JPH0643259B2 - Method of forming antireflection film - Google Patents

Method of forming antireflection film

Info

Publication number
JPH0643259B2
JPH0643259B2 JP62002376A JP237687A JPH0643259B2 JP H0643259 B2 JPH0643259 B2 JP H0643259B2 JP 62002376 A JP62002376 A JP 62002376A JP 237687 A JP237687 A JP 237687A JP H0643259 B2 JPH0643259 B2 JP H0643259B2
Authority
JP
Japan
Prior art keywords
antireflection film
optical glass
glass element
forming
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62002376A
Other languages
Japanese (ja)
Other versions
JPS63170243A (en
Inventor
敏明 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62002376A priority Critical patent/JPH0643259B2/en
Publication of JPS63170243A publication Critical patent/JPS63170243A/en
Publication of JPH0643259B2 publication Critical patent/JPH0643259B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C15/00Surface treatment of glass, not in the form of fibres or filaments, by etching
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/28Other inorganic materials
    • C03C2217/284Halides
    • C03C2217/285Fluorides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/15Deposition methods from the vapour phase
    • C03C2218/152Deposition methods from the vapour phase by cvd

Landscapes

  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Laminated Bodies (AREA)
  • Surface Treatment Of Glass (AREA)
  • Physical Vapour Deposition (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、ガラス物品をプレス成形してつくられた光学
ガラス素子の表面に誘電体物質を積層してなる反射防止
膜の形成方法に関するものである。
Description: TECHNICAL FIELD The present invention relates to a method for forming an antireflection film by laminating a dielectric substance on the surface of an optical glass element produced by press molding a glass article. .

従来の技術 近年、光学ガラスレンズ等の光学ガラス素子は、光学機
器のレンズ構成の簡略化、軽量化および光学特性の高性
能化を同時に達成するために非球面化の方向にある。こ
の非球面ガラス素子の製造にあたっては、従来の製造方
法である研磨法では加工および量産化が困難であり、コ
ダック社から提案されているダイレクトプレス成形法
(特公昭54−38126号公報)が有望視されてい
る。
2. Description of the Related Art In recent years, optical glass elements such as optical glass lenses are becoming aspherical in order to simultaneously achieve simplification of lens configuration of optical devices, weight reduction, and high performance of optical characteristics. In the production of this aspherical glass element, it is difficult to process and mass-produce it by the conventional polishing method, and the direct press molding method (Japanese Patent Publication No. 54-38126) proposed by Kodak Company is promising. Is being watched.

また、いずれの製造法でつくられた光学ガラス素子であ
っても、光学特性の向上のため、光学ガラス素子表面に
誘電体物質を真空蒸着法等で積層し反射防止膜を形成す
ることは一般技術として知られている。
In addition, in any optical glass element manufactured by any manufacturing method, it is common to form a dielectric material on the surface of the optical glass element by vacuum deposition or the like to form an antireflection film in order to improve optical characteristics. Known as technology.

