンジアミン四酢酸系キレート剤、グルコン酸系キレート剤、ニトリロ三酢酸系キレート剤、イミノコハク酸系キレート剤などを挙げることができる。特に、エチレンジアミン四酢酸系キレート剤が好ましい。
界面活性剤としては、ノニオン性界面活性剤が好ましい。
Examples of the chelating agent include an ethylenediaminetetraacetic acid-based chelating agent, a gluconic acid-based chelating agent, a nitrilotriacetic acid-based chelating agent, and an iminosuccinic acid-based chelating agent. Particularly, an ethylenediaminetetraacetic acid-based chelating agent is preferable.
As the surfactant, a nonionic surfactant is preferable.

(洗浄工程)
洗浄工程においては、酸性の洗浄剤原液を水で希釈し、pHが2.7より大きくなるようにした希釈液(酸性の洗浄液)、またはアルカリ性の洗浄剤原液を水で希釈した希釈液(アルカリ性の洗浄液)を使用して、研磨後のガラス基板の表面を洗浄する。枚葉方式で洗浄することが好ましい。洗浄液をガラス基板の表面に直接接触させて洗浄する方法であれは、洗浄方法は特には限定されない。洗浄方法は、例えば、スクラブ洗浄、シャワー洗浄(噴射洗浄)、ディップ(浸漬)洗浄等を用いることができる。洗浄液の温度は特には限定されることはなく、室温(15℃)〜95℃で使用される。95℃を超える場合には、洗浄液中の水が沸騰するおそれがあり、洗浄操作上不便であり好ましくない。洗浄後、乾燥を行ってもよい。乾燥方法としては、温風を吹き付ける方法や、圧縮した空気を吹き付ける方法等が挙げられる。
(Washing process)
In the washing step, an acidic detergent stock solution is diluted with water to make the pH greater than 2.7 (acidic wash solution), or an alkaline detergent stock solution diluted with water (alkaline solution). Is used to clean the surface of the polished glass substrate. It is preferable to perform the single-wafer cleaning. The cleaning method is not particularly limited as long as the cleaning liquid is brought into direct contact with the surface of the glass substrate for cleaning. As a cleaning method, for example, scrub cleaning, shower cleaning (spray cleaning), dip (immersion) cleaning, or the like can be used. The temperature of the cleaning solution is not particularly limited, and is used at room temperature (15 ° C) to 95 ° C. If the temperature exceeds 95 ° C., water in the cleaning solution may boil, which is inconvenient for the cleaning operation and is not preferred. After washing, drying may be performed. Examples of the drying method include a method of blowing hot air and a method of blowing compressed air.

洗浄工程では、例えば、図1に示すように、搬送ロール1等の機構により洗浄室2内を水平方向に連続的に搬送されるガラス基板3の上下両面に、洗浄ノズル4から噴射された水系洗浄液5を吹き付けながら、ガラス基板3の上下両面側に配置された回転ブラシ6でガラス基板3の上下両面をスクラブする(擦る)方法を採ることができる。水系洗浄液5を噴射する洗浄ノズル4と回転ブラシ6とからなる洗浄部は、1段だけとしてもよいが、複数段設けてもよい。なお、図1に示される洗浄方法においては、洗浄部は2段である。洗浄を複数段で行う場合、すなわち、洗浄部を複数段設ける場合、各段で噴射する水系洗浄液5は、作業性の観点から、酸性の洗浄液またはアルカリ性の洗浄液のどちらか一方で同じ組成のものを用いることが好ましいが、洗浄液のpHが前記範囲であれば、各段で異なる水系洗浄液5を用いて洗浄することも可能である。   In the cleaning step, for example, as shown in FIG. A method of scrubbing (rubbing) the upper and lower surfaces of the glass substrate 3 with the rotating brushes 6 arranged on the upper and lower surfaces of the glass substrate 3 while spraying the cleaning liquid 5 can be adopted. The cleaning unit including the cleaning nozzle 4 for spraying the aqueous cleaning liquid 5 and the rotating brush 6 may be provided in only one stage, or may be provided in a plurality of stages. In the cleaning method shown in FIG. 1, the number of cleaning units is two. When washing is performed in a plurality of stages, that is, when a plurality of washing units are provided, the aqueous cleaning solution 5 sprayed in each stage has the same composition as one of an acidic washing solution and an alkaline washing solution from the viewpoint of workability. However, if the pH of the cleaning solution is within the above range, it is also possible to perform cleaning using a different aqueous cleaning solution 5 in each stage.

ここで、洗浄用の回転ブラシ6としては、PVA(ポリビニルアルコール)発泡体製などで、外径70〜100mmの円柱形状のものを複数個使用する。そして、これらの回転ブラシ6を、回転ブラシ6の回転軸がガラス基板3の被洗浄面、ここでは上下両面に対して垂直になるように、かつ回転ブラシ6の先端部がガラス基板3の被洗浄面と接触する、または被洗浄面と2mm未満の間隔を空けるように配置する。回転ブラシ6の回転速度は、100〜500rpmとすることが好ましい。   Here, as the cleaning rotary brush 6, a plurality of cylindrical brushes made of PVA (polyvinyl alcohol) foam and having an outer diameter of 70 to 100 mm are used. Then, the rotating brush 6 is set so that the rotating axis of the rotating brush 6 is perpendicular to the surface to be cleaned of the glass substrate 3, here, both upper and lower surfaces, and the tip of the rotating brush 6 is coated on the glass substrate 3. It is arranged so as to be in contact with the surface to be cleaned or at a distance of less than 2 mm from the surface to be cleaned. The rotation speed of the rotating brush 6 is preferably set to 100 to 500 rpm.

水系洗浄液5としては、前記した酸性の洗浄剤原液またはアルカリ性の洗浄剤原液を所望のpHになるように水で希釈したものを使用し、希釈された洗浄液、つまり水系洗浄液5の流量(噴射量)は、15〜40L/minとすることが好ましい。また、スクラブ時間は1.5秒以上とすることが好ましい。   As the aqueous cleaning solution 5, a solution obtained by diluting the above-described acidic cleaning solution or alkaline cleaning solution with water so as to have a desired pH is used, and the diluted cleaning solution, that is, the flow rate (injection amount) of the water-based cleaning solution 5 is used. ) Is preferably 15 to 40 L / min. Further, the scrub time is preferably set to 1.5 seconds or more.

実施形態のガラス基板の製造方法において、酸化セリウム粒子を含有する研磨剤で研磨されたガラス基板は、前記洗浄工程で、pHが2.7より大きい水系洗浄液により洗浄されることで、ガラス基板の内部のAl/Si値からガラス基板の表面のAl/Si値を差し引いたΔAl/Si値が0.25以下に調整される。こうして、ガラス基板の表面において、OHリッチ親水層の形成が抑制される結果、樹脂BM膜の形成工程で、ガラス基板の表面とBM形成用樹脂組成物膜との界面への現像液の浸入が抑えられ、樹脂BM膜の密着性が向上する。したがって、樹脂BM膜の密着性が良好で膜剥れが防止されたガラス基板を得ることができる。   In the method for manufacturing a glass substrate of the embodiment, the glass substrate polished with the abrasive containing cerium oxide particles is washed with an aqueous cleaning solution having a pH of more than 2.7 in the washing step, so that the glass substrate is polished. The ΔAl / Si value obtained by subtracting the Al / Si value of the surface of the glass substrate from the internal Al / Si value is adjusted to 0.25 or less. As a result, the formation of the OH-rich hydrophilic layer on the surface of the glass substrate is suppressed. As a result, in the process of forming the resin BM film, the intrusion of the developer into the interface between the surface of the glass substrate and the resin composition film for BM formation is prevented. As a result, the adhesion of the resin BM film is improved. Therefore, a glass substrate having good adhesion of the resin BM film and preventing film peeling can be obtained.

以下、本発明の実施例について具体的に説明するが、本発明はこれらの実施例に限定されるものではない。以下の例において、特に断らない限り、「%」は質量%を意味し、「部」は質量部を意味する   Hereinafter, examples of the present invention will be specifically described, but the present invention is not limited to these examples. In the following examples, “%” means “% by mass” and “part” means “part by mass” unless otherwise specified.

(実施例1〜3、比較例1)
ガラス基板の表面を、以下に示すようにして研磨した。ガラス基板としては、アルミノホウケイ酸ガラスからなるLCD用ガラス基板(旭硝子社製、商品名:AN100)を使用した。そして、このガラス基板の表面を、研磨パッドを用い、平均粒径0.8〜1.0μmの酸化セリウム粒子を含むスラリー状の研磨剤(昭和電工(株)製、商品名:SHOROX A10)を使用して研磨した。
そして、表面を研磨されたガラス基板を、図1に示す洗浄方法を使用して洗浄した。
(Examples 1 to 3, Comparative Example 1)
The surface of the glass substrate was polished as described below. As the glass substrate, a glass substrate for LCD made of aluminoborosilicate glass (trade name: AN100, manufactured by Asahi Glass Co., Ltd.) was used. Then, using a polishing pad, the surface of the glass substrate is coated with a slurry-like abrasive (SHOROX A10, manufactured by Showa Denko KK) containing cerium oxide particles having an average particle size of 0.8 to 1.0 μm. Polished using.
Then, the glass substrate whose surface was polished was cleaned using the cleaning method shown in FIG.

実施例1では、アルカリ性の洗浄剤原液(パーカーコーポレーション社製、商品名:PK−LCG28)をpHが8.9になるように水で希釈したものを、水系洗浄液として用いた。
また、実施例2および実施例3では、酸性の洗浄剤原液をpHがそれぞれ5.3(実施例2)および3.9(実施例3)になるように水で希釈したものを、水系洗浄液として用いた。なお、酸性の洗浄剤原液は、PK−LCG492A(パーカーコーポレーション社製の酸性の洗浄剤原液の商品名)を、液中の有機ホスホン酸濃度を1/4にしたものである。
さらに、比較例1では、酸性の洗浄剤原液(パーカーコーポレーション社製、商品名:PK−LCG492A)を、pHが2.7になるように水で希釈したものを、水系洗浄液として用いた。
In Example 1, an alkaline detergent solution (trade name: PK-LCG28, manufactured by Parker Corporation) diluted with water so as to have a pH of 8.9 was used as an aqueous detergent solution.
In Examples 2 and 3, the acidic cleaning agent stock solution was diluted with water so that the pH became 5.3 (Example 2) and 3.9 (Example 3), respectively, and the aqueous cleaning solution was used. Used as The acidic detergent stock solution is PK-LCG492A (trade name of the acidic detergent stock solution manufactured by Parker Corporation) in which the concentration of organic phosphonic acid in the solution is reduced to 1/4.
Furthermore, in Comparative Example 1, an acidic cleaning agent stock solution (manufactured by Parker Corporation, trade name: PK-LCG492A) diluted with water so as to have a pH of 2.7 was used as an aqueous cleaning solution.

そして、実施例1〜3および比較例1のそれぞれにおいて、研磨後のガラス基板の表面に、水系洗浄液を1分間に25Lの流量(以下、洗浄液流量ともいう。)で吹き付けながら、回転するPVA製の回転ブラシでガラス基板をスクラブ洗浄した。なお、水系洗浄液の温度は25℃とした。また、洗浄工程におけるスクラブ時間は、それぞれ3〜5秒間であった。   In each of Examples 1 to 3 and Comparative Example 1, a rotating PVA product was sprayed onto the polished surface of the glass substrate at a flow rate of 25 L per minute (hereinafter also referred to as a cleaning liquid flow rate). The glass substrate was scrubbed with a rotating brush. The temperature of the aqueous cleaning liquid was 25 ° C. The scrub time in the cleaning step was 3 to 5 seconds.

こうして洗浄されたガラス基板の表面について、以下に示す方法で、樹脂BM膜の密着性を測定し評価した。また、ガラス基板の表面のAl/Si値(表面Al/Si値ともいう)、ガラス基板の内部のAl/Si値(内部Al/Si値ともいう)、およびΔAl/Si値を求めた。   With respect to the surface of the glass substrate thus washed, the adhesion of the resin BM film was measured and evaluated by the following method. Further, the Al / Si value on the surface of the glass substrate (also referred to as surface Al / Si value), the Al / Si value inside the glass substrate (also referred to as internal Al / Si value), and the ΔAl / Si value were determined.

<樹脂BM膜の密着性の評価>
まず、以下に示す各成分を以下の組成で配合し、均一に混合して、固形分濃度15%の感光性BM形成用樹脂組成物を調製した。
[BM形成用樹脂組成物の組成]
・バインダ樹脂(日本化薬社製、商品名:ZCR1569H):28.4部
・光活性剤(光重合開始剤)
(チバ・スペシャルティ・ケミカル社製、商品名:イルガキュアOXE02):6.1部
・コロイダルシリカ微粒子(日産化学社製、商品名:PMAST):20.3部
・カーボンブラック:32.5部
・界面活性剤(ビックケミー・ジャパン社製、商品名:BYK306):0.3部
・架橋剤(日本化薬社製、商品名:UX5002D):6.1部
(日本化薬社製、商品名:NC3000H):3.0部
・シランカップリング剤(信越化学社製、商品名:KBM403):3.0部
・リン酸化合物(リン酸とモノメタクリロイルオキシエチルフォスフェート、ジメタクリロイルオキシエチルフォスフェートの2:1(質量比)混合物):0.3部
<Evaluation of adhesion of resin BM film>
First, the following components were blended in the following composition and mixed uniformly to prepare a photosensitive BM-forming resin composition having a solid content of 15%.
[Composition of BM-forming resin composition]
-Binder resin (manufactured by Nippon Kayaku Co., Ltd., trade name: ZCR1569H): 28.4 parts-Photoactivator (photopolymerization initiator)
(Ciba Specialty Chemical Company, trade name: Irgacure OXE02): 6.1 parts ・ Colloidal silica fine particles (Nissan Chemical Co., trade name: PAST): 20.3 parts ・ Carbon black: 32.5 parts ・ Interface Activator (manufactured by BYK Japan KK, trade name: BYK306): 0.3 part Crosslinking agent (manufactured by Nippon Kayaku, trade name: UX5002D): 6.1 parts
(Manufactured by Nippon Kayaku Co., Ltd., trade name: NC3000H): 3.0 parts ・ Silane coupling agent (manufactured by Shin-Etsu Chemical Co., Ltd., trade name: KBM403): 3.0 parts ・ Phosphate compound (phosphoric acid and monomethacryloyloxyethyl) Phosphate, 2: 1 (mass ratio) mixture of dimethacryloyloxyethyl phosphate): 0.3 part

次いで、このBM形成用樹脂組成物を、洗浄後のガラス基板の表面に、スピンコート装置(ミカサ社製、装置名:MS−A100)を使用し、200rpmで10秒間塗布(スピンコート)した後、ホットプレート(アズワン社製、装置名:HI−1000)を使用し、90℃で60秒間加熱・乾燥して塗膜を形成した。その後、露光装置(大日本科研製、装置名:MA−1200)を使用し、フォトマスクを介して露光(照度:30mW/cm、露光量:30mJ/cm、露光GAP:50μm)した後、現像装置(アクテス社製、装置名:ADE−3000S)を使用し、0.045%KOH水溶液を用いて15秒間現像した。続いて、純水洗浄することにより、ガラス基板の表面に樹脂BM膜のパターンを形成した。Next, the BM-forming resin composition was applied (spin-coated) at 200 rpm for 10 seconds using a spin coater (MS-A100, manufactured by Mikasa Co., Ltd.) on the surface of the glass substrate after washing. Using a hot plate (manufactured by AS ONE Corporation, device name: HI-1000), the coating was heated and dried at 90 ° C. for 60 seconds to form a coating film. After that, using an exposure apparatus (manufactured by Dainippon Kaken, apparatus name: MA-1200), exposure (illuminance: 30 mW / cm 2 , exposure amount: 30 mJ / cm 2 , exposure GAP: 50 μm) was performed through a photomask. Using a developing device (manufactured by Actes, device name: ADE-3000S), development was performed for 15 seconds using a 0.045% KOH aqueous solution. Subsequently, a pattern of a resin BM film was formed on the surface of the glass substrate by washing with pure water.

フォトマスクは、以下に示すL1〜L4の4種類のパターン形状を有し、かつ各種類ごとに線幅を1μmずつ変化させた計110種類のパターンとした。
L1………パターン間隔100μmで1ブロック(2835μm×2000μm)に25本の線状パターン(線幅は1〜25μmの範囲で可変)
L2………パターン間隔50μmで1ブロック(2952.6μm×2000μm)に30本の線状パターン(線幅は1〜30μmの範囲で可変)
L3………パターン間隔200μmで1ブロック(2682.5μm×2000μm)に25本の線状パターン(線幅は1〜25μmの範囲で可変)
L4………パターン間隔200μmで1ブロック(2682.5μm×2000μm)に25本の短い線状パターン(線幅は1〜25μmの範囲で可変)
The photomask had four types of pattern shapes L1 to L4 shown below, and had a total of 110 types of patterns in which the line width was changed by 1 μm for each type.
L1 25 linear patterns in one block (2835 μm × 2000 μm) with a pattern interval of 100 μm (line width is variable in the range of 1 to 25 μm)
L2: 30 linear patterns in one block (2952.6 μm × 2000 μm) with a pattern interval of 50 μm (line width is variable in the range of 1 to 30 μm)
L3: 25 linear patterns in one block (2682.5 μm × 2000 μm) with a pattern interval of 200 μm (line width is variable in the range of 1 to 25 μm)
L4: 25 short linear patterns in one block (2682.5 μm × 2000 μm) with a pattern interval of 200 μm (line width is variable in the range of 1 to 25 μm)

純水洗浄後のガラス基板をレーザー顕微鏡(キーエンス社製、装置名:VK−9510)により観測し、ガラス基板上に樹脂BM膜のパターンが残るマスクの線幅(以下、残し解像度という。)を、L1〜L4の4種類のパターン形状それぞれについて調べた。そして、4種類のパターン形状それぞれについての残し解像度の平均を求めた。結果を、表1に示す。なお、残し解像度の値が小さいほど、洗浄後のガラス基板上に形成された樹脂BM膜の密着性が高いことを示している。   The glass substrate after the pure water washing was observed with a laser microscope (manufactured by KEYENCE CORPORATION, device name: VK-9510), and the line width of a mask on which the pattern of the resin BM film remained on the glass substrate (hereinafter referred to as residual resolution). , L1 to L4 were examined. Then, the average of the remaining resolution for each of the four types of pattern shapes was obtained. Table 1 shows the results. The smaller the value of the remaining resolution, the higher the adhesion of the resin BM film formed on the glass substrate after cleaning.

<表面Al/Si値の測定>
洗浄後のガラス基板の表面におけるAl濃度およびSi濃度を、X線光電子分光法(以下、XPSと示す。)を用いて測定し、Al/Si値(原子濃度比)を求めた。
測定には、アルバック・ファイ社製のPHI5500を使用し、Si(2p)およびAl(2p)のピークを用い、パスエネルギー117.4eV、エネルギーステップ0.5eV/step、検出角(試料表面と検出器とのなす角度)15°の条件で測定を行った。スペクトルの解析には、解析ソフトMultiPakを使用した。スペクトルのバックグラウンドの引き方には、Shirley法を適用した。得られた結果を、表1に示す。
<Measurement of surface Al / Si value>
The Al concentration and the Si concentration on the surface of the glass substrate after cleaning were measured using X-ray photoelectron spectroscopy (hereinafter referred to as XPS), and the Al / Si value (atomic concentration ratio) was determined.
For measurement, a PHI5500 manufactured by ULVAC-PHI was used, and peaks of Si (2p) and Al (2p) were used. The measurement was performed under the condition of an angle of 15 °. For analysis of the spectrum, analysis software MultiPak was used. The Shirley method was applied to subtract the background of the spectrum. Table 1 shows the obtained results.

<内部Al/Si値の測定>
表面Al/Si値の測定に用いたガラス基板について、Al濃度およびSi濃度の深さ方向分布を、C60イオンスパッタリングを用いたXPSにより測定した。XPS測定装置および解析ソフトは、表面Al/Si値の測定と同じものを使用した。測定条件は、パスエネルギーを117.4eV、エネルギーステップを0.5eV/step、モニターピークをSi(2p)およびAl(2p)、検出角を75°とした。そして、スパッタ間隔を5分間とし、5分間スパッタを行うごとに、形成されたクレータ底部のAl濃度およびSi濃度を測定した。このような測定を、Al濃度およびSi濃度が一定になるまで実施した。こうして得られた、実施例1のガラス基板におけるAl濃度およびSi濃度の深さ方向分布を、図2に示す。このグラフから、スパッタ時間が40分間で、Al濃度およびSi濃度が一定になると判断した。
<Measurement of internal Al / Si value>
For glass substrates used for measurement of surface Al / Si values, the depth profile of the Al concentration and Si concentration was determined by XPS using C 60 ion sputtering. The same XPS measuring apparatus and analysis software as used for measuring the surface Al / Si value were used. The measurement conditions were a pass energy of 117.4 eV, an energy step of 0.5 eV / step, a monitor peak of Si (2p) and Al (2p), and a detection angle of 75 °. Then, the sputtering interval was set to 5 minutes, and every time the sputtering was performed for 5 minutes, the Al concentration and the Si concentration at the bottom of the formed crater were measured. Such a measurement was performed until the Al concentration and the Si concentration became constant. FIG. 2 shows the distribution of the Al concentration and the Si concentration in the depth direction in the glass substrate of Example 1 thus obtained. From this graph, it was determined that the Al concentration and the Si concentration were constant when the sputtering time was 40 minutes.

なお、Siウェハ上の熱酸化膜(SiO膜)におけるC60イオンスパッタリングのスパッタ速度を測定したところ、1.4nm/minであったので、ガラス基板に対しても類似のスパッタ速度であると推測される。したがって、スパッタ時間40分に相当する深さである56nm以上で、ガラス基板の内部のAl濃度およびSi濃度は一定になると考えられる。
また、実施例1〜3および比較例1は同一組成のガラス基板であるので、実施例2、実施例3および比較例1の内部Al/Si値も、実施例1と同一とみなせる。
Incidentally, the measured sputter rate of C 60 ion sputtering in a thermal oxide film on the Si wafer (SiO 2 film), since there was a 1.4 nm / min, the with respect to the glass substrate is similar sputtering rate Guessed. Therefore, it is considered that the Al concentration and the Si concentration inside the glass substrate become constant at 56 nm or more, which is the depth corresponding to the sputtering time of 40 minutes.
Further, since Examples 1 to 3 and Comparative Example 1 are glass substrates having the same composition, the internal Al / Si values of Examples 2, 3 and Comparative Example 1 can be regarded as the same as Example 1.

実施例1〜3および比較例1で得られたガラス基板について、こうして測定された残し解像度、表面Al/Si値、内部Al/Si値、およびΔAl/Si値を、表1にそれぞれ示す。   Table 1 shows the residual resolution, surface Al / Si value, internal Al / Si value, and ΔAl / Si value thus measured for the glass substrates obtained in Examples 1 to 3 and Comparative Example 1.

Figure 0006662288
Figure 0006662288

次に、表1の測定結果を基に、水系洗浄液のpHとΔAl/Si値との関係、およびΔAl/Si値と残し解像度との関係をそれぞれ調べた。水系洗浄液のpHとΔAl/Si値との関係を図3に、ΔAl/Si値と残し解像度との関係を図4にそれぞれ示す。   Next, based on the measurement results in Table 1, the relationship between the pH of the aqueous cleaning solution and the ΔAl / Si value and the relationship between the ΔAl / Si value and the remaining resolution were examined. FIG. 3 shows the relationship between the pH of the aqueous cleaning solution and the ΔAl / Si value, and FIG. 4 shows the relationship between the ΔAl / Si value and the remaining resolution.

図3から、水系洗浄液のpHとΔAl/Si値には負の相関関係があり、水系洗浄液のpHが上昇するに伴い、ΔAl/Si値は低下する傾向にあることがわかる。
また、図4から、ΔAl/Si値と残し解像度には正の相関関係があり、ΔAl/Si値の低下に伴い、残し解像度も小さくなる傾向が認められる。そして、前記したように、残し解像度が小さいほど、洗浄後のガラス基板上に形成された樹脂BM膜の密着性が高いので、ΔAl/Si値が小さいほど、樹脂BM膜の密着性が高いことがわかる。
FIG. 3 shows that there is a negative correlation between the pH of the aqueous cleaning solution and the ΔAl / Si value, and the ΔAl / Si value tends to decrease as the pH of the aqueous cleaning solution increases.
Further, from FIG. 4, there is a positive correlation between the ΔAl / Si value and the residual resolution, and it is recognized that the residual resolution tends to decrease as the ΔAl / Si value decreases. As described above, the smaller the residual resolution, the higher the adhesion of the resin BM film formed on the glass substrate after cleaning. Therefore, the smaller the ΔAl / Si value, the higher the adhesion of the resin BM film. I understand.

以上より、比較例1に比べて高いpHを有する水系洗浄液を使用した実施例1〜3では、ΔAl/Si値を0.25以下に下げることができ、それにより樹脂BM膜の密着性を向上させることができることがわかった。   As described above, in Examples 1 to 3 using an aqueous cleaning solution having a higher pH than that of Comparative Example 1, the ΔAl / Si value can be reduced to 0.25 or less, thereby improving the adhesion of the resin BM film. It turns out that it can be done.

本発明のガラス基板によれば、表面に形成される樹脂BM膜の密着性が良好であり、樹脂BM膜の剥れが防止される。したがって、本発明のガラス基板は、LCDのようなFPD用に使用されるガラス基板に有効に適用することができる。
また本発明のガラス基板の製造方法によれば、このようにFPD用ガラス基板として好適するガラス基板を、効率的に得ることができる。
ADVANTAGE OF THE INVENTION According to the glass substrate of this invention, the adhesiveness of the resin BM film formed in the surface is favorable, and peeling of the resin BM film is prevented. Therefore, the glass substrate of the present invention can be effectively applied to a glass substrate used for an FPD such as an LCD.
Further, according to the method for manufacturing a glass substrate of the present invention, a glass substrate suitable as a glass substrate for an FPD can be efficiently obtained.

1…搬送ロール、2…洗浄室、3…ガラス基板、4…洗浄ノズル、5…水系洗浄液、6…回転ブラシ。   DESCRIPTION OF SYMBOLS 1 ... Conveyance roll, 2 ... Cleaning room, 3 ... Glass substrate, 4 ... Cleaning nozzle, 5 ... Water-based cleaning liquid, 6 ... Rotary brush.

Claims (5)

フロート法で得られたアルミニウムを含むケイ酸ガラスからなるガラス基板であり、
前記アルミニウムを含むケイ酸ガラスが、SiO、Al、B、およびアルカリ土類金属の酸化物を含む組成を有するアルミノホウケイ酸ガラスであり、アルカリ金属成分を実質的に含有せず、
X線光電子分光法により測定された、前記ガラス基板の内部におけるアルミニウムの原子濃度とケイ素の原子濃度との比の値から、前記ガラス基板の表面におけるアルミニウムの原子濃度とケイ素の原子濃度との比の値を引いた値(ΔAl/Si値)が、0.25以下であり、ブラックマトリクス膜を形成するために用いられるガラス基板。
A glass substrate made of silicate glass containing aluminum obtained by a float method,
The silicate glass containing aluminum is an aluminoborosilicate glass having a composition containing SiO 2 , Al 2 O 3 , B 2 O 3 , and an oxide of an alkaline earth metal, and substantially contains an alkali metal component. Without
From the value of the ratio of the atomic concentration of aluminum to the atomic concentration of silicon inside the glass substrate measured by X-ray photoelectron spectroscopy, the ratio of the atomic concentration of aluminum to the atomic concentration of silicon on the surface of the glass substrate minus the value (ΔAl / Si value) state, and are 0.25 or less, a glass substrate used to form the black matrix film.
前記ΔAl/Si値が0.19以下である、請求項1に記載のガラス基板。   The glass substrate according to claim 1, wherein the ΔAl / Si value is 0.19 or less. 前記ガラス基板の表面の算術平均表面粗さは0.2nm以下である、請求項1または2に記載のガラス基板   The glass substrate according to claim 1, wherein the arithmetic average surface roughness of the surface of the glass substrate is 0.2 nm or less. 請求項1〜3のいずれか1項に記載のガラス基板を製造する方法であり、
砥粒を含有する研磨剤により研磨されたガラス基板を、pHが2.7より大きい水系洗浄液により洗浄することを特徴とするガラス基板の製造方法。
A method for producing the glass substrate according to any one of claims 1 to 3,
A method for producing a glass substrate, comprising washing a glass substrate polished with an abrasive containing abrasive grains with an aqueous cleaning liquid having a pH of more than 2.7.
前記砥粒が酸化セリウム粒子である、請求項4に記載のガラス基板の製造方法。
The method for manufacturing a glass substrate according to claim 4, wherein the abrasive grains are cerium oxide particles.
JP2016521089A 2014-05-20 2015-05-18 Glass substrate, glass substrate manufacturing method, and black matrix substrate Active JP6662288B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014104626 2014-05-20
JP2014104626 2014-05-20
PCT/JP2015/064163 WO2015178339A1 (en) 2014-05-20 2015-05-18 Glass substrate, method for producing glass substrate and black matrix substrate

Publications (2)

Publication Number Publication Date
JPWO2015178339A1 JPWO2015178339A1 (en) 2017-04-20
JP6662288B2 true JP6662288B2 (en) 2020-03-11

Family

ID=54554009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016521089A Active JP6662288B2 (en) 2014-05-20 2015-05-18 Glass substrate, glass substrate manufacturing method, and black matrix substrate

Country Status (5)

Country Link
JP (1) JP6662288B2 (en)
KR (1) KR102297566B1 (en)
CN (1) CN106458734A (en)
TW (1) TWI670243B (en)
WO (1) WO2015178339A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201601034D0 (en) 2016-01-20 2016-03-02 Johnson Matthey Plc Conductive paste,electrode and solar cell
CN109103127B (en) * 2018-08-08 2021-04-30 安徽宏实自动化装备有限公司 Wafer film removing and cleaning device and method with horizontal conveying type leaf
CN116282905A (en) * 2018-09-18 2023-06-23 Agc株式会社 Glass substrate, black matrix substrate and display panel

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002098812A1 (en) * 2001-06-04 2002-12-12 Nippon Sheet Glass Co., Ltd. Method of producing transparent substrate and trasparent substrate, and organic electroluminescence element having the transparent substrate
WO2005063642A1 (en) * 2003-12-26 2005-07-14 Asahi Glass Company, Limited No alkali glass, method for production thereof and liquid crystalline display panel
JP4716245B2 (en) * 2004-11-11 2011-07-06 日本電気硝子株式会社 Glass substrate and manufacturing method thereof
JP4393975B2 (en) * 2004-12-02 2010-01-06 Hoya株式会社 Multi-component glass substrate manufacturing method
JP5327702B2 (en) * 2008-01-21 2013-10-30 日本電気硝子株式会社 Manufacturing method of glass substrate
JP4831096B2 (en) 2008-03-07 2011-12-07 旭硝子株式会社 Glass substrate cleaning agent and glass substrate manufacturing method
JP5177087B2 (en) * 2009-07-09 2013-04-03 旭硝子株式会社 Glass substrate for information recording medium, manufacturing method thereof, and magnetic recording medium
WO2012093516A1 (en) * 2011-01-07 2012-07-12 旭硝子株式会社 Glass substrate for information recording medium, manufacturing method for same and magnetic recording medium
JP2013043795A (en) * 2011-08-23 2013-03-04 Nippon Electric Glass Co Ltd Tempered glass and method of manufacturing the same

Also Published As

Publication number Publication date
JPWO2015178339A1 (en) 2017-04-20
CN106458734A (en) 2017-02-22
KR102297566B1 (en) 2021-09-02
TWI670243B (en) 2019-09-01
WO2015178339A1 (en) 2015-11-26
KR20170010358A (en) 2017-01-31
TW201602035A (en) 2016-01-16

Similar Documents

Publication Publication Date Title
WO2014080917A1 (en) Glass substrate cleaning method
JP4336524B2 (en) Method for producing glass substrate for information recording medium
JP5251861B2 (en) Method for producing synthetic quartz glass substrate
US6406923B1 (en) Process for reclaiming wafer substrates
JP6662288B2 (en) Glass substrate, glass substrate manufacturing method, and black matrix substrate
TWI781999B (en) Cleaning liquid composition and method of manufacturing electronic device
JP4667848B2 (en) Polishing liquid composition for glass substrate
JP4675448B2 (en) Semiconductor substrate cleaning method
JP2004098278A (en) Processes for production of glass substrate for mask blank, mask blank, transfer mask, semiconductor device, glass substrate for mask blank, mask blank and transfer mask
JP6904234B2 (en) Mask blank substrate and mask blank
JP2016113356A (en) Method for finish-working the surface of pre-polished glass substrate surface
JP5053592B2 (en) Positive resist processing liquid composition and developer
JP6949522B2 (en) A method for manufacturing a substrate for a mask blank, a method for manufacturing a mask blank, and a method for manufacturing a transfer mask.
JP5906823B2 (en) Method for manufacturing glass substrate for magnetic recording medium
JP3665731B2 (en) Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk
JP2015100880A (en) Manufacturing method for glass substrate
US20120065116A1 (en) Cleaning liquid and cleaning method
TW201311882A (en) Fluorine-containing cleansing solution
JP5152357B2 (en) Method for manufacturing glass substrate for magnetic recording medium
WO2013118648A1 (en) Method for producing glass product and method for producing magnetic disk
KR101350714B1 (en) Method for polishing substrate for mask blank and substrate for mask blank and mask blank
JP5795843B2 (en) Manufacturing method of hard disk substrate
JP2010080477A (en) Method for cleaning fine pattern base
JP5700015B2 (en) Glass substrate for magnetic recording media
CN116387138A (en) Process for improving flatness of front and back surfaces of silicon wafer by combining grinding sheet and corrosion

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190305

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20190306

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191015

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200127

R150 Certificate of patent or registration of utility model

Ref document number: 6662288

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250