JPH07211688A - Production of compound semiconductor substrate - Google Patents

Production of compound semiconductor substrate

Info

Publication number
JPH07211688A
JPH07211688A JP6868294A JP6868294A JPH07211688A JP H07211688 A JPH07211688 A JP H07211688A JP 6868294 A JP6868294 A JP 6868294A JP 6868294 A JP6868294 A JP 6868294A JP H07211688 A JPH07211688 A JP H07211688A
Authority
JP
Japan
Prior art keywords
substrate
drying
compound semiconductor
oxide
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6868294A
Other languages
Japanese (ja)
Inventor
Shigeo Katsura
滋男 桂
Kenji Suzuki
健二 鈴木
Makoto Koyake
誠 小宅
Toru Fukui
徹 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corp filed Critical Japan Energy Corp
Priority to JP6868294A priority Critical patent/JPH07211688A/en
Publication of JPH07211688A publication Critical patent/JPH07211688A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent accumulation of electrically active carriers on the interface between a substrate and an epitaxial film when the epitaxial film is grown on the surface of a produced compound semiconductor substrate. CONSTITUTION:A thin compound semiconductor substrate is cleaned and then oxidized to deposit an oxide on the surface thereof. Subsequently, the oxide is removed and the substrate is dried. The oxide is deposited, for example, by immersing the substrate into an oxidizing agent having oxidizing power, e.g. a hydrogen peroxide water. The oxide is removed by immersing the substrate into an oxide removing agent having no oxidizing power, e.g. ammonia water, aqueous solution of sodium hydroxide, phosphoric acid, hydrochloric acid or hydrofluoric acid. This method prevents accumulation of electrically active carriers on the interface between a compound semiconductor substrate and an epitaxial film and uneven drying simultaneously.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、化合物半導体基板の製
造方法に関し、例えば鏡面研磨処理やエッチング処理後
のGaAs基板やInP基板の洗浄・乾燥工程に適用し
て有用な技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a compound semiconductor substrate, and more particularly to a technique useful when applied to a cleaning / drying process of a GaAs substrate or an InP substrate after mirror polishing or etching.

【0002】[0002]

【従来の技術】一般に、例えばGaAsやInPの単結
晶インゴットから切り出された化合物半導体の基板(ウ
ェハ)は、その表面の鏡面加工後に、トリクレン、ケト
ン、アルコール等の有機溶剤による脱脂洗浄、超純水に
よるリンス洗浄を経た後、乾燥させられる。従来、基板
の乾燥法として、基板を高速で回転させその遠心力で水
滴を飛ばすスピン乾燥法や、基板表面を蒸気で加熱して
乾燥させる蒸気乾燥法等が公知である。なお、これらの
乾燥法は、エッチング処理後における基板の洗浄・乾燥
工程においても利用されている。
2. Description of the Related Art Generally, a compound semiconductor substrate (wafer) cut from a single crystal ingot of GaAs or InP, for example, has its surface mirror-finished, followed by degreasing and cleaning with an organic solvent such as trichlene, ketone, alcohol, etc. After being rinsed with water, it is dried. Conventionally, as a method for drying a substrate, a spin drying method in which a substrate is rotated at a high speed and water droplets are blown by its centrifugal force, a steam drying method in which a substrate surface is heated by steam to be dried, and the like are known. These drying methods are also used in the substrate cleaning / drying process after the etching process.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記従
来の乾燥法で乾燥させたGaAs基板やInP基板の表
面に、MOCVD法(有機金属化学気相成長法)等でエ
ピタキシャル膜を成長させると、成長させたエピタキシ
ャル膜と基板との界面に電気的に活性なキャリア(不純
物)が蓄積されてしまい、その基板に形成する半導体デ
バイスの設計値よりもキャリア濃度が高くなるという問
題点があった。特に、半絶縁性基板を使用したデバイス
の場合、界面のキャリア濃度は5×1014cm-3以下とす
る必要があった。
However, when an epitaxial film is grown on the surface of a GaAs substrate or an InP substrate dried by the above-mentioned conventional drying method by MOCVD (metalorganic chemical vapor deposition) or the like, the growth occurs. There is a problem in that electrically active carriers (impurities) are accumulated at the interface between the epitaxial film and the substrate, and the carrier concentration becomes higher than the design value of the semiconductor device formed on the substrate. Particularly, in the case of a device using a semi-insulating substrate, the carrier concentration at the interface needs to be 5 × 10 14 cm −3 or less.

【0004】また、上記従来の乾燥法で乾燥させたGa
As基板では、乾燥時に基板表面の水分の除去が不十分
であると所謂乾燥ムラと称される、微粒子の集合体より
なる汚染が基板表面に生じてしまい、その汚染により基
板の表面品質が著しく低下することがあった。この乾燥
ムラは基板に強固に付着しており、それを除去するには
乾燥後の基板を再度研磨し、乾燥ムラが生じないように
洗浄・乾燥を行わなければならなかったので、膨大な手
間と時間を要すという問題点があった。
Ga dried by the above conventional drying method is also used.
On the As substrate, if the water content on the substrate surface is not sufficiently removed during drying, contamination of aggregates of fine particles, called so-called drying unevenness, occurs on the substrate surface, and the contamination significantly increases the surface quality of the substrate. It was sometimes lowered. This unevenness of drying adheres strongly to the substrate, and in order to remove it, the dried substrate had to be re-polished and washed and dried to prevent unevenness in drying. There was a problem that it took time.

【0005】なお、Siの単結晶インゴットから切り出
されたSi半導体の基板においては、基板をH22−N
4OH溶液(第1液)及びH22−HCl溶液(第2
液)に順次浸漬させる所謂RCA洗浄法や、そのRCA
洗浄において基板を第1液へ浸漬した後にHF溶液に浸
漬してから第2液に浸漬させるRCA洗浄の改良法や、
極低HF濃度で温度制御してなるHNO3−HF系溶液
に基板を浸漬させて基板表面を浅くエッチングする所謂
SE(slight etch)洗浄などが提案されて
おり、基板表面に付着する金属等の不純物濃度の低減効
果が期待されているが、その効果は、洗浄後の基板表面
の不純物濃度をSi単結晶のバルクにおける不純物濃度
と比較すると、必ずしも満足のいくものではなかった。
In the case of a Si semiconductor substrate cut out from a Si single crystal ingot, the substrate is H 2 O 2 -N
H 4 OH solution (first solution) and H 2 O 2 —HCl solution ( second solution)
Liquid), so-called RCA cleaning method, and its RCA
In the cleaning, an improved method of RCA cleaning in which the substrate is immersed in the first liquid, then in the HF solution, and then in the second liquid,
So-called SE (slitch etch) cleaning, in which the substrate surface is shallowly etched by immersing the substrate in an HNO 3 —HF-based solution whose temperature is controlled at an extremely low HF concentration, has been proposed. Although the effect of reducing the impurity concentration is expected, the effect was not always satisfactory when the impurity concentration on the substrate surface after cleaning was compared with the impurity concentration in the bulk of the Si single crystal.

【0006】本発明は、上記問題点を解決するためにな
されたもので、その目的とするところは、製造された化
合物半導体基板の表面にエピタキシャル膜を成長させた
際に、基板とエピタキシャル膜との界面に電気的に活性
なキャリアが蓄積されるのを未然に防ぐことのできる化
合物半導体基板の製造方法を提供することにある。
The present invention has been made to solve the above problems, and an object of the present invention is to provide a substrate and an epitaxial film when an epitaxial film is grown on the surface of a manufactured compound semiconductor substrate. It is an object of the present invention to provide a method for manufacturing a compound semiconductor substrate capable of preventing the accumulation of electrically active carriers at the interface of the above.

【0007】また、本発明の他の目的は、化合物半導体
基板の洗浄・乾燥工程において、基板表面に乾燥ムラを
生じさせることなくスピン乾燥法の適用を可能ならしめ
る化合物半導体基板の製造方法を提供することである。
Another object of the present invention is to provide a method for manufacturing a compound semiconductor substrate, which makes it possible to apply a spin drying method without causing unevenness of drying on the substrate surface in the step of cleaning and drying the compound semiconductor substrate. It is to be.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本発明者は、乾燥ムラに付いて詳細に検討した結
果、例えばGaAs基板の場合には、基板の水洗中に起
こる化学反応により基板の表面に難水溶性の金属ヒ素
(As)等の異物が生じ、その金属ヒ素が基板の乾燥中
に酸化してヒ素の酸化物(As23)となり乾燥ムラが
形成されると考えた。従って、水洗後乾燥前に、基板表
面を一旦酸化させて酸化膜で被った後、その酸化膜を除
去することにより、前記金属As等の異物が除去されて
乾燥ムラの発生が未然に防止されるという効果を奏する
発明を先に出願した(特願平5−115063号)。
In order to achieve the above object, the present inventor has conducted a detailed study on uneven drying, and in the case of a GaAs substrate, for example, a chemical reaction that occurs during washing of the substrate causes It is considered that foreign matter such as poorly water-soluble metallic arsenic (As) is generated on the surface of the substrate, and the metallic arsenic oxidizes during the drying of the substrate to form arsenic oxide (As 2 O 3 ) and uneven drying occurs. It was Therefore, after washing with water and before drying, the surface of the substrate is once oxidized to be covered with an oxide film, and then the oxide film is removed, whereby foreign matters such as the metal As are removed and uneven drying is prevented. An invention that has the effect of being produced was first filed (Japanese Patent Application No. 5-115063).

【0009】その後、本発明者は、基板とエピタキシャ
ル膜との界面における電気的に活性なキャリアの蓄積に
付いて詳細に検討した結果、例えばInP基板の場合に
は、基板の水洗中に起こる化学反応により基板の表面に
難水溶性の単体リン(P)等の異物が生じ、その単体リ
ン中の不純物がエピタキシャル膜形成時に還元されて界
面に蓄積されるとの知見を得た。そこで、本発明者は、
上記特願平5−115063号の発明を適用することに
より、基板を乾燥させる前に基板表面から単体リン等の
異物を除去することができるのではないかと考え、鋭意
研究を重ねた結果、本発明を完成するに至った。
After this, the present inventor has made a detailed study on the accumulation of electrically active carriers at the interface between the substrate and the epitaxial film. As a result, for example, in the case of an InP substrate, the chemistry that occurs during the washing of the substrate with water. It was found that foreign matter such as poorly water-soluble single phosphorus (P) is generated on the surface of the substrate by the reaction, and impurities in the single phosphorus are reduced at the time of forming the epitaxial film and accumulated on the interface. Therefore, the present inventor
By applying the invention of the above-mentioned Japanese Patent Application No. 5-115063, it is thought that foreign substances such as elemental phosphorus can be removed from the substrate surface before drying the substrate, and as a result of intensive studies, The invention was completed.

【0010】本発明は、上述した知見等に基づいてなさ
れたもので、薄板状をなし化合物半導体よりなる基板を
洗浄した後、その基板を酸化させて基板表面を酸化膜で
被い、その酸化膜を除去してから、基板を乾燥させる方
法を提供するものである。
The present invention has been made on the basis of the above-mentioned findings and the like, and after cleaning a thin plate-like substrate made of a compound semiconductor, the substrate is oxidized to cover the surface of the substrate with an oxide film, and the oxidation thereof is performed. A method is provided for removing the film and then drying the substrate.

【0011】基板表面を被った酸化膜の除去は、例えば
酸化力を有しない酸化物除去剤、具体的に例示するとア
ンモニア水(NH4OH)、水酸化ナトリウム(NaO
H)水溶液、リン酸(H3PO4)、塩酸または弗酸の中
に基板を浸漬させることにより行なう。なお、酸化物除
去剤は例示列挙したものに限らず、酸化物(酸化膜)に
対する溶解度が大きく、且つ新たに基板表面に酸化物を
生成しない性質のものであれば如何なるものでもよい。
The oxide film covering the surface of the substrate is removed by, for example, an oxide removing agent having no oxidizing power, specifically, ammonia water (NH 4 OH) and sodium hydroxide (NaO).
H) The substrate is dipped in an aqueous solution, phosphoric acid (H 3 PO 4 ), hydrochloric acid or hydrofluoric acid. The oxide removing agent is not limited to those listed as examples, and may be any one as long as it has a high solubility in an oxide (oxide film) and does not newly generate an oxide on the substrate surface.

【0012】また、基板表面を酸化させる具体的な手法
としては、過酸化水素水(H22)や硝酸(HNO3
やオゾン(O3)等の酸化力を有する酸化剤に基板を浸
漬させるか、UV(紫外線)照射や蒸気乾燥等により熱
酸化させる方法などが挙げられる。或は、基板を空気中
に数時間、例えば3〜24時間程度放置して自然酸化さ
せてもよい。
Further, as a specific method for oxidizing the substrate surface, hydrogen peroxide solution (H 2 O 2 ) or nitric acid (HNO 3 ) is used.
Examples include a method of immersing the substrate in an oxidizing agent having an oxidizing power such as ozone and ozone (O 3 ), or a method of thermally oxidizing the substrate by UV (ultraviolet) irradiation or steam drying. Alternatively, the substrate may be left in the air for several hours, for example, 3 to 24 hours to be naturally oxidized.

【0013】なお、本発明に係る化合物半導体基板の製
造方法は、スピン乾燥法による基板の洗浄・乾燥のみな
らず、蒸気乾燥法など他の基板乾燥法にも利用可能であ
るのはいうまでもない。また、鏡面研磨加工に引き続き
行なう基板の洗浄・乾燥以外にも、エッチング処理後に
行なう基板の洗浄・乾燥においても有効であるのは勿論
である。
Needless to say, the method of manufacturing a compound semiconductor substrate according to the present invention can be used not only for cleaning and drying the substrate by spin drying, but also for other substrate drying methods such as vapor drying. Absent. Further, it is needless to say that it is effective not only in the cleaning / drying of the substrate performed after the mirror polishing process but also in the cleaning / drying of the substrate performed after the etching process.

【0014】[0014]

【作用】上記した手段によれば、化合物半導体基板の洗
浄後乾燥前に、その基板の表面を一旦酸化させて表面を
酸化膜で被い、その酸化膜を除去することにより、水洗
時に基板表面に生じた異物(例えば単体Pや金属As)
等を酸化膜とともに取り除くことができるので、スピン
乾燥法は勿論のこと、その他の乾燥法を行った場合にお
いても、従来その異物により惹き起されていた、基板と
エピタキシャル膜との界面における電気的に活性なキャ
リアの蓄積を防ぐことができるとともに、乾燥ムラの発
生も同時に防ぐことができる。
According to the above means, after the compound semiconductor substrate is washed and before being dried, the surface of the substrate is once oxidized to cover the surface with an oxide film, and the oxide film is removed. Foreign matter (eg, simple substance P or metal As)
Etc. can be removed together with the oxide film, so that not only the spin drying method but also other drying methods can be carried out at an electrical interface at the interface between the substrate and the epitaxial film, which has been conventionally caused by the foreign matter. It is possible to prevent the accumulation of highly active carriers, and at the same time to prevent the occurrence of uneven drying.

【0015】また、上記手段によれば、一旦形成した酸
化膜の除去の際に、基板表面が微小量、例えば数十オン
グストローム程度、除去されるので、本発明は微小量の
エッチング手段代替としても有効である。
Further, according to the above means, when the oxide film once formed is removed, the surface of the substrate is removed in a minute amount, for example, about several tens of angstroms. Therefore, the present invention can be used as an alternative to a minute amount of etching means. It is valid.

【0016】[0016]

【実施例】以下に、実施例及び比較例を挙げて本発明の
特徴とするところを明らかとする。なお、実施例及び比
較例においては、基板とエピタキシャル膜との界面にお
ける電気的に活性なキャリアの濃度(以下、「界面キャ
リア濃度」とする。)をC/V法により測定して求め
た。また、実施例及び比較例においては、エピタキシャ
ル成長を行う前の基板は、GaAs基板及びInP基板
ともに半絶縁性基板(比抵抗107Ωcm以上)を使用し
た。
EXAMPLES The features of the present invention will be clarified below with reference to Examples and Comparative Examples. In the examples and comparative examples, the concentration of electrically active carriers at the interface between the substrate and the epitaxial film (hereinafter referred to as “interface carrier concentration”) was measured by the C / V method. In the examples and the comparative examples, as the substrates before the epitaxial growth, both GaAs substrates and InP substrates were semi-insulating substrates (specific resistance of 10 7 Ωcm or more).

【0017】(実施例1)先ず、ルツボ内に原料と液体
封止剤を入れ、それら原料と液体封止剤とをヒータで加
熱して融解し、その原料融液にGaAs単結晶よりなる
種結晶を接触させて回転させながら徐々に引き上げて、
直胴部の直径4インチのGaAs単結晶インゴットを育
成した。
(Embodiment 1) First, a raw material and a liquid sealant are put in a crucible, the raw material and the liquid sealant are heated by a heater to be melted, and the raw material melt is made of a seed composed of a GaAs single crystal. Gradually pull up while contacting and rotating the crystals,
A GaAs single crystal ingot having a diameter of 4 inches in the straight body was grown.

【0018】その育成したインゴットから(100)面
を主面とする厚さ1mmの基板を切り出し、従来の手順通
りエッチング処理、ラッピング加工、エッチング処理、
ポリシング加工を順次施した後、その基板をイソプロピ
ルアルコールにより脱脂洗浄し、さらに超純水でリンス
洗浄を行って、その表面を鏡面状態にした。
From the grown ingot, a substrate having a (100) plane as a main surface and a thickness of 1 mm was cut out, and etching treatment, lapping treatment, etching treatment,
After sequentially performing polishing processing, the substrate was degreased and washed with isopropyl alcohol, and further rinsed with ultrapure water to make the surface mirror-finished.

【0019】続いて、そのGaAs基板を、例えば、
0.1%のH22水(酸化剤)に30秒間浸漬させて基
板表面に酸化膜を形成した後、水洗し、さらに0.1%
のNH4OH水(酸化物除去剤)に2分間浸漬させて前
記酸化膜を除去した。基板を再び水洗した後、従来同様
のスピン乾燥法により乾燥させた。
Then, the GaAs substrate is, for example,
Immerse in 0.1% H 2 O 2 water (oxidizer) for 30 seconds to form an oxide film on the substrate surface, then wash with water, and then add 0.1%.
The above oxide film was removed by immersing it in NH 4 OH water (oxide removing agent) for 2 minutes. After the substrate was washed again with water, it was dried by a spin drying method similar to the conventional one.

【0020】以上の手順により得られたGaAs基板1
00枚に付いて、乾燥直後に表面観察を行ったところ、
全ての基板において乾燥ムラの発生は認められなかっ
た。また、時間が経っても(例えば翌日)乾燥ムラは発
生しなかった。
GaAs substrate 1 obtained by the above procedure
After observing the 00 sheets and observing the surface immediately after drying,
No unevenness in drying was observed on all the substrates. In addition, even after a lapse of time (for example, the next day), uneven drying did not occur.

【0021】さらに、周知のレーザ光照射式パーティク
ルカウンタにより、基板表面に付着している0.2μm
以上の粒径の微粒子数を測定したところ、その数は1平
方センチメートルあたり平均0.3個であった。この数
は、時間が経っても(例えば翌日)変化しなかった。
Further, by a well-known laser beam irradiation type particle counter, 0.2 μm adhered to the surface of the substrate.
When the number of fine particles having the above particle diameters was measured, the number was 0.3 per square centimeter on average. This number did not change over time (eg, the next day).

【0022】また、上述した手順、即ち脱脂洗浄、リン
ス洗浄、H22水による酸化膜形成、NH4OH水によ
る酸化膜除去、水洗及びスピン乾燥の一連の手順、を経
たGaAs基板上にMOCVD法によりGaAsのエピ
タキシャル膜を成長させた。エピタキシャル膜の厚さは
0.7μmであり、成長温度は725℃であった。
On the GaAs substrate which has undergone the above-mentioned procedure, ie, degreasing cleaning, rinsing cleaning, oxide film formation with H 2 O 2 water, oxide film removal with NH 4 OH water, water cleaning and spin drying. An epitaxial film of GaAs was grown by the MOCVD method. The thickness of the epitaxial film was 0.7 μm, and the growth temperature was 725 ° C.

【0023】得られたGaAsエピタキシャル膜付きG
aAs基板の界面キャリア濃度は2×1014cm-3であ
り、全く問題のないレベルのキャリア濃度であった。つ
まり、基板とエピタキシャル膜との界面に電気的に活性
なキャリアが発生していないことが確認された。
The obtained G with an GaAs epitaxial film
The interface carrier concentration of the aAs substrate was 2 × 10 14 cm −3 , which was a carrier concentration at a level without any problem. That is, it was confirmed that electrically active carriers were not generated at the interface between the substrate and the epitaxial film.

【0024】(実施例2)上記実施例1と同じ手順で表
面が鏡面状態のGaAs基板100枚を得た。但し、本
実施例2では、上記実施例1のスピン乾燥法に代えて、
イソプロピルアルコールによる蒸気乾燥法(沸点82℃
での乾燥)により基板の乾燥を行った。その他の基板の
製造条件や製造手順等に付いては上記実施例1と同じで
あった。
Example 2 100 GaAs substrates having mirror-finished surfaces were obtained in the same procedure as in Example 1 above. However, in Example 2, instead of the spin drying method of Example 1,
Steam drying method with isopropyl alcohol (boiling point: 82 ° C)
The substrate was dried according to (1). The other substrate manufacturing conditions, manufacturing procedures, and the like were the same as in Example 1 above.

【0025】その結果、全てのGaAs基板において乾
燥ムラの発生は認められず、時間が経っても乾燥ムラは
発生しなかった。また、パーティクルカウンタによる微
粒子数は1平方センチメートルあたり平均0.4個であ
り、その数は翌日測定しても変化しなかった。なお、本
実施例2では、エピタキシャル成長を行わず、従って基
板の界面キャリア濃度の測定を行わなかった。
As a result, no unevenness in drying was observed in all the GaAs substrates, and no unevenness in drying occurred even after a lapse of time. The number of fine particles measured by the particle counter was 0.4 per square centimeter on average, and the number did not change even when measured the next day. In Example 2, epitaxial growth was not performed, and therefore, the interfacial carrier concentration of the substrate was not measured.