発明が解決しようとする問題点 上記の光学ガラス素子の製造において、光学ガラス素子
の像形成性能は従来の研磨法による光学ガラス素子のそ
れにくらべてより優れている必要があり、非常に高い面
精度および面粗度が要求される。例えば、高精度カメラ
レンズの場合、面精度はニュートンリング5本、アス1
本以内、面粗さは0.02μm以下であることが要求さ
れる。また光学機器の小型化に伴なって光学部品を小型
化・軽量化することが望まれており、従来の研磨法では
コンパクトな光学部品を多量かつ安価に製造することは
極めて困難である。そこで、高精度な光学ガラス素子を
製造する方法として、ダイレクトプレス法が注目されて
いる。ダイレクトプレス法の中でもとりわけ高精度な光
学ガラス素子を製造するのにリヒートプレス法が適して
いる。リヒートプレス法とは所望の光学ガラス素子に近
い面形状を有したガラス素材を作り、前記ガラス素材を
金型で加熱、加圧した後、冷却して、成形した光学ガラ
ス素子を取り出す方法である。このリヒートプレス法で
は、ガラス素材の形状、重量、面品質が重要であり、こ
れらが成形した光学ガラス素子の特性に大きな影響を及
ぼす。ガラス素材の製造方法としては、ガラス素材をカ
ーブジェネレータにより研削加工し、さらに研磨加工し
て表面を円滑にする方法が一般的である。研磨加工は良
好な面粗度に仕上げることができるが、曲率半径の小さ
なガラス素材を量産性よく加工することが困難でありコ
スト高になる。また、ガラス素材をカーブジェネレータ
によって研削加工したままのガラス物品をプレス成形し
た場合、ガラス物品表面の微細な凹凸が消滅せずに残る
ために、光学ガラス素子の透過率が悪くなり光学性能が
低下する。そのために、ガラス物品表面の微細な凹凸を
除去するため、エッチング処理として前記ガラス物品を
フッ化水素酸水溶液に浸漬する工程と、水洗する工程
と、水分を除去する工程とからなる過程をくり返すこと
を行なっている。しかしながら、前記工程による処理を
行なったガラス物品をダイレクトプレスして製造した光
学ガラス素子上に反射防止膜を真空蒸着法によって形成
すると、反射防止膜が光学ガラス素子から剥離しやすい
という問題点があった。
Problems to be Solved by the Invention In the production of the above-mentioned optical glass element, the image forming performance of the optical glass element needs to be better than that of the optical glass element by the conventional polishing method, and the surface accuracy is very high. And surface roughness are required. For example, in the case of a high precision camera lens, the surface precision is 5 Newton rings, 1
Within this range, the surface roughness is required to be 0.02 μm or less. Further, it is desired to reduce the size and weight of the optical parts as the size of the optical equipment becomes smaller, and it is extremely difficult to manufacture a large amount of compact optical parts at low cost by the conventional polishing method. Therefore, the direct pressing method has been attracting attention as a method for manufacturing a highly accurate optical glass element. Among the direct pressing methods, the reheat pressing method is suitable for producing a highly accurate optical glass element. The reheat press method is a method of producing a glass material having a surface shape close to that of a desired optical glass element, heating and pressing the glass material with a mold, then cooling, and taking out the molded optical glass element. . In this reheat press method, the shape, weight and surface quality of the glass material are important, and these have a great influence on the characteristics of the molded optical glass element. As a method of manufacturing a glass material, a method of grinding the glass material with a curve generator and further polishing it to smooth the surface is generally used. Although polishing can be finished to a good surface roughness, it is difficult and costly to process a glass material having a small radius of curvature with good mass productivity. Also, when a glass article that has been ground by a curve generator is press-molded, fine irregularities on the surface of the glass article do not disappear and remain, resulting in poor transmittance of the optical glass element and poor optical performance. To do. Therefore, in order to remove fine irregularities on the surface of the glass article, a step of dipping the glass article in an aqueous solution of hydrofluoric acid as an etching treatment, washing with water, and removing water is repeated. Doing things. However, when the antireflection film is formed on the optical glass element manufactured by direct pressing the glass article treated by the above-mentioned process by the vacuum deposition method, there is a problem that the antireflection film is easily peeled from the optical glass element. It was

本発明は上記問題点に鑑み、前記エッチング処理を行な
ったガラス物品をプレス成形してつくられた光学ガラス
素子に対して、密着性および耐久性に優れた反射防止膜
の形成方法を提供するものである。
In view of the above problems, the present invention provides a method for forming an antireflection film having excellent adhesion and durability with respect to an optical glass element produced by press-molding the glass article subjected to the etching treatment. Is.

問題点を解決するための手段 本発明は前記問題点を解決するために、光学ガラス素子
上に誘電体物質を積層して反射防止膜を形成する際に前
記光学ガラス素子を真空槽内で不活性ガスイオンを照射
することによるクリーニング処理を行なった後、前記光
学ガラス素子上に誘電体物質を積層させることを特徴と
する反射防止膜の形成方法を提供するものである。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention does not allow the optical glass element to be placed in a vacuum chamber when a dielectric material is laminated on the optical glass element to form an antireflection film. A method for forming an antireflection film, which comprises laminating a dielectric substance on the optical glass element after performing a cleaning treatment by irradiating with active gas ions.

作用 前述したように、高精度な光学ガラス素子を多量かつ安
価に製造する方法として、ダイレクトプレス法が注目さ
れている。さらに高精度な光学ガラス素子を製造するた
めにはリヒートプレス法が適していると言われている。
リヒートプレス法で重要なことは、ガラス物品の形状、
重量および面品質の管理であり、これらが成形した光学
ガラス素子の特性および量産性に大きな影響を及ぼす。
Action As described above, the direct press method has been attracting attention as a method for manufacturing a highly accurate optical glass element in a large amount at low cost. It is said that the reheat press method is suitable for producing a highly accurate optical glass element.
What is important in the reheat press method is the shape of the glass article,
Control of weight and surface quality, which have a great influence on the characteristics and mass productivity of the molded optical glass element.

そこで、ガラス物品の面粗度をよくするためにエッチン
グ処理が行なわれる。
Therefore, an etching process is performed to improve the surface roughness of the glass article.

本発明は、あらかじめエッチング処理を行なったガラス
物品をプレス成形してつくられた光学ガラス素子を、真
空槽内で不活性ガスイオンビームを照射することによる
クリーニング処理を行なった後、誘電体物質を積層し反
射防止膜を形成する方法を提供するものであり、その結
果、密着性および耐久性に優れた反射防止膜を得ること
ができる。
According to the present invention, an optical glass element produced by press-molding a glass article that has been subjected to an etching treatment in advance is subjected to a cleaning treatment by irradiating an inert gas ion beam in a vacuum chamber, and then a dielectric substance is removed. The present invention provides a method for laminating and forming an antireflection film, and as a result, an antireflection film having excellent adhesion and durability can be obtained.

実施例 以下本発明の一実施例について図面を参照しながら説明
する。
Embodiment One embodiment of the present invention will be described below with reference to the drawings.

図は反射防止膜の形成に用いた真空蒸着装置の概略図で
ある。図において、10は真空槽、11はプレス成形後
の光学ガラス素子、12は基板支持ドーム、13はイオ
ンビーム、14は抵抗加熱ボード、15はイオンビー
ム、16は蒸着材料、17はガス排気口である。
The figure is a schematic view of a vacuum vapor deposition apparatus used for forming an antireflection film. In the figure, 10 is a vacuum chamber, 11 is an optical glass element after press molding, 12 is a substrate supporting dome, 13 is an ion beam, 14 is a resistance heating board, 15 is an ion beam, 16 is a vapor deposition material, and 17 is a gas exhaust port. Is.

実施例に使用したガラスは、鉛ガラスSF−8であり、
ガラス素材を曲率半径3.5mmおよび2.9mm、コバ径
が6.3mm、中心肉厚が8mmの両凸形状に研削処理し
た。このガラス素材を液温40℃の10%フッ化水素酸
に10秒間浸漬した後、蒸留水で3分間洗浄し、さらに
200℃に保った乾燥機で15分間乾燥した。このよう
な浸漬工程をくり返して得たガラス物品を、一方が15
mm、他方が28mmの曲率半径を有した一対の鏡面加工し
た金型を用いて前記成形ガラス素材をプレス成形した。
成形条件としては、金型温度520℃、成形圧力10kg
/cm2、成形時間2分間であった。前記プレス成形後の
光学ガラス素子に真空蒸着法によってフッ化マグネシウ
ム(MgF2)を蒸着した。
The glass used in the examples is lead glass SF-8,
The glass material was ground into a biconvex shape with radii of curvature of 3.5 mm and 2.9 mm, an edge diameter of 6.3 mm, and a center wall thickness of 8 mm. This glass material was immersed in 10% hydrofluoric acid having a liquid temperature of 40 ° C. for 10 seconds, washed with distilled water for 3 minutes, and further dried for 15 minutes with a drier kept at 200 ° C. A glass article obtained by repeating such a dipping process is
The molded glass material was press-molded using a pair of mirror-finished metal molds having a radius of curvature of mm and the other of 28 mm.
Molding conditions are mold temperature 520 ℃, molding pressure 10kg
/ Cm 2 , and the molding time was 2 minutes. Magnesium fluoride (MgF 2 ) was deposited on the optical glass element after the press molding by a vacuum deposition method.

まず、真空槽10内を1×10-5Torrまで排気し、基板
支持ドーム12上の光学ガラス素子11の温度を約30
0℃に加熱した。そしてイオンビームガン13内に真空
槽内が4×10-5Torr程度になるようにアルゴン(A
r)ガスを導入し、イオンビームガンの電極に1kVの電
圧を加えイオンビーム15を発生させた。
First, the vacuum chamber 10 was evacuated to 1 × 10 −5 Torr, and the temperature of the optical glass element 11 on the substrate support dome 12 was adjusted to about 30.
Heated to 0 ° C. Then, in the ion beam gun 13, argon (A) was used so that the inside of the vacuum chamber was about 4 × 10 −5 Torr.
r) Gas was introduced, and a voltage of 1 kV was applied to the electrode of the ion beam gun to generate the ion beam 15.

光学ガラス素子にイオンビームを1分間照射しクリーニ
ング処理を行なった。その後アルゴン(Ar)ガスの導
入をやめ、真空槽内を2×10-5Torr以下に排気した後
フッ化マグネシウム(MgF2)を蒸着材料16とし、
抵抗加熱ボート14でもって抵抗加熱法で光学的膜厚λ
/4(λ=780nm)の厚さに形成した。
The optical glass element was irradiated with an ion beam for 1 minute to perform a cleaning process. After that, the introduction of argon (Ar) gas was stopped, the vacuum chamber was evacuated to 2 × 10 −5 Torr or less, and magnesium fluoride (MgF 2 ) was used as the vapor deposition material 16.
Optical film thickness λ by resistance heating method with resistance heating boat 14.
It was formed to have a thickness of / 4 (λ = 780 nm).

比較例 上記本発明の実施例の光学ガラス素子と、イオンビーム
によるクリーニング処理を行なわずにフッ化マグネシウ
ム(MgF2)を蒸着した従来の光学ガラス素子との反
射防止膜の密着性、耐久性を比較するためにセロテープ
剥離試験(温度80℃、相対湿度85%の高温・高湿雰
囲気中に300時間放置した後、セロテープを光学ガラ
ス素子表面に密着させ引きはがす)を行なったところ、
従来例のものは剥離が発生したが本発明によるものは全
く異状がなく、本発明によるものが優れているのは明ら
かであった。
Comparative Example The adhesion and durability of the antireflection film between the optical glass element of the above-mentioned example of the present invention and the conventional optical glass element on which magnesium fluoride (MgF 2 ) is vapor-deposited without performing the cleaning treatment by the ion beam are shown. For comparison, a scotch tape peeling test (after being left in a high temperature / high humidity atmosphere at a temperature of 80 ° C. and a relative humidity of 85% for 300 hours, the scotch tape was brought into close contact with the optical glass element surface and peeled off),
Peeling occurred in the conventional example, but there was no abnormality in the case of the present invention, and it was clear that the case of the present invention was excellent.

発明の効果 以上の説明から明らかなように、本発明の反射防止膜の
形成方法は、あらかじめエッチング処理を行なったガラ
ス物品をプレス成形してつくられた光学ガラス素子を真
空槽内で不活性ガスイオンビームを照射することによる
クリーニング処理を行なった後、反射防止膜を形成する
ものであり、密着性、耐久性に優れた反射防止膜を得る
ことができ、その実用上の価値は大なるものがある。
EFFECTS OF THE INVENTION As is apparent from the above description, the method for forming an antireflection film of the present invention is an optical glass element produced by press-molding a glass article that has been subjected to an etching treatment in advance by using an inert gas in a vacuum chamber. The anti-reflection film is formed after the cleaning process by irradiating with an ion beam, and it is possible to obtain the anti-reflection film with excellent adhesion and durability, and its practical value is great. There is.

【図面の簡単な説明】[Brief description of drawings]

図は本発明の一実施例の反射防止膜の形成に用いた真空
蒸着装置の概略図である。 10……真空槽、11……光学ガラス素子、12……基
板支持ドーム、13……イオンビームガン、14……抵
抗加熱ボート、15……イオンビーム、16……蒸着材
料、17……ガス排気口。
The figure is a schematic view of a vacuum vapor deposition apparatus used for forming an antireflection film according to an embodiment of the present invention. 10 ... Vacuum tank, 11 ... Optical glass element, 12 ... Substrate supporting dome, 13 ... Ion beam gun, 14 ... Resistance heating boat, 15 ... Ion beam, 16 ... Evaporation material, 17 ... Gas exhaust mouth.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C23C 14/06 G 9271−4K ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location C23C 14/06 G 9271-4K

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】あらかじめエッチング処理を施こしたガラ
ス物品をプレス成形してつくられた光学ガラス素子に誘
電体物質を積層して反射防止膜を形成する方法であっ
て、前記光学ガラス素子を真空槽内で不活性ガスイオン
ビームを照射することによるクリーニング処理を行なっ
た後、前記光学ガラス素子上に誘電体物質を積層させる
ことを特徴とする反射防止膜の形成方法。
1. A method for forming an antireflection film by laminating a dielectric substance on an optical glass element formed by press-molding a glass article that has been subjected to etching treatment in advance, wherein the optical glass element is vacuumed. A method for forming an antireflection film, comprising: performing a cleaning process by irradiating an inert gas ion beam in a bath, and then laminating a dielectric substance on the optical glass element.
【請求項2】エッチング処理は、ガラス素材を弗化水素
酸水溶液に浸漬する工程と、水洗する工程と、水分を除
去する工程とからなることを特徴とする特許請求の範囲
第(1)項記載の反射防止膜の形成方法。
2. The etching treatment comprises a step of immersing the glass material in a hydrofluoric acid aqueous solution, a step of rinsing with water, and a step of removing water, according to claim (1). The method for forming an antireflection film as described above.
【請求項3】クリーニング処理は、1×10-4Torr以上
の真空中で行なわれることを特徴とする特許請求の範囲
第(1)項記載の反射防止膜の形成方法。
3. The method for forming an antireflection film according to claim 1, wherein the cleaning treatment is performed in a vacuum of 1 × 10 −4 Torr or more.
JP62002376A 1987-01-08 1987-01-08 Method of forming antireflection film Expired - Fee Related JPH0643259B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62002376A JPH0643259B2 (en) 1987-01-08 1987-01-08 Method of forming antireflection film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62002376A JPH0643259B2 (en) 1987-01-08 1987-01-08 Method of forming antireflection film

Publications (2)

Publication Number Publication Date
JPS63170243A JPS63170243A (en) 1988-07-14
JPH0643259B2 true JPH0643259B2 (en) 1994-06-08

Family

ID=11527528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62002376A Expired - Fee Related JPH0643259B2 (en) 1987-01-08 1987-01-08 Method of forming antireflection film

Country Status (1)

Country Link
JP (1) JPH0643259B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103952670A (en) * 2014-02-13 2014-07-30 同济大学 Laser film quantification research method based on artificial defects

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0693042B2 (en) * 1988-08-24 1994-11-16 松下電器産業株式会社 Anti-reflection film
JP2009120450A (en) * 2007-11-16 2009-06-04 Olympus Corp Method for producing optical element
US20100180939A1 (en) * 2009-01-22 2010-07-22 Sharma Pramod K Heat treatable magnesium fluoride inclusive coatings, coated articles including heat treatable magnesium fluoride inclusive coatings, and methods of making the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103952670A (en) * 2014-02-13 2014-07-30 同济大学 Laser film quantification research method based on artificial defects

Also Published As

Publication number Publication date
JPS63170243A (en) 1988-07-14

Similar Documents

Publication Publication Date Title
US2428868A (en) Apparatus for producing hardened optical coatings by electron bombardment
CN109576647A (en) A kind of ultra-thin optical filter method for manufacturing thin film
JPH0643259B2 (en) Method of forming antireflection film
JPH0483724A (en) Glass blank for production of optical unit and production thereof
JP2022513541A (en) CVD manufacturing method and its products to reduce particle defects in imaging modules
JPH0643260B2 (en) Method of forming antireflection film
JPS6361201A (en) Formation of antireflection film
US2453801A (en) Method and apparatus for coating by thermal evaporation
JPH01102401A (en) Formation of antireflecting film
JPS58216222A (en) Manufacture of contact lens superior in transparency and hydrophilic property
JPH0653578B2 (en) Optical glass element molding method
JPS6146408B2 (en)
JPH0543649B2 (en)
JPH0421606B2 (en)
JPH0237301A (en) Antireflection film
JPH01166002A (en) Formation of antireflection film
JPS60256947A (en) Manufacture of stamper
JPH01102402A (en) Formation of reflection preventing film
JPH10139474A (en) Optical glass element and its production
CN110885969A (en) CVD preparation method for reducing dot defects of camera module and product thereof
JP2636010B2 (en) Glass material for molding and method for producing the same
JPS61167903A (en) Coating method of synthetic resin optical parts
JPH08259241A (en) Method for forming optical device
JPH04164824A (en) Production of lens having refractive index distribution
JP3141721B2 (en) Method for producing titanium oxide photocatalytic film

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees