JPH04164824A - Production of lens having refractive index distribution - Google Patents

Production of lens having refractive index distribution

Info

Publication number
JPH04164824A
JPH04164824A JP29127090A JP29127090A JPH04164824A JP H04164824 A JPH04164824 A JP H04164824A JP 29127090 A JP29127090 A JP 29127090A JP 29127090 A JP29127090 A JP 29127090A JP H04164824 A JPH04164824 A JP H04164824A
Authority
JP
Japan
Prior art keywords
porous
glass
refractive index
gel
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29127090A
Other languages
Japanese (ja)
Inventor
Masayoshi Kato
正良 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP29127090A priority Critical patent/JPH04164824A/en
Publication of JPH04164824A publication Critical patent/JPH04164824A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/12Other methods of shaping glass by liquid-phase reaction processes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/50Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with alkali metals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

PURPOSE:To obtain the subject refractive index-distributed lens having prescribed optical properties in improved productivity by non-uniformly diffusing a metallic ion having high electronic polarizability into a substrate made of porous glass or porous gel in a state controlled by the application of electric field and heat-treating the product at a high temperature. CONSTITUTION:A part of at least one surface of a substrate made of a porous glass or a porous gel is made to contact with a solution of a metallic ion having high electronic polarizability for a prescribed period to effect the non-uniform diffusion of the metallic ion into the porous glass or the porous gel. The glass or gel containing diffused ion is heat-treated at a high temperature to obtain the objective lens having refractive index distribution. In the above process, the non-uniform diffusion process for forming the refractive index distribution is controlled by the application of an electric field.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、屈折率分布型レンズの製造方法に関する。[Detailed description of the invention] Industrial applications The present invention relates to a method for manufacturing a gradient index lens.

従来の技術 近年、屈折率分布型レンズは光通信システムや光情報処
理等の微小光学素子の分野で有望視されている。
BACKGROUND OF THE INVENTION In recent years, gradient index lenses have been viewed as promising in the field of micro optical elements for optical communication systems, optical information processing, and the like.

ここに、ガラス素材を用いた屈折率分布型レンズの製造
jj法としては、第5図に示すようなものがある。これ
は1.、l apanese J ournal or
Applied  Physics、  〜’ol、2
5.No12.pp1959−1960(1986年)
中に記載の電界移入法を示すもので、フォ)・リソグラ
フィ手法により表面にマスク〕を形成した光学ガラス基
板2を左右からコの字形の枠3で挾み、各々に正又は負
の溶融塩4と電極5゜6とを配置させ、画電極5,6間
に電界を印加し、高温(ガラス転移点付近)にてイオン
交換を行い。
Here, as a jj method for manufacturing a gradient index lens using a glass material, there is a method as shown in FIG. This is 1. , l apanese Journal or
Applied Physics, ~'ol, 2
5. No.12. pp1959-1960 (1986)
In this method, an optical glass substrate 2 with a mask formed on its surface by lithography is sandwiched between U-shaped frames 3 from the left and right, and a positive or negative molten salt is applied to each. 4 and electrode 5.6 are arranged, an electric field is applied between the picture electrodes 5 and 6, and ion exchange is performed at high temperature (near the glass transition point).

レンズを得るというものである。It's about getting a lens.

また、特開昭62−41725号公報に示されるように
多孔質ガラスを用いた屈折率分布型レンズの作製法もあ
る。これは、金属アルコキシドの加水分解により得られ
る多孔質ゲル(又は、これをさらに熱処理した多孔質ガ
ラス)を基板とし、この表面の一部に金属イオンをマス
ク等を介して基板内に不均一拡散させ、さらに高温加熱
処理してし・ンズを得るというものである。
There is also a method for manufacturing a gradient index lens using porous glass, as disclosed in Japanese Patent Application Laid-Open No. 62-41725. This uses a porous gel obtained by hydrolysis of metal alkoxide (or porous glass obtained by further heat treatment) as a substrate, and metal ions are non-uniformly diffused into the substrate through a mask etc. on a part of the surface. This process is followed by further high-temperature heat treatment to obtain lint.

発明か解決しようとする3題 ところが、電界移入法で・は、ドーパシトどなる金属イ
オンやカラス基板中の修飾酸化物イオンの移動性を確保
するためにカラス転移点付近の高温(500〜600’
C程度)でイオン交換を行うため、イオン交換後の溶融
塩4の除去や基板2の取出し等の操作を高温下で行う必
要性がある等の間、  題がある。また、条件によって
はドーパントであ、  る金属イオンの電界によるドリ
フトの影響によりガラス構造の変化を引き起こし、失透
なとの原因となる。また、高温のためマスクlの耐熱性
に問題があり、場合によっては剥離やひび割れなどによ
りL/レンズ質の劣化の原因ともなる。
However, in the electric field transfer method, in order to ensure the mobility of metal ions such as dopasite and modified oxide ions in the glass substrate, high temperatures near the glass transition point (500 to 600
Since ion exchange is performed at a temperature of about C), there are problems such as the need to perform operations such as removing the molten salt 4 and taking out the substrate 2 after ion exchange at high temperatures. Also, depending on the conditions, the influence of the drift of metal ions, which are dopants, caused by the electric field may cause changes in the glass structure, causing devitrification. Furthermore, due to the high temperature, there is a problem in the heat resistance of the mask L, and in some cases, peeling or cracking may cause deterioration of the L/lens quality.

この点、特開昭62−41725号公報方式によれば、
多孔質ゲル又は多孔質ガラスを用いることにより拡散媒
体として水溶液を用いることが可能となり、低温(io
o℃以下)で屈折率分布を形成できるため、操作性及び
生産性のよいものとなる。しかし、多孔質の孔径や処理
温度により分布を制御するため、屈折率分布の制御の自
由度が少なく、屈折率分布の制御に限界がある。
In this regard, according to the method of Japanese Patent Application Laid-Open No. 62-41725,
By using porous gel or porous glass, it is possible to use an aqueous solution as a diffusion medium, and low temperature (i.o.
Since the refractive index distribution can be formed at temperatures below 0°C, operability and productivity are improved. However, since the distribution is controlled by the pore diameter of the porous material and the processing temperature, there is little freedom in controlling the refractive index distribution, and there are limits to the control of the refractive index distribution.

課題を解決するための手段 請求項1記載の発明では、多孔質ガラス又は多孔質ゲル
による基板に、少なくとも一方の表面の一部に電子分極
率の大きな金属イオン溶液を所定時間接触させて前記金
属イオンを多孔質ガラス又は多孔質ゲル内に不均一拡散
させた後、多孔質ガラス又は多孔質ゲルを高温熱処理す
るようにした屈折率分布型レンズの製造方法において、
屈折率分布を形成する不均一拡散を電界印加により制御
するようにした。
Means for Solving the Problems In the invention as set forth in claim 1, a metal ion solution having a large electronic polarizability is brought into contact with a part of at least one surface of a substrate made of porous glass or porous gel for a predetermined period of time. In a method for manufacturing a gradient index lens, the method includes unevenly diffusing ions into porous glass or porous gel, and then subjecting the porous glass or porous gel to high-temperature heat treatment,
The nonuniform diffusion that forms the refractive index distribution is controlled by applying an electric field.

この場合、請求項2記載の発明では、多孔質ガラスを、
分相性ガラスの分相処理及び酸処理により得られるもの
、又は、金属アルコキシドの加水分解により得られる多
孔質ゲルの熱処理により得られるものとした。また、請
求項3記載の発明では、多孔質ゲルを、金属アルコキシ
ドの加水分解により得られるものとした。さらには、請
求項4記載の発明では、電子分極率の大きな金属イオン
を、タリウムイオン又はセシウムイオンとした°。
In this case, in the invention according to claim 2, the porous glass is
It was obtained by phase separation treatment and acid treatment of phase-splitting glass, or by heat treatment of porous gel obtained by hydrolysis of metal alkoxide. Furthermore, in the third aspect of the invention, the porous gel is obtained by hydrolysis of a metal alkoxide. Furthermore, in the invention according to claim 4, the metal ion having a large electronic polarizability is a thallium ion or a cesium ion.

作用 請求項1記載の発明によれば、多孔質ガラス又は多孔質
ゲルを基板に用いることによりドーパントである金属イ
オンを水溶液により供給できるため、低温での処理が可
能となり、操作性及び生産性のよいものとなる。また、
電界を印加することによtノ屈折率分布の制御の自由度
を持つものとなる。
According to the invention described in claim 1, by using porous glass or porous gel for the substrate, metal ions as dopants can be supplied in an aqueous solution, making it possible to process at low temperatures and improving operability and productivity. It will be good. Also,
By applying an electric field, there is a degree of freedom in controlling the refractive index distribution of t.

特に、請求項2や請求項3記載の発明によれば、基板作
製容易にして、拡散を迅速に行わせることができ、大口
径のレンズの作製も可能となる。
In particular, according to the second and third aspects of the invention, the substrate can be easily manufactured, diffusion can be performed quickly, and a lens with a large diameter can also be manufactured.

また、請求項4記載の発明によれば、屈折率差を大きく
することができ、開口数の大きなレンズの作製も可能と
なる。
Furthermore, according to the fourth aspect of the invention, the refractive index difference can be increased, and a lens with a large numerical aperture can also be manufactured.

実施例 本発明の一実施例を第1図ないし第4図を参照して説明
する。
Embodiment An embodiment of the present invention will be described with reference to FIGS. 1 to 4.

本実施例は、基本的には、第1図に示すように、多孔質
ガラス(又は多孔質ゲル)による基板に、少なくとも一
方の表面の一部に電子分極率の大きな金属イオン溶液(
通常は、水溶液)をマスク等を通じて、所定時間電界印
加のもとに接触させて金属イオンを多孔質ガラス(又は
多孔質ゲル)内に不均一拡散させた後、多孔質ガラス(
又は多孔質ゲル)を高温熱処理(無孔化焼成)して屈折
率分布型レンズを得るものである。
As shown in FIG. 1, this example basically consists of a substrate made of porous glass (or porous gel) and a metal ion solution (with high electronic polarizability) applied to a part of at least one surface of the substrate.
Usually, the metal ions are brought into contact with an aqueous solution through a mask or the like under the application of an electric field for a predetermined period of time to diffuse the metal ions unevenly into the porous glass (or porous gel).
or porous gel) is subjected to high-temperature heat treatment (fired to make it non-porous) to obtain a gradient index lens.

より具体的には、まず、第2図(a)に示すように分相
性ガラス(例えば、ホウケイ酸)の分相処理及び酸処理
若しくは金属アルコキシド(例えば、珪酸エチル)の加
水分解により得た多孔質ゲルの熱処理により得られた多
孔質ガラス11の表面に金属薄膜12を形成し、フォト
リソグラフィ法及びエツチング技術を用いて円形開口1
3を形成する。ドーパントとなる金属イオンはこの円形
開口13を通して基板内に拡散される。
More specifically, as shown in FIG. 2(a), first, a porous material obtained by phase separation treatment and acid treatment of a phase-splitting glass (for example, borosilicate) or hydrolysis of a metal alkoxide (for example, ethyl silicate) is used. A thin metal film 12 is formed on the surface of the porous glass 11 obtained by heat treatment of the gel, and circular openings 1 are formed using photolithography and etching techniques.
form 3. Metal ions serving as a dopant are diffused into the substrate through this circular opening 13.

一方、このようなマスク12の形成された多孔質ガラス
11に第3図に示すように接着剤等を用いて船種の枠1
4を取付け、カソードとなる電極板15及びカソード側
水溶液16(例えば、NaN0.水溶液)を枠14内に
設置し、これらを金属イオンをドーパントとして含む水
溶液17(例えば、CsN0.水溶液)とアノードとな
る電極板18を入れた容器19に設置する。そこで、両
型極板15.18間に所定の電界を印加し、所定温度に
所定時装置いて基板(多孔質ガラス11)内部にCsN
○、の濃度分布を形成する。そして、マスク12をエツ
チングにより除去し、真空乾燥後、所定時間熱処理を行
い、CsN○、をCs、0に分解し、さらに、高温にて
無孔化処理することにより第2図(b)に示すような屈
折率分布型レンズ20が得られる。
On the other hand, as shown in FIG.
4, an electrode plate 15 serving as a cathode and a cathode-side aqueous solution 16 (e.g., NaN0. aqueous solution) are installed in the frame 14, and these are combined with an aqueous solution 17 containing metal ions as a dopant (e.g., CsN0. aqueous solution) and an anode. It is placed in a container 19 containing an electrode plate 18. Therefore, a predetermined electric field is applied between the two types of electrode plates 15 and 18, and the CsN is heated inside the substrate (porous glass 11) at a predetermined temperature and at a predetermined time.
Form a concentration distribution of ○. Then, the mask 12 is removed by etching, and after vacuum drying, heat treatment is performed for a predetermined time to decompose CsN◯ into Cs, 0, and then a non-porous treatment is performed at a high temperature to form the structure shown in Fig. 2(b). A gradient index lens 20 as shown is obtained.

第4図は作製された屈折率分布型レンズ20を示すもの
で、マスク開口に対応した部分に基板表面からほぼ半球
状に屈折率分布21が形成されており、入射光22を集
光させるレンズが複数個同一基板上に二次元アレイ状に
集積されたものとなる。ここに、屈折率分布を決める電
界印加不均一拡散の工程で印加電圧を制御することによ
り、得られるレンズの屈折率分布を制御でき、所望の光
学特性を有するレンズアレイを作製できるものとなる。
FIG. 4 shows the manufactured refractive index distribution type lens 20, in which a refractive index distribution 21 is formed in a substantially hemispherical shape from the substrate surface in a portion corresponding to the mask opening, and the lens condenses incident light 22. A plurality of them are integrated in a two-dimensional array on the same substrate. By controlling the applied voltage in the electric field application non-uniform diffusion process that determines the refractive index distribution, the refractive index distribution of the resulting lens can be controlled, and a lens array having desired optical properties can be manufactured.

なお、本発明は上述した説明方式に限らず、種々の変形
が可能であり、例えば基板裏面(マスク形成面でないは
う)にカソード用電極を蒸着などにより直接薄膜形成す
れば、船種の枠14を作製する必要もなく、−層作製工
程を簡略化し得る。
Note that the present invention is not limited to the method described above, and can be modified in various ways. