JPH0643811B2 - ガスタービンのホットパーツ冷却方法 - Google Patents

ガスタービンのホットパーツ冷却方法

Info

Publication number
JPH0643811B2
JPH0643811B2 JP60165996A JP16599685A JPH0643811B2 JP H0643811 B2 JPH0643811 B2 JP H0643811B2 JP 60165996 A JP60165996 A JP 60165996A JP 16599685 A JP16599685 A JP 16599685A JP H0643811 B2 JPH0643811 B2 JP H0643811B2
Authority
JP
Japan
Prior art keywords
temperature
cooling air
flow rate
gas turbine
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60165996A
Other languages
English (en)
Other versions
JPS6226329A (ja
Inventor
宗一 黒沢
和彦 熊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60165996A priority Critical patent/JPH0643811B2/ja
Priority to US06/888,007 priority patent/US4767259A/en
Priority to FR8610830A priority patent/FR2585407B1/fr
Publication of JPS6226329A publication Critical patent/JPS6226329A/ja
Publication of JPH0643811B2 publication Critical patent/JPH0643811B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/16Cooling of plants characterised by cooling medium
    • F02C7/18Cooling of plants characterised by cooling medium the medium being gaseous, e.g. air
    • F02C7/185Cooling means for reducing the temperature of the cooling air or gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/02Controlling of coolant flow the coolant being cooling-air
    • F01P7/026Thermostatic control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/30Control parameters, e.g. input parameters
    • F05D2270/301Pressure
    • F05D2270/3013Outlet pressure

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、ガスタービンを冷却用空気によつて冷却する
場合、該ガスタービンの燃焼状態に応じて最適流量の冷
却用空気を供給するように制御する方法に関するもので
ある。
〔発明の背景〕
ガスタービンの効率は、その燃焼温を高くすることによ
り、飛躍的に向上することは周知の事実である。しか
し、燃焼温度の上昇に伴い、材料の開発を同時に進行さ
せ、高温に耐えうる材料を使用することが燃焼温度の上
昇を可能ならしめる第一の条件となる。しかしながら、
現状技術では、材料開発が頭打ち状態にあつて画期的な
向上は望めないので、材料を冷却することによつて使用
部材の温度を下げて使う方法をとつている例が多い。
第6図及び第7図に、ガスタービンノズルの空気冷却に
係る従来技術を示す。第6図は冷却空気系統図、第7図
はノズル付近の断面図である。
タービンノズル13のメタル温度は現状最高レベルの材
料を使用しても800℃を越えて使用することは強度
上、寿命保証上の点から無理である。このため、ノズル
13の温度はいかなる運転状態でも800℃以下に押え
ておかねばならない。従つて燃焼器3を出る燃焼温度が
800℃以上のガスタービンでは、空気圧縮機1の吐出
空気4を利用してノズル13の内面を冷却する必要があ
る。しかしながらこの冷却に用いる圧縮機吐出空気4の
温度は、通常のガスタービンは350〜450℃の範囲
にあり、高温高圧タービンになるほどこの温度は高くな
る傾向にある。この冷却用空気をケーシング14から一
旦外に出し、インタークーラ6で水8と熱交換させるこ
とにより、冷却空気7の温度を200℃前後まで下げる
手段が従来用いられており、この場合の冷却空気7のコ
ントロールは、温度センサー11により、制御器12に
て、温度200℃程度の一定値に保持するよう、冷却水
8の量を弁9にて調整する方法がとられている。又、冷
却空気7の空気量はオリフイス10により一定値に押え
ている。
一方、ガスタービンの出力と、燃焼温度15、排気温度
16との関係は第8図に示す通りである。これは、大気
温度一定の場合の関係であり、この関係から、燃焼温度
15が1200℃即ち、出力100%の時の冷却空気量
の必要量17を100%とした場合、燃焼温度15が8
00℃の時は、冷却空気の供給は必要なくなる。この関
係を第9図に示す。これを出力割合で表わしたものを第
10図に破線19で示す。この場合、オリフイス10及
びノズル3の末端にて空気流量が絞られている。オリフ
イス10のみで上記の空気流量をコントロールしている
場合、吐出空気4の圧力が部分負荷になるに従い低下す
ることから、第10図18に示す実線18の如き実流空
気量となる。従つて、前記のオリフイス10(第6図)
の位置に、これに代る弁を設けて必要空気量19と出力
割合との関係に基づいて空気量7を調整することも可能
である。
しかしながら、ガスタービンは、運転時の大気温度によ
つて吸込空気量が増減するため、ガスタービン内部の特
性が変る。
第11図に、大気温度が変化した場合の燃焼温度15,
15a,15bの関係を示す。これから必要空気量と出
力の関係を第12図に示す。これより例えば同じく50
%の出力割合における必要空気流量は、大気温度50℃
で設計冷却空気量の60%必要であり、15℃で35
%、−20℃では、0%となる。このため、大気温度を
考慮せずに出力割合のみに基づいて制御を実施した場
合、制御設計を15℃の曲線でインプツトしておくと5
0%出力では、冷却空気量が−20℃では35%余分に
流すことになり、効率向上の点から望ましくない。又、
50℃の場合は25%の冷却空気量が不足することにな
り、これは直ちにノズルのメタル温度上昇につながり、
運転不可能の事態を引き起こす虞れが有る。
又、ガスタービンの効率向上策として、インレツトガイ
ドベーンを出力により開閉することによつて吸込空気量
を加減し、これにより部分負荷域まで燃焼温度最高の点
を保持し、部分負荷時の有効熱落差の有効利用と、排気
温度上昇によるボトムサイクルの効率向上を図る手段を
講じる場合がある。
このインレツトガイドベーンコントロールをした場合の
燃焼温度15c、排気温度16cの出力に対する関係を
第13図に示す。この関係より、出力に対する必要冷却
空気量を表わすと第14図19cとなる。即ち、第13
図燃焼温度15cが100%出力割合の点イと同一温度
であるロ点までは、同一量の冷却空気量が必要になるた
め、第14図必要冷却空気量19cは、イロハの折線と
なる。
一方、これに対し、実際に冷却空気7の流れの末端であ
るノズル13を流れる実流量は、前記のインレツトガイ
ドベーンを絞ることにより、吐出空気4の圧力が下るた
め、第10図に示した実流空気量18よりも更に下り、
線18a(第14図)の如くになる。この為、第14図
ロ点において、実流空気量18aは、必要空気量19c
に比して約10%不足する。これは、ノズル13のメタ
ル温度を当初の目標値である800℃に下げるために必
要な空気量19cを下回ることになるため、この時のメ
タル温度は840℃となり、強度上及び寿命上、問題と
なる。寿命は、メタル温度800℃の場合に比し、メタ
ル温度840℃の場合は約1/8となり、大幅な寿命縮
少となる。
又、公知例(特開55−112826)としてタービン排気温
度のみに基づいて冷却空気量を制御する方式が見られる
が、この公知例の場合は、大気温度一定の場合を想定し
ているもので下記のケースにおいて燃焼温度と排気温度
の関連性が崩れるため、正確な燃焼温度を把握すること
ができずに冷却空気量の過大、過少といつた不具合が生
じる。
即ち、 (i)大気温度変化による吸込空気量変化時に対応できな
い。
(ii)設計ミスマツチがあつた場合、これに対応して適宜
の制御をすることができない。
(iii)経年変化によるガスパス汚れ、及び摩耗に対応し
て適宜の制御をすることができない。
(iv)製作公差範囲内での形状変化に対応できない。
〔発明の目的〕
本発明は上述の事情に鑑みて為されたもので、その目的
は冷却空気流量を制御して、ガスタービンのホットガス
パーツのメタル温度を適正に調節し得る方法を提供する
にある。
〔発明の概要) 上記の目的を達成する為に創作した本発明の制御方法に
ついて、先ず、その基本的原理を略述する。
従来技術においては、もつぱらガスタービンの排気温度
のみに基づいてホットガスパーツの冷却制御を行つてい
たが、冷却制御のために基準とすべき燃焼温度であつて
排気温度はない。大気温度等の大気条件が一定であると
仮定すれば上記の従来技術(排気温度基準の制御)が成
立し得るが、大気条件が一定でないという現実の問題に
おいては、燃焼温度を算出して、これに基づいて冷却制
御を行わねばならない。
上に述べた原理に基づいて前記の目的(ホツトガスパー
ツの適正な温度管理)を達成するため、本発明の冷却空
気量制御方法は、ガスタービンの排気温度及び圧縮空気
圧力を測定し、この測定値に基づいて燃焼温度を算出し
て運転条件を判定し、この運転条件に応じて、冷却用空
気の流量を制御し、若しくは冷却用空気の温度を制御す
ることを特徴とする。
〔発明の実施例〕〕 次に、本発明の一実施例を第1図について説明する。本
図は本発明の制御方法を実施するために構成した制御系
統を付記したガスタービンの冷却系統図である。
空気圧縮機1の吐出空気4の圧力を圧力計22にて測定
するとともにタービン2の排気温度を温度計23にて測
定する。この両者を流量演算機21にインプツトする。
この演算機21の中で、吐出圧力及び排気温度より冷却
空気必要流量を計算する。この関係は、ガスタービンの
一般的な特性として第2図に示すごとく、排気温度、吐
出圧力より燃焼温度が算出できるという関係を利用し、
これより燃焼温度に相当する冷却空気必要量を算出する
ものである。即ち、第2図の排気温度、吐出圧力と燃焼
温度の関係より、第3図に示す排気温度、吐出圧力と必
要冷却空気量の関係を導き出しこの関係を演算機21に
インプツトしておく。
この演算機にて冷却空気必要量を算出し、この信号を空
気流量制御弁21に指令し、制御弁20にて冷却空気量
7をコントロールする。
又、冷却空気7の最大可能流量は、先に説明した第14
図の実流空気量18aとなるがこれは、吐出空気4の圧
力によつて次の式より定まる。
ここでG:最大可能流量 A:最少絞り部面積 K:係数 P:吐出空気4の圧力 ΔP:圧力差 T:空気温度 この関係を第4図に示す。
この最大可能流量と、流量演算機21で算出した必要空
気流量と比較し、必要空気流量が最大可能流量以下あれ
ば、第5図に示すごとく、冷却空気温度を目標温度20
0℃一定に保持する。又、必要空気流量が最大可能流量
よりも大あれば、冷却空気温度を下げるべく(第1図参
照)冷却水8の流量を調整する。この制御は、圧力計2
2で測定した圧力と、演算機21からの必要空気量とを
温度演算機12aにインプツトし、更に、冷却空気7の
温度を温度計11にて測定し、これも演算機12aにイ
ンプツトすることによつて、冷却水調整弁9に与える信
号を演算機12aにて算出し、実施するものとする。以
上のように制御することにより、大気温度変化時および
インレツトガイドベーン制御方式ガスタービン等のいか
なる運転条件においても、燃焼温度に相当する最少必要
冷却空気条件が設定されるため、冷却空気量を最低限に
絞ることができ、効率向上が図れると共に、タービンノ
ズル等のホツトガスパーツのメタル温度を目標値に設定
することができるため、部品の寿命維持に大きく貢献す
る。
以上に説明した実施例においては、次のような効果が確
認された。
(i)大気温度が変化した場合も、全ての運転範囲におい
て冷却空気消費量が最少となるようにコントロールする
ことができ、しかもホツトガスパーツのメタル温度を管
理基準内に抑えることができた。
(ii)インレツトガイドベーンコントロール方式付のガス
タービンに本実施例の方法を適用すると、部分負荷にお
ける燃焼温度が高い場合においても、その燃焼温度に相
当する冷却条件が確保でき、ホツトガスパーツの寿命維
持が可能となり、本発明を実施しない場合に比して8倍
の寿命が確保できた。
(iii)上に述べたように必要冷却空気量を最少限にコン
トロールすることにより、50%出力割合点におけるガ
スタービン効率を6.8%向上できた。
〔発明の効果〕
以上詳述したように、本発明の方法によれば、冷却空気
量を制御して、ガスタービンのホツトガスパーツのメタ
ル温度を適正に調節することができ、ガスタービンの熱
効率を阻害することなく、耐久性、信頼性の向上に貢献
するところ多大である。
【図面の簡単な説明】
第1図は本発明方法の一実施例におけるガスタービンの
冷却、制御系統図である。 第2図乃至第5図は上記実施例の効果を説明するための
図表である。。 第6図及び第7図は従来の制御方法の説明図で第6図は
冷却、制御系統を示し、第7図はノズル付近の断面を示
している。 第8図乃至第14図はガスタービンの温度に関する問題
点を説明するための図表である。 1……圧縮機、2……タービン、3……燃焼器、4……
吐出空気、5……燃焼空気、6……インタークーラ、7
……冷却空気、8……冷却水、9……冷却水制御弁、1
0……オリフイス、11………温度計、12………温度
演算機、13……ノズル、14……タービンケーシン
グ、15……燃焼温度、16……排気温度、17……必
要空気量、18……実流空気量、19……必要空気量、
20……流量制御弁、21……流量演算機、22……圧
力計、23……排気温度計。

Claims (1)

    【特許請求の範囲】
  1. 【請求項1】ガスタービンの空気圧縮機で圧縮された吐
    出空気の一部分を、冷却用空気として当該ガスタービン
    のホットパーツに供給し、上記冷却用空気の流量および
    温度を上記ガスタービンの燃焼温度に基づいて制御す
    る、ガスタービンのホットパーツ冷却方法において、 前記燃焼温度に基づいて、前記ホットパーツのメタル温
    度を所定の温度まで下げるのに必要な必要冷却空気流量
    を定めるとともに、 前記空気圧縮機の吐出圧力に基づいて、前記ホットパー
    ツに供給し得る最大供給可能冷却空気流量を求め、 前記必要冷却空気流量と、前記最大供給可能冷却空気流
    量とを比較し、 前記の最大供給可能冷却空気流量が、前記の必要冷却空
    気流量よりも大きいときは前記冷却用空気の流量を制御
    し、 前記の最大供給可能冷却空気流量が、前記の必要冷却空
    気流量よりも小さいときは、前記冷却用空気の温度を下
    げるように制御することを特徴とする、ガスタービンの
    ホットパーツ冷却方法。
JP60165996A 1985-07-29 1985-07-29 ガスタービンのホットパーツ冷却方法 Expired - Lifetime JPH0643811B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP60165996A JPH0643811B2 (ja) 1985-07-29 1985-07-29 ガスタービンのホットパーツ冷却方法
US06/888,007 US4767259A (en) 1985-07-29 1986-07-22 Cooling air flow controlling apparatus for gas turbine
FR8610830A FR2585407B1 (fr) 1985-07-29 1986-07-25 Dispositif pour commander la circulation de l'air de refroidissement d'une turbine a gaz

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60165996A JPH0643811B2 (ja) 1985-07-29 1985-07-29 ガスタービンのホットパーツ冷却方法

Publications (2)

Publication Number Publication Date
JPS6226329A JPS6226329A (ja) 1987-02-04
JPH0643811B2 true JPH0643811B2 (ja) 1994-06-08

Family

ID=15822931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60165996A Expired - Lifetime JPH0643811B2 (ja) 1985-07-29 1985-07-29 ガスタービンのホットパーツ冷却方法

Country Status (3)

Country Link
US (1) US4767259A (ja)
JP (1) JPH0643811B2 (ja)
FR (1) FR2585407B1 (ja)

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6445926A (en) * 1987-08-13 1989-02-20 Toshiba Corp Cooling method for gas turbine
FR2708669B1 (fr) * 1993-08-05 1995-09-08 Snecma Système de ventilation des disques et du stator de turbine d'un turboréacteur.
DE19541914A1 (de) * 1995-11-10 1997-05-15 Asea Brown Boveri Kühlluftkühler für Kraftwerksanlagen
DE19604416C2 (de) * 1996-02-07 2002-05-16 Siemens Ag Verfahren zur Entspannung eines Rauchgasstroms in einer Turbine sowie entsprechende Turbine
US6393825B1 (en) * 2000-01-25 2002-05-28 General Electric Company System for pressure modulation of turbine sidewall cavities
JP3593488B2 (ja) 2000-02-25 2004-11-24 株式会社日立製作所 ガスタービン
US6539977B1 (en) * 2000-09-27 2003-04-01 General Electric Company Self draining orifice for pneumatic lines
US6298656B1 (en) 2000-09-29 2001-10-09 Siemens Westinghouse Power Corporation Compressed air steam generator for cooling combustion turbine transition section
US6481211B1 (en) * 2000-11-06 2002-11-19 Joel C. Haas Turbine engine cycling thermo-mechanical stress control
EP1262638A1 (de) * 2001-05-31 2002-12-04 Siemens Aktiengesellschaft Vorrichtung zur Kühlmittelkühlung einer Gasturbine und Gas- und Dampfturbinenanlage mit einer derartigen Vorrichtung
US6644012B2 (en) * 2001-11-02 2003-11-11 Alston (Switzerland) Ltd Gas turbine set
US6523346B1 (en) * 2001-11-02 2003-02-25 Alstom (Switzerland) Ltd Process for controlling the cooling air mass flow of a gas turbine set
WO2003074854A1 (fr) * 2002-03-04 2003-09-12 Mitsubishi Heavy Industries, Ltd. Equipement de turbine, equipement de generation de puissance composite et procede de fonctionnement de la turbine
US6935120B2 (en) * 2002-05-09 2005-08-30 General Electric Company Approach to extending life of gas turbine engine
JP4100316B2 (ja) 2003-09-30 2008-06-11 株式会社日立製作所 ガスタービン設備
JP2008082247A (ja) * 2006-09-27 2008-04-10 Mitsubishi Heavy Ind Ltd ガスタービン
US20090051167A1 (en) * 2007-08-22 2009-02-26 General Electric Company Combustion turbine cooling media supply method
US7762789B2 (en) * 2007-11-12 2010-07-27 Ingersoll-Rand Company Compressor with flow control sensor
US8355854B2 (en) * 2009-05-08 2013-01-15 General Electric Company Methods relating to gas turbine control and operation
US20100290889A1 (en) * 2009-05-18 2010-11-18 General Electric Company Turbine wheelspace temperature control
US8307662B2 (en) * 2009-10-15 2012-11-13 General Electric Company Gas turbine engine temperature modulated cooling flow
JP2011140880A (ja) * 2010-01-05 2011-07-21 Mitsubishi Heavy Ind Ltd ガスタービン
ITTO20100824A1 (it) * 2010-10-06 2012-04-07 Ansaldo Energia Spa Metodo di controllo per raffreddare uno stadio di turbina in una turbina a gas
EP2508733A1 (de) 2011-04-07 2012-10-10 Siemens Aktiengesellschaft Gasturbine mit einer gekühlten Turbinenstufe und Verfahren zum Kühlen der Turbinenstufe
JP5675527B2 (ja) * 2011-08-03 2015-02-25 三菱重工業株式会社 ガスタービン制御装置及びガスタービン制御方法
EP2562369B1 (de) * 2011-08-22 2015-01-14 Alstom Technology Ltd Verfahren zum Betrieb einer Gasturbinenanlage sowie Gasturbinenanlage zur Durchführung des Verfahrens
JP5901225B2 (ja) * 2011-10-26 2016-04-06 三菱日立パワーシステムズ株式会社 ガスタービン設備、及びその冷却空気制御方法
CH705929A1 (de) * 2011-12-22 2013-06-28 Alstom Technology Ltd Verfahren zum Betreiben eines Kombikraftwerkes.
EP2642099A1 (de) * 2012-03-23 2013-09-25 Alstom Technology Ltd Verfahren zur Bestimmung wenigstens einer Feuerungstemperatur für die Regelung einer Gasturbine sowie Gasturbine zur Durchführung des Verfahrens
US9086019B2 (en) * 2012-07-02 2015-07-21 United Technologies Corporation Turbomachine thermal energy exchange
KR101933585B1 (ko) * 2012-07-25 2018-12-28 한화에어로스페이스 주식회사 가스 터빈 장치
JP5787857B2 (ja) 2012-09-27 2015-09-30 三菱日立パワーシステムズ株式会社 ガスタービン冷却系統の制御方法、この方法を実行する制御装置、これを備えているガスタービン設備
JP6389613B2 (ja) * 2014-01-27 2018-09-12 三菱日立パワーシステムズ株式会社 ガスタービン発電設備およびガスタービン冷却空気系統乾燥方法
US10371064B2 (en) * 2015-02-26 2019-08-06 General Electric Company Method and system to increase gas turbine engine durability
KR101929117B1 (ko) * 2017-04-24 2018-12-13 두산중공업 주식회사 가스터빈 제어장치 및 방법
US11536205B2 (en) 2020-03-31 2022-12-27 Rolls-Royce Plc Gas turbine engine operating schedules for optimizing ceramic matrix composite component life

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3039737A (en) * 1959-04-13 1962-06-19 Int Harvester Co Device for controlling clearance between rotor and shroud of a turbine
US3423941A (en) * 1965-12-20 1969-01-28 Combustion Eng Temperature and flow regulating apparatus
US4213296A (en) * 1977-12-21 1980-07-22 United Technologies Corporation Seal clearance control system for a gas turbine
JPS54108113A (en) * 1978-02-14 1979-08-24 Toshiba Corp Measuring of inlet gas temperature of gas turbine
JPS55112826A (en) * 1979-02-21 1980-09-01 Hitachi Ltd Cooling system for gas turbine bucket
GB2108586B (en) * 1981-11-02 1985-08-07 United Technologies Corp Gas turbine engine active clearance control
JPS59138731A (ja) * 1983-01-31 1984-08-09 Hitachi Ltd ガスタ−ビンの冷却空気制御装置
JPS59160036A (ja) * 1983-03-01 1984-09-10 Agency Of Ind Science & Technol ガスタ−ビン

Also Published As

Publication number Publication date
JPS6226329A (ja) 1987-02-04
FR2585407A1 (fr) 1987-01-30
US4767259A (en) 1988-08-30
FR2585407B1 (fr) 1994-02-18

Similar Documents

Publication Publication Date Title
JPH0643811B2 (ja) ガスタービンのホットパーツ冷却方法
US10635120B2 (en) Method for operating and/or monitoring an HVAC system
US9249729B2 (en) Turbine component cooling with closed looped control of coolant flow
EP1231369B1 (en) Gas turbine control system compensating water content in combustion air
US4248055A (en) Hot gas bypass control for centrifugal liquid chillers
US20090113896A1 (en) Control apparatus and method for gas-turbine engine
CN101900033A (zh) 用于改进燃气涡轮性能的系统和方法
US9506414B2 (en) Cold start emissions reduction diagnostic system for an internal combustion engine
JP2003155957A (ja) Egr制御装置及びegr制御方法
US20110142602A1 (en) Methods of determining variable element settings for a turbine engine
CN100570218C (zh) 带虚拟λ传感器的燃料控制系统
CN101542092A (zh) 用于燃气轮机的进气加热控制装置
US6164902A (en) Controlling stall margin in a gas turbine engine during acceleration
US10774751B2 (en) Partial-load operation of a gas turbine with an adjustable bypass flow channel
JPH04228833A (ja) 燃料供給装置
JPS63131844A (ja) 内燃機関の回転数制御装置
EP0856095B1 (en) Variable area compensation valve
JP7120893B2 (ja) ガスタービン及びその抽気量調整方法
EP2067932A2 (en) Regulating device for a hydraulic actuator for a regulating member of a turbine
US10794297B2 (en) Method for operating a gas turbine installation and a gas turbine installation for carrying out the method
US5699267A (en) Hot gas expander power recovery and control
JP2948365B2 (ja) ガスタービン翼冷却装置
JP3534865B2 (ja) 燃焼器の空燃比制御装置
SU1366713A1 (ru) Способ регулировани компрессора
JPH0723794B2 (ja) 空気調和装置