【0026】(比較例1)上記実施例1と同じ手順で表
面が鏡面状態のGaAs基板100枚を得た。なお、本
比較例1においては、H22水及びNH4OH水への浸
漬による酸化膜の形成及び除去を行わずに、基板を超純
水でリンス洗浄した後、直ちにスピン乾燥法により乾燥
させた。その他の基板の製造条件や製造手順等に付いて
は上記実施例1と同じであった。
(Comparative Example 1) By the same procedure as in Example 1 above, 100 GaAs substrates each having a mirror-finished surface were obtained. In Comparative Example 1, the substrate was rinsed with ultrapure water and immediately spin-dried without forming and removing the oxide film by immersion in H 2 O 2 water and NH 4 OH water. Dried. The other substrate manufacturing conditions, manufacturing procedures, and the like were the same as in Example 1 above.

【0027】乾燥直後に基板表面を観察したところ、全
てのGaAs基板において乾燥ムラの発生は認められな
かったが、翌日再び表面観察を行ったところ、100枚
中70枚、即ち70%の基板に乾燥ムラが発生してい
た。また、パーティクルカウンタにより測定したとこ
ろ、0.2μm以上の粒径の微粒子数は1平方センチメ
ートルあたり平均170個であった。なお、本比較例1
では、基板の界面キャリア濃度の測定を行わなかった。
When the surface of the substrate was observed immediately after drying, no unevenness in drying was observed in all the GaAs substrates. However, when the surface was observed again the next day, 70 out of 100 substrates, that is, 70% of the substrates were observed. There was uneven drying. Further, when measured by a particle counter, the number of fine particles having a particle diameter of 0.2 μm or more was 170 per square centimeter on average. In addition, this Comparative Example 1
Then, the interface carrier concentration of the substrate was not measured.

【0028】(比較例2)上記実施例1と同じ手順で表
面が鏡面状態のGaAs基板100枚を得た。なお、本
比較例2においては、H22水及びNH4OH水への浸
漬による酸化膜の形成及び除去を行わずに、基板を超純
水でリンス洗浄した後、NH4OH水とH22水の混合
溶液に0.5分間浸漬させて基板表面を洗浄し、水洗後
スピン乾燥法により乾燥させた。その際、用いた上記混
合溶液の濃度は、次の通りであった。 NH4OH:0.1%,H22:0.1% その他の基板の製造条件や製造手順等に付いては上記実
施例1と同じであった。
(Comparative Example 2) By the same procedure as in Example 1 above, 100 GaAs substrates each having a mirror-finished surface were obtained. In Comparative Example 2, the substrate was rinsed with ultrapure water and rinsed with NH 4 OH water without forming and removing the oxide film by immersion in H 2 O 2 water and NH 4 OH water. The substrate surface was washed by immersing it in a mixed solution of H 2 O 2 water for 0.5 minutes, washed with water, and then dried by a spin drying method. At that time, the concentration of the mixed solution used was as follows. NH 4 OH: 0.1%, H 2 O 2 : 0.1% Other manufacturing conditions and manufacturing procedures for the substrate were the same as in Example 1 above.

【0029】得られたGaAsエピタキシャル膜付きG
aAs基板の界面キャリア濃度は2×1015〜1×10
17cm-3であり、上述したGaAs基板単体のキャリア濃
度よりも高くなっていた。つまり、基板とエピタキシャ
ル膜との界面に電気的に活性なキャリアが発生したこと
がわかった。なお、本比較例2では、乾燥ムラの発生の
有無を観察しなかった。
The obtained G with an GaAs epitaxial film
The interface carrier concentration of the aAs substrate is 2 × 10 15 to 1 × 10
It was 17 cm −3 , which was higher than the carrier concentration of the GaAs substrate alone. That is, it was found that electrically active carriers were generated at the interface between the substrate and the epitaxial film. In addition, in this Comparative Example 2, the presence or absence of occurrence of drying unevenness was not observed.

【0030】(実施例3)InP単結晶を種結晶として
用い、上記実施例1と同じ育成方法(液体封止チョクラ
ルスキー法)で直胴部の直径2インチのFe(鉄)ドー
プInP単結晶インゴットを育成した。その育成したイ
ンゴットから(100)面を主面とする厚さ1mmの基板
を切り出し、上記実施例1と同じ手順でリンス洗浄まで
行ってその表面を鏡面状態にした。
(Embodiment 3) Using an InP single crystal as a seed crystal, the same growth method (liquid-sealed Czochralski method) as in the above-mentioned Embodiment 1 was used and Fe (iron) -doped InP single crystal having a diameter of 2 inches in the straight body portion was used. A crystal ingot was grown. From the grown ingot, a substrate having a (100) plane as a main surface and a thickness of 1 mm was cut out and rinsed by the same procedure as in Example 1 above to make the surface mirror-finished.

【0031】続いて、そのInP基板を、例えば、3重
量%のH22水(酸化剤)に3分間浸漬させて基板表面
に酸化膜を形成した後、水洗し、さらに8重量%のH3
PO4水溶液(酸化物除去剤)に3分間浸漬させて前記
酸化膜を除去した。基板を再び水洗した後、従来と同様
に乾燥させた。
Subsequently, the InP substrate is dipped in, for example, 3% by weight of H 2 O 2 water (oxidizing agent) for 3 minutes to form an oxide film on the surface of the substrate, washed with water, and further washed with 8% by weight. H 3
The oxide film was removed by immersing it in a PO 4 aqueous solution (oxide removing agent) for 3 minutes. The substrate was washed again with water and then dried as in the conventional case.

【0032】得られたInP基板上に、MOCVD法に
より、成長温度660℃で厚さ1μmのInPのエピタ
キシャル膜を成長させた。そのInPエピタキシャル膜
付きInP基板の界面キャリア濃度は2×1014cm-3
あり、基板とエピタキシャル膜との界面に電気的に活性
なキャリアが発生していないことが確認された。
On the obtained InP substrate, an InP epitaxial film having a thickness of 1 μm was grown at a growth temperature of 660 ° C. by the MOCVD method. The interface carrier concentration of the InP substrate with the InP epitaxial film was 2 × 10 14 cm −3 , and it was confirmed that electrically active carriers were not generated at the interface between the substrate and the epitaxial film.

【0033】なお、一般に、InP基板では、上記Ga
As基板のような乾燥ムラは殆ど発生しないので、乾燥
ムラについての基板表面の観察を行わなかった。
Generally, in the InP substrate, the Ga
Since the drying unevenness unlike the As substrate hardly occurs, the substrate surface was not observed for the drying unevenness.

【0034】(実施例4)上記実施例3と同じ手順でI
nPエピタキシャル膜付きInP基板を得た。但し、本
実施例4では、上記実施例3のリンス洗浄工程とH22
水による酸化膜形成工程との間に、H3PO4水とH22
水の混合溶液に基板を5分間浸漬させて基板表面の洗浄
を行った。その際、用いた上記混合溶液の容積比は、次
式の通りであった。 H3PO4:H22:H2O=20:5:1 その他の基板の製造条件や製造手順等に付いては上記実
施例3と同じであった。
(Fourth Embodiment) The same procedure as in the third embodiment is used.
An InP substrate with an nP epitaxial film was obtained. However, in the fourth embodiment, the rinse cleaning step and H 2 O 2 of the above-mentioned third embodiment are performed.
During the process of forming an oxide film with water, H 3 PO 4 water and H 2 O 2 are added.
The substrate surface was washed by immersing the substrate in a mixed solution of water for 5 minutes. At that time, the volume ratio of the mixed solution used was as follows. H 3 PO 4 : H 2 O 2 : H 2 O = 20: 5: 1 Other substrate manufacturing conditions, manufacturing procedures, etc. were the same as in Example 3 above.

【0035】得られたInPエピタキシャル膜付きIn
P基板の界面キャリア濃度は7×1013cm-3であり、基
板とエピタキシャル膜との界面に電気的に活性なキャリ
アが発生していないことが確認された。
InP with the obtained InP epitaxial film
The interface carrier concentration of the P substrate was 7 × 10 13 cm −3 , and it was confirmed that electrically active carriers were not generated at the interface between the substrate and the epitaxial film.

【0036】(比較例3)上記実施例3と同じ手順でI
nPエピタキシャル膜付きInP基板を得た。なお、本
比較例3においては、H22水及びH3PO4水への浸漬
による酸化膜の形成及び除去を行わずに、基板を超純水
でリンス洗浄した後、乾燥させた。その他の基板の製造
条件や製造手順等に付いては上記実施例3と同じであっ
た。
(Comparative Example 3) In the same procedure as in Example 3 above, I
An InP substrate with an nP epitaxial film was obtained. In Comparative Example 3, the substrate was rinsed with ultrapure water and then dried without forming and removing the oxide film by immersion in H 2 O 2 water and H 3 PO 4 water. Other manufacturing conditions, manufacturing procedures, etc. of the substrate were the same as those in the third embodiment.

【0037】得られたInPエピタキシャル膜付きIn
P基板の界面キャリア濃度は3×1016cm-3であり、基
板とエピタキシャル膜との界面に電気的に活性なキャリ
アが発生したことがわかった。
InP with the obtained InP epitaxial film
The interface carrier concentration of the P substrate was 3 × 10 16 cm −3 , and it was found that electrically active carriers were generated at the interface between the substrate and the epitaxial film.

【0038】(比較例4)上記実施例4と同じ手順でI
nPエピタキシャル膜付きInP基板を得た。なお、本
比較例4においては、H22水及びH3PO4水への浸漬
による酸化膜の形成及び除去を行わずに、基板表面をH
3PO4水とH22水の混合溶液で洗浄した後、水洗・乾
燥させた。その他の基板の製造条件や製造手順等に付い
ては上記実施例4と同じであった。
(Comparative Example 4) The same procedure as in Example 4 was repeated.
An InP substrate with an nP epitaxial film was obtained. In addition, in this Comparative Example 4, the substrate surface was exposed to H 2 O without forming and removing the oxide film by immersion in H 2 O 2 water and H 3 PO 4 water.
After washing with a mixed solution of 3 PO 4 water and H 2 O 2 water, it was washed with water and dried. Other manufacturing conditions, manufacturing procedures, etc. of the substrate were the same as those in the fourth embodiment.

【0039】得られたInPエピタキシャル膜付きIn
P基板の界面キャリア濃度は4×1016cm-3であり、基
板とエピタキシャル膜との界面に電気的に活性なキャリ
アが発生したことがわかった。
InP with the obtained InP epitaxial film
The interface carrier concentration of the P substrate was 4 × 10 16 cm −3 , and it was found that electrically active carriers were generated at the interface between the substrate and the epitaxial film.

【0040】以上の実施例1〜4及び比較例1〜4の結
果をまとめて表1に示す。同表から明らかなように、本
発明を適用して半導体基板を製造することにより、基板
とエピタキシャル膜との界面における電気的に活性なキ
ャリアの蓄積を防ぐことができるとともに、基板表面の
乾燥ムラの発生も同時に防ぐことができる。
The results of Examples 1 to 4 and Comparative Examples 1 to 4 are summarized in Table 1. As is clear from the table, by manufacturing the semiconductor substrate to which the present invention is applied, it is possible to prevent the accumulation of electrically active carriers at the interface between the substrate and the epitaxial film, and to dry the substrate surface unevenly. The occurrence of can be prevented at the same time.

【表1】 [Table 1]

【0041】なお、上記実施例においては、GaAs基
板及びInP基板を例に挙げて説明したが、本発明はこ
れに限定されるものではなく、基板の洗浄・乾燥に起因
して、基板とエピタキシャル膜との界面に電気的に活性
なキャリアが蓄積したり、乾燥ムラが生じたりし得るそ
の他の化合物半導体基板(例えば、III−V族化合物、II
−VI族化合物、或は3元系以上の混晶組成の化合物)の
製造に付いても適用可能である。基板の大きさや厚さ、
主面の方位、結晶の育成法等は一例として示したもので
あり、それらにより何ら制限を受けるものではない。
Although the GaAs substrate and the InP substrate have been described as examples in the above-mentioned embodiments, the present invention is not limited to this, and the substrate and the epitaxial layer are formed due to the cleaning and drying of the substrate. Other compound semiconductor substrates (for example, III-V group compounds, II) in which electrically active carriers may accumulate at the interface with the film or uneven drying may occur.
It is also applicable to the production of a group VI compound or a compound having a mixed crystal composition of ternary or more). Board size and thickness,
The orientation of the main surface, the crystal growth method, etc. are shown as examples, and are not limited in any way.

【0042】また、酸化剤として過酸化水素水以外に、
硝酸やオゾン等を用いてもよく、或は酸化剤を用いる代
わりに熱酸化や自然酸化により基板表面を酸化させても
よい。酸化物除去剤としてアンモニア水やリン酸以外
に、水酸化ナトリウム水溶液や塩酸や弗酸を用いてもよ
い。
In addition to hydrogen peroxide as an oxidant,
Nitric acid, ozone, etc. may be used, or the substrate surface may be oxidized by thermal oxidation or natural oxidation instead of using an oxidizing agent. As the oxide removing agent, an aqueous solution of sodium hydroxide, hydrochloric acid or hydrofluoric acid may be used in addition to aqueous ammonia and phosphoric acid.

【0043】さらに、GaAs基板の製造においては、
22の濃度は0.1%に限らず、0.01〜5%であ
ればよく、好ましくは0.05〜0.3%がよい。その
理由は、H22濃度が5%を超える場合には基板表面に
くもりが生じることがあり、一方0.01%に満たない
場合には乾燥ムラが生じることがあったからである。
Further, in manufacturing the GaAs substrate,
The concentration of H 2 O 2 is not limited to 0.1% and may be 0.01 to 5%, preferably 0.05 to 0.3%. The reason is that when the H 2 O 2 concentration exceeds 5%, clouding may occur on the substrate surface, while when it is less than 0.01%, uneven drying may occur.

【0044】また、上記実施例1〜4の各溶液に基板を
浸漬させる時間は、上記実施例で例示した時間に限らな
いのはいうまでもない。
Needless to say, the time for immersing the substrate in each of the solutions of Examples 1 to 4 is not limited to the time exemplified in the above Examples.

【0045】[0045]

【発明の効果】本発明に係る化合物半導体基板の製造方
法によれば、基板の洗浄後乾燥前に、その基板の表面を
一旦酸化膜で被ってからその酸化膜を除去することによ
り、スピン乾燥法は勿論のこと、その他の乾燥法を行っ
た場合においても、基板とエピタキシャル膜との界面に
おける電気的に活性なキャリアの蓄積、及び乾燥ムラの
発生、を同時に防ぐことができる。
According to the method of manufacturing a compound semiconductor substrate according to the present invention, spin drying is performed by once covering the surface of the substrate with an oxide film and then removing the oxide film after cleaning the substrate and before drying. Not only the method but also other drying methods can simultaneously prevent the accumulation of electrically active carriers and the occurrence of drying unevenness at the interface between the substrate and the epitaxial film.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 福井 徹 埼玉県戸田市新曽南3丁目17番35号 株式 会社ジャパンエナジー内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toru Fukui 3-17-35, Shinzonan, Toda City, Saitama Prefecture Within Japan Energy Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 薄板状をなし化合物半導体よりなる基板
を洗浄した後、その基板を酸化させて基板表面を酸化膜
で被い、その酸化膜を除去してから、基板を乾燥させる
ことを特徴とする化合物半導体基板の製造方法。
1. A method of cleaning a thin plate-like substrate made of a compound semiconductor, oxidizing the substrate to cover the surface of the substrate with an oxide film, removing the oxide film, and then drying the substrate. And a method for manufacturing a compound semiconductor substrate.
【請求項2】 酸化膜で被った上記基板を、酸化力を有
しない酸化物除去剤中に浸漬させて前記酸化膜を除去す
ることを特徴とする請求項1記載の化合物半導体基板の
製造方法。
2. The method for producing a compound semiconductor substrate according to claim 1, wherein the oxide film is removed by immersing the substrate covered with the oxide film in an oxide removing agent having no oxidizing power. .
【請求項3】 前記酸化物除去剤は、アンモニア水、水
酸化ナトリウム水溶液、リン酸、塩酸または弗酸である
ことを特徴とする請求項2記載の化合物半導体基板の製
造方法。
3. The method for manufacturing a compound semiconductor substrate according to claim 2, wherein the oxide removing agent is ammonia water, an aqueous sodium hydroxide solution, phosphoric acid, hydrochloric acid or hydrofluoric acid.
JP6868294A 1993-05-17 1994-04-06 Production of compound semiconductor substrate Pending JPH07211688A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6868294A JPH07211688A (en) 1993-05-17 1994-04-06 Production of compound semiconductor substrate

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP11506393 1993-05-17
JP30404593 1993-12-03
JP5-115063 1993-12-03
JP5-304045 1993-12-03
JP6868294A JPH07211688A (en) 1993-05-17 1994-04-06 Production of compound semiconductor substrate

Publications (1)

Publication Number Publication Date
JPH07211688A true JPH07211688A (en) 1995-08-11

Family

ID=27299820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6868294A Pending JPH07211688A (en) 1993-05-17 1994-04-06 Production of compound semiconductor substrate

Country Status (1)

Country Link
JP (1) JPH07211688A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1830397A2 (en) 2006-03-02 2007-09-05 Sumitomo Electric Industries, Ltd. Surface treatment method of compound semiconductor substrate, fabrication method of compound semiconductor, compound semiconductor substrate, and semiconductor wafer
WO2008123242A1 (en) * 2007-03-27 2008-10-16 Nippon Mining & Metals Co., Ltd. Substrate for epitaxial growth and epitaxial growth process
US9000567B2 (en) 2011-05-18 2015-04-07 Sumitomo Electric Industries, Ltd. Compound semiconductor substrate
JP2016519033A (en) * 2013-02-15 2016-06-30 フライベルガー・コンパウンド・マテリアルズ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツングFreiberger Compound Materials Gmbh Method for manufacturing gallium arsenide substrate, gallium arsenide substrate, and method of using the same
WO2018216440A1 (en) * 2017-05-26 2018-11-29 住友電気工業株式会社 Group iii–v compound semiconductor substrate and group iii–v compound semiconductor substrate with epitaxial layer
WO2022244679A1 (en) * 2021-05-17 2022-11-24 株式会社Screenホールディングス Substrate treatment method and substrate treatment device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1830397A2 (en) 2006-03-02 2007-09-05 Sumitomo Electric Industries, Ltd. Surface treatment method of compound semiconductor substrate, fabrication method of compound semiconductor, compound semiconductor substrate, and semiconductor wafer
WO2008123242A1 (en) * 2007-03-27 2008-10-16 Nippon Mining & Metals Co., Ltd. Substrate for epitaxial growth and epitaxial growth process
TWI406981B (en) * 2007-03-27 2013-09-01 Nippon Mining Co Epitaxial growth substrate and epitaxial growth method
JP5520045B2 (en) * 2007-03-27 2014-06-11 Jx日鉱日石金属株式会社 Epitaxial growth substrate and epitaxial growth method
DE202012013658U1 (en) 2011-05-18 2019-04-30 Sumitomo Electric Industries, Ltd. Compound semiconductor substrate
US9000567B2 (en) 2011-05-18 2015-04-07 Sumitomo Electric Industries, Ltd. Compound semiconductor substrate
DE112012002127B4 (en) 2011-05-18 2022-10-27 Sumitomo Electric Industries, Ltd. Method of manufacturing a compound semiconductor substrate
CN109801836A (en) * 2013-02-15 2019-05-24 弗赖贝格化合物原料有限公司 It is used to prepare method, the gallium arsenide substrate and application thereof of gallium arsenide substrate
US10460924B2 (en) 2013-02-15 2019-10-29 Freiberger Compound Materials Gmbh Process for producing a gallium arsenide substrate which includes marangoni drying
US11170989B2 (en) 2013-02-15 2021-11-09 Freiberger Compound Materials Gmbh Gallium arsenide substrate comprising a surface oxide layer with improved surface homogeneity
JP2016519033A (en) * 2013-02-15 2016-06-30 フライベルガー・コンパウンド・マテリアルズ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツングFreiberger Compound Materials Gmbh Method for manufacturing gallium arsenide substrate, gallium arsenide substrate, and method of using the same
JP6477990B1 (en) * 2017-05-26 2019-03-06 住友電気工業株式会社 III-V compound semiconductor substrate and III-V compound semiconductor substrate with epitaxial layer
WO2018216440A1 (en) * 2017-05-26 2018-11-29 住友電気工業株式会社 Group iii–v compound semiconductor substrate and group iii–v compound semiconductor substrate with epitaxial layer
WO2022244679A1 (en) * 2021-05-17 2022-11-24 株式会社Screenホールディングス Substrate treatment method and substrate treatment device

Similar Documents

Publication Publication Date Title
JP2787788B2 (en) Residue removal method
EP1737026B1 (en) Method of surface treating III-V semiconductor compound based substrates and method of manufacturing III-V compound semiconductors
KR100220926B1 (en) A cleaning method for hydrophobic silicon wafers
KR19990083075A (en) Sc-2 based pre-thermal treatment wafer cleaning process
JP6070548B2 (en) Compound semiconductor substrate
US5782984A (en) Method for cleaning an integrated circuit device using an aqueous cleaning composition
EP0989600A2 (en) Surface cleaning method for manufacturing II-VI compound semiconductor epitaxial wafers
JP2002517090A (en) Alkali treatment after etching
JPH07211688A (en) Production of compound semiconductor substrate
JP3857314B2 (en) Silicon drying method
JP3528534B2 (en) Cleaning method of silicon wafer
US8076219B2 (en) Reduction of watermarks in HF treatments of semiconducting substrates
JP4857738B2 (en) Semiconductor wafer cleaning method and manufacturing method
JPH0786220A (en) Method of cleaning semiconductor wafer
JP3255103B2 (en) Storage water for silicon wafers and method of storage
JPH05166777A (en) Washing of semiconductor wafer
JPH04298038A (en) Method for cleaning wafer
JPH11307497A (en) Cleaning method
DE10212657A1 (en) Wet chemical cleaning of a silicon wafer comprises initially contacting a hydrophobic surface partially covered with polishing agent, and contacting with an aqueous solution containing an oxidant
JP4355785B2 (en) Semiconductor device manufacturing method and semiconductor device manufacturing method
JP2970236B2 (en) GaAs wafer and method of manufacturing the same
JP3359434B2 (en) Manufacturing method of epitaxial wafer
JPS6293950A (en) Manufacture of wafer
JP2608448B2 (en) Processing method of GaAs substrate
DE10239775B3 (en) Production of a silicon wafer used in the production of a semiconductor component comprises treating the cleaned wafer with an aqueous ozone solution, coating with polycrystalline silicon, finely grinding, and epitaxially growing the wafer