JPH0644618B2 - Semiconductor light receiving device - Google Patents

Semiconductor light receiving device

Info

Publication number
JPH0644618B2
JPH0644618B2 JP61075561A JP7556186A JPH0644618B2 JP H0644618 B2 JPH0644618 B2 JP H0644618B2 JP 61075561 A JP61075561 A JP 61075561A JP 7556186 A JP7556186 A JP 7556186A JP H0644618 B2 JPH0644618 B2 JP H0644618B2
Authority
JP
Japan
Prior art keywords
light receiving
region
receiving device
type
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61075561A
Other languages
Japanese (ja)
Other versions
JPS62232959A (en
Inventor
英夫 室
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP61075561A priority Critical patent/JPH0644618B2/en
Publication of JPS62232959A publication Critical patent/JPS62232959A/en
Publication of JPH0644618B2 publication Critical patent/JPH0644618B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers

Description

【発明の詳細な説明】 [発明の技術分野] この発明は、複数の受光素子が配列形成された半導体受
光装置に関し、受光素子間のクロス・トークを低減し
て、測定精度を向上させた半導体受光装置に関する。
Description: TECHNICAL FIELD The present invention relates to a semiconductor light receiving device in which a plurality of light receiving elements are formed in an array, and a semiconductor in which cross talk between the light receiving elements is reduced to improve measurement accuracy. The present invention relates to a light receiving device.

[発明の技術的背景とその問題点] 近年の半導体技術の進歩により、受光部が半導体受光素
子例えばフォトダイオードを複数配列してなる半導体受
光装置が普及しつつあり、その応用分野もかなり広く、
各分野での実用化がなされている。このような半導体受
光装置としては例えば第2図に示すようなものがある。
これは特許願昭和59−136171に詳しい説明があ
るが、ここで第2図に基づいてその概略を説明する。
[Technical Background of the Invention and its Problems] With recent advances in semiconductor technology, semiconductor light receiving devices in which a plurality of semiconductor light receiving elements such as photodiodes are arranged in a light receiving portion are becoming widespread, and their application fields are considerably wide.
It has been put to practical use in each field. An example of such a semiconductor light receiving device is shown in FIG.
This is described in detail in Japanese Patent Application No. Showa 59-136171, which will now be outlined based on FIG.

第2図は半導体受光装置の断面図である。P型の半導
体基板1上に形成されたN型のエピタキシャル層3a
〜3bは、このエピタキシャル層3a〜3bの表面から
半導体基板1に達するP型の素子分離拡散領域5a〜
5cにより複数の島に分割されている。そして、それぞ
れのN型のエピタキシャル層3a〜3cと、P型の
半導体基板1及びそれぞれのP型の素子分離拡散領域
5a〜5cとの間に形成されるPN接合により、第2図
において3つのフォトダイオード7a,7b,7cが、
それぞれのエピタキシャル層3a〜3cをカソード領
域、それぞれの素子分離拡散領域5a〜5cをアノード
領域及び、半導体基板1をそれぞれのフォトダイオード
7a〜7cに共通のアノード領域として、隣接するよう
に形成されている。また、それぞれのアノード領域は接
地され、それぞれのカソード領域は、それぞれのカソー
ド電極9a〜9cを介して正の電圧が印加されており、
それぞれのフォトダイオード7a〜7cは逆バイアスさ
れている。
FIG. 2 is a sectional view of the semiconductor light receiving device. N type epitaxial layer 3a formed on P type semiconductor substrate 1
3b to 3b are P + type element isolation diffusion regions 5a reaching the semiconductor substrate 1 from the surfaces of the epitaxial layers 3a to 3b.
It is divided into multiple islands by 5c. Then, by the PN junction formed between each of the N type epitaxial layers 3a to 3c and the P type semiconductor substrate 1 and each of the P + type element isolation diffusion regions 5a to 5c, FIG. In the three photodiodes 7a, 7b, 7c,
Each of the epitaxial layers 3a to 3c is formed as a cathode region, each of the element isolation diffusion regions 5a to 5c as an anode region, and the semiconductor substrate 1 as a common anode region for each of the photodiodes 7a to 7c. There is. Further, each anode region is grounded, and each cathode region is applied with a positive voltage via each cathode electrode 9a-9c,
Each of the photodiodes 7a-7c is reverse biased.

このような構成において、フォトダイオード7a〜7c
が形成された半導体チップの表面に光が照射されると、
照射された光は半導体中で吸収されて、電子−正孔対が
生成される。半導体基板1中で生成された少数キャリア
の電子及びエピタキシャル層3a〜3cで生成された少
数キャリアの正孔は、拡散により逆バイアスされたPN
接合に達し、カソード電極9a〜9cより光電流として
取り出されて、半導体受光装置に照射された光の受光領
域が測定されるようになっている。
In such a configuration, the photodiodes 7a to 7c
When the surface of the semiconductor chip on which is formed is irradiated with light,
The irradiated light is absorbed in the semiconductor to generate electron-hole pairs. The minority carrier electrons generated in the semiconductor substrate 1 and the minority carrier holes generated in the epitaxial layers 3a to 3c are reverse-biased by diffusion into PN.
The light receiving region of the light reaching the junction and being extracted as a photocurrent from the cathode electrodes 9a to 9c and applied to the semiconductor light receiving device is measured.

以上説明したような半導体受光装置にあっては、P
の半導体基板1がそれぞれのフォトダイオード7a〜7
cに共通のアノード領域となっている。このため、例え
ばフォトダイオード7bに光が照射されて、半導体基板
1のA点で示した位置において発生した電子の一部は、
横方向への拡散によりフォトダイオード7aあるいは7
cを形成するPN接合にまで達してクロス・トークが生
じるという問題があった。
In the semiconductor light receiving device as described above, the P + type semiconductor substrate 1 is used for each of the photodiodes 7a to 7a.
It is an anode region common to c. Therefore, for example, when the photodiode 7b is irradiated with light and some of the electrons generated at the position indicated by point A of the semiconductor substrate 1 are:
Due to the lateral diffusion, the photodiode 7a or 7
There is a problem that cross talk occurs even reaching the PN junction forming c.

したがって、フォトダイオード7aあるいは7cのPN
接合に達した電子は光電流として収集され、照射光を受
光しないフォトダイオードにも光電流が流れて、受光領
域を正確に測定することが困難となっていた。
Therefore, the PN of the photodiode 7a or 7c
The electrons reaching the junction are collected as a photocurrent, and the photocurrent also flows through the photodiode that does not receive the irradiation light, making it difficult to accurately measure the light receiving region.

[発明の目的] この発明は、上記に鑑みてなされたものであり、その目
的とするところは、半導体基板上に隣接して形成された
フォトダイオード間を横方向に拡散する少数キャリアを
抑制して、測定精度を向上させた半導体受光装置を提供
することにある。
[Object of the Invention] The present invention has been made in view of the above, and an object of the present invention is to suppress minority carriers that laterally diffuse between photodiodes formed adjacently on a semiconductor substrate. And to provide a semiconductor light receiving device with improved measurement accuracy.

[発明の概要] 上記目的を達成するために、第1の導電型の半導体基板
上に形成されたエピタキシャル成長層の第2の導電型の
領域を、第1の導電型の拡散により形成された分離領域
により複数の領域に分割して、この複数の領域に分割さ
れた領域と前記分離領域及び前記半導体基板との間にそ
れぞれ形成されるPN接合を用いた受光素子を複数配列
して成る半導体受光装置において、この発明は、前記分
離領域の下部の前記半導体基板中に、前記分離領域に達
するように前記分離領域と同一の導電型の高濃度領を形
成したことを要旨とする。
[Summary of the Invention] In order to achieve the above object, a second conductivity type region of an epitaxial growth layer formed on a first conductivity type semiconductor substrate is separated by diffusion of the first conductivity type. A semiconductor light receiving device which is divided into a plurality of regions by regions, and a plurality of light receiving elements using PN junctions formed respectively between the regions divided into the plurality of regions and the isolation region and the semiconductor substrate are arranged. In the device, the gist of the present invention is that a high-concentration region of the same conductivity type as the isolation region is formed in the semiconductor substrate below the isolation region so as to reach the isolation region.

[発明の実施例] 以下、図面を用いてこの発明の一実施例を説明する。[Embodiment of the Invention] An embodiment of the present invention will be described below with reference to the drawings.

第1図はこの発明の一実施例に係る半導体受光装置の断
面図である。この半導体受光装置は、第2図に示した半
導体受光装置と同じように、フォトダイオード7a〜7
cが、半導体基板1上に、P型の素子分離拡散領域5
a〜5cにより囲まれるようにして分割され、正の電圧
が印加されたN型のエピタキシャル層3a〜3cをカ
ソード領域とし、半導体基板1及び接地されたP型の
素子分離拡散領域5a〜5cをアノード領域として、隣
接するように形成されている。このように形成されたフ
ォトダイオード7a〜7cを用いて、第1図で示す半導
体受光装置は、第2図で示した半導体受光装置と同様
に、フォトダイオード7a〜7cの受光面に照射された
光を光電流として、それぞれのカソード電極9a〜9c
から取り出すことにより、照射光のフォトダイオード7
a〜7cの受光面における受光領域が測定される。
FIG. 1 is a sectional view of a semiconductor light receiving device according to an embodiment of the present invention. This semiconductor light receiving device is similar to the semiconductor light receiving device shown in FIG.
c is a P + -type element isolation diffusion region 5 on the semiconductor substrate 1.
The N type epitaxial layers 3a to 3c, which are divided so as to be surrounded by a to 5c and to which a positive voltage is applied, are used as the cathode region, and the semiconductor substrate 1 and the grounded P + type element isolation diffusion region 5a to 5c is formed so as to be adjacent to the anode region. Using the photodiodes 7a to 7c formed in this way, the semiconductor light receiving device shown in FIG. 1 was irradiated on the light receiving surfaces of the photodiodes 7a to 7c, similarly to the semiconductor light receiving device shown in FIG. Using the light as a photocurrent, each of the cathode electrodes 9a to 9c
By taking it out from the photodiode 7 of the irradiation light
The light receiving areas on the light receiving surfaces a to 7c are measured.

この実施例の半導体受光装置の特徴とするところは、N
型のエピタキシャル層3a〜3cを分割するととも
に、それぞれのフォトダイオード7a〜7cのアノード
領域となるそれぞれのP型の素子分離拡散領域5a〜
5cの下部に、この素子分離拡散領域5a〜5cと同じ
導電型、すなわちP型の埋込領域11a〜11cを拡
散により形成したことにある。このP型の埋込領域1
1a〜11cは、拡散の深さが10μm以上、シート抵
抗が10〜30Ω/口程度に形成されている。
The semiconductor light-receiving device of this embodiment is characterized by N
Each of the P + type element isolation diffusion regions 5a to be the anode regions of the photodiodes 7a to 7c while dividing the type epitaxial layers 3a to 3c.
This is because the buried regions 11a to 11c of the same conductivity type as the element isolation diffusion regions 5a to 5c, that is, the P + type buried regions 11a to 11c are formed by diffusion under the portion 5c. This P + type buried region 1
1a to 11c have a diffusion depth of 10 μm or more and a sheet resistance of 10 to 30 Ω / port.

このように、P型の素子分離拡散領域5a〜5cの下
部の半導体基板1中に、P型の埋込領域11a〜11
cを有する構造は、半導体受光装置が形成される標準的
なバイポーラプロセスを用いて形成される。このような
構造は、標準的なバイポーラプロセスにおいて、P
の半導体基板1にN型の埋込拡散が行なわれた後に、
型の拡散工程を追加するだけで形成される。
Thus, in the semiconductor substrate 1 below the P + type element isolation diffusion regions 5a to 5c, the P + type buried regions 11a to 11 are formed.
The structure having c is formed by using a standard bipolar process in which a semiconductor light receiving device is formed. In such a structure, after the N + type buried diffusion is performed on the P + type semiconductor substrate 1 in the standard bipolar process,
It is formed only by adding a P + -type diffusion step.

そして、P型の拡散工程が終了して、それぞれのP
型の埋込領域11a〜11cを半導体基板1中に形成し
た後に、このP型埋込領域11a〜11cが形成され
た半導体基板1上に、N型のエピタキシャル層を成長
させ、P型の素子分離拡散領域5a〜5cを形成し、
この素子分離拡散領域5a〜5cによりN型のエピキ
シャル層を分割する。つぎに、それぞれ分割されたエピ
タキシャル層3a〜3cにカソード電極9a〜9cを接
続するためのN型のエミッタ拡散領域13a〜13c
を形成し、コンタクト・ホールの形成、カソード電極9
a〜9c用のアルミ配線の形成を行ない、第1図に示す
半導体受光装置が完成する。
Then, the P + type diffusion process is completed, and each P + type
After the buried regions 11a to 11c of the type are formed in the semiconductor substrate 1, an N type epitaxial layer is grown on the semiconductor substrate 1 in which the P + type buried regions 11a to 11c are formed to form P +. Form element isolation diffusion regions 5a-5c,
The element isolation diffusion regions 5a to 5c divide the N type epitaxial layer. Next, N type emitter diffusion regions 13a to 13c for connecting the cathode electrodes 9a to 9c to the divided epitaxial layers 3a to 3c, respectively.
Forming a contact hole, cathode electrode 9
Aluminum wirings for a to 9c are formed, and the semiconductor light receiving device shown in FIG. 1 is completed.

以上説明した構成の半導体受光装置において、フォトダ
イオード7bに光が照射されて、この照射された光の吸
収により電子−正孔対が、第2図に示したA点と同じ位
置の第1図に示すB点において生成されると、この対生
成された電子の一部は、拡散により横方向へ移動するも
のがある。この横方向に移動した電子は、P型の埋込
領域11b,11cに達し、そのほとんどの電子は埋込
領域11b,11cに蓄積されて正孔と再結合すること
になる。このため、フォトダイオード7a,7cは、B
点で生成された電子による光電流を発生することはな
い。したがって、フォトダイオード7a〜7c間におけ
るクロス・トークは大幅に低減されて、それぞれのフォ
ドダイオード7a〜7cは、それぞれの受光面に照射さ
れた光により、光電流を発生して、正確に受光領域が測
定される。加えて、特に、長波長の光を検出するにはP
N接合面をなるべく深い位置とする必要があるが、本実
施例の装置構成によれば、埋込領域11a〜11cを形
成後に拡散領域5a〜5cを形成しているので、PN接
合面の位置が深くても従来に比べて拡散領域の面積が増
大するのを抑制しつつ的確な長波長光の検出が可能とな
る。
In the semiconductor light receiving device having the above-described structure, the photodiode 7b is irradiated with light, and the absorption of the irradiated light causes the electron-hole pair to be at the same position as point A shown in FIG. When the electrons are generated at the point B shown in (1), some of the pair-generated electrons move laterally due to diffusion. The electrons that have moved in the lateral direction reach the P + type buried regions 11b and 11c, and most of the electrons are accumulated in the buried regions 11b and 11c and recombined with holes. Therefore, the photodiodes 7a and 7c are
No photocurrent is generated by the electrons generated at the point. Therefore, the cross talk between the photodiodes 7a to 7c is significantly reduced, and the respective photodiodes 7a to 7c generate a photocurrent by the light applied to their light receiving surfaces to accurately receive the light. The area is measured. In addition, in particular, for detecting long wavelength light, P
Although it is necessary to make the N junction surface as deep as possible, according to the device configuration of this embodiment, since the diffusion regions 5a to 5c are formed after the buried regions 11a to 11c are formed, the position of the PN junction surface is formed. Even if the depth is deep, it is possible to accurately detect long-wavelength light while suppressing an increase in the area of the diffusion region as compared with the conventional case.

[発明の効果] 以上説明したように、この発明によれば、拡散により形
成された分離領域の下部の半導体基板中に、この分離領
域と同一の導電型の高濃度領域を形成たので、光の吸収
により半導体基板中で生成された電子の横方向への拡散
を抑制して、受光素子間のクロス・トークを著しく低減
することが可能となる。この結果、受光領域を高精度に
測定する半導体受光装置を提供することができる。
As described above, according to the present invention, since the high-concentration region of the same conductivity type as the isolation region is formed in the semiconductor substrate below the isolation region formed by diffusion, It is possible to suppress the lateral diffusion of the electrons generated in the semiconductor substrate by the absorption of, and to significantly reduce the cross talk between the light receiving elements. As a result, it is possible to provide a semiconductor light receiving device that measures the light receiving region with high accuracy.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の一実施例に係る半導体受光装置の断
面図、第2図は従来の半導体受光装置の断面図である。 (図の主要な部分を表わす符号の説明) 1……半導体基板 3a〜3c……N型エピタキシャル層 5a〜5c……P型素子分離拡散領域 7a〜7c……フォトダイオード 11a〜11c……P型埋込領域
FIG. 1 is a sectional view of a semiconductor light receiving device according to an embodiment of the present invention, and FIG. 2 is a sectional view of a conventional semiconductor light receiving device. (Explanation of Reference Signs Representing Main Portion of Drawing) 1 ... Semiconductor substrate 3a to 3c ... N -- type epitaxial layer 5a to 5c ... P + type element isolation diffusion region 7a to 7c ... Photodiode 11a to 11c ... ... P + type embedded area

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】第1の導電型の半導体基板上に形成された
エピタキシャル成長層の第2の導電型の領域を、第1の
導電型の拡散により形成された分離領域により複数の領
域に分割して、この複数の領域に分割された領域と前記
分離領域及び前記半導体基板との間にそれぞれ形成され
るPN接合を用いた受光素子を複数配列して成る半導体
受光装置において、前記分離領域の下部の前記半導体基
板中に、前記分離領域に接するように前記分離領域と同
一の導電型の高濃度領域を形成したことを特徴とする半
導体受光装置。
1. A second conductivity type region of an epitaxial growth layer formed on a first conductivity type semiconductor substrate is divided into a plurality of regions by an isolation region formed by diffusion of the first conductivity type. A plurality of light receiving elements each using a PN junction formed between the region divided into the plurality of regions and the isolation region and the semiconductor substrate, and In the semiconductor substrate, a high-concentration region of the same conductivity type as the isolation region is formed so as to be in contact with the isolation region.
JP61075561A 1986-04-03 1986-04-03 Semiconductor light receiving device Expired - Fee Related JPH0644618B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61075561A JPH0644618B2 (en) 1986-04-03 1986-04-03 Semiconductor light receiving device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61075561A JPH0644618B2 (en) 1986-04-03 1986-04-03 Semiconductor light receiving device

Publications (2)

Publication Number Publication Date
JPS62232959A JPS62232959A (en) 1987-10-13
JPH0644618B2 true JPH0644618B2 (en) 1994-06-08

Family

ID=13579714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61075561A Expired - Fee Related JPH0644618B2 (en) 1986-04-03 1986-04-03 Semiconductor light receiving device

Country Status (1)

Country Link
JP (1) JPH0644618B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989011651A1 (en) * 1988-05-20 1989-11-30 Moskovskoe Vysshee Tekhnicheskoe Uchilische Imeni Method for ultrasonically checking weld seams of articles
US11169177B2 (en) 2016-08-12 2021-11-09 Tiptek, LLC Scanning probe and electron microscope probes and their manufacture

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3186096B2 (en) * 1990-06-14 2001-07-11 アジレント・テクノロジーズ・インク Method for manufacturing photosensitive element array
JP3108528B2 (en) * 1992-05-28 2000-11-13 株式会社東芝 Optical position detection semiconductor device
DE4439995A1 (en) * 1994-11-09 1996-05-15 Siemens Ag Photodiode array for medical computer tomography

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56160079A (en) * 1980-04-29 1981-12-09 Sony Corp Semiconductor device
JPS5712571A (en) * 1980-06-27 1982-01-22 Toshiba Corp Semiconductor photodetector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989011651A1 (en) * 1988-05-20 1989-11-30 Moskovskoe Vysshee Tekhnicheskoe Uchilische Imeni Method for ultrasonically checking weld seams of articles
US11169177B2 (en) 2016-08-12 2021-11-09 Tiptek, LLC Scanning probe and electron microscope probes and their manufacture

Also Published As

Publication number Publication date
JPS62232959A (en) 1987-10-13

Similar Documents

Publication Publication Date Title
US3703669A (en) Photocurrent cross talk isolation
US11189741B2 (en) Photodiode device, photodiode detector and methods of fabricating the same
US3812518A (en) Photodiode with patterned structure
JP2662062B2 (en) Photoelectric conversion device
US4920395A (en) High sensitivity photodiode
US5854506A (en) Semiconductor particle-detector
JPH0644618B2 (en) Semiconductor light receiving device
JPH0691233B2 (en) Method for manufacturing semiconductor light receiving element
JPS61139061A (en) Semiconductor photodetector
JP3108528B2 (en) Optical position detection semiconductor device
JP2002314116A (en) Lateral semiconductor photodetector of pin structure
CN115360250A (en) Bottom electrode shared detector array structure based on TSV (through silicon via) process and preparation method thereof
JP3510500B2 (en) Method for manufacturing semiconductor light receiving device
JPH03206670A (en) Solar cell
JPH0563030B2 (en)
JPH03203273A (en) Pin photodiode
CN115360251A (en) Top electrode shared detector array structure based on TSV (through silicon via) process and preparation method thereof
JPH05145051A (en) Optical semiconductor device
JPS62232961A (en) Semiconductor photodetector
JPS6146071B2 (en)
JPH0541533A (en) Semiconductor device
JP2957834B2 (en) Photodetector with built-in circuit
JPS6244430B2 (en)
JPH05183183A (en) Photodetector
JPS6135494B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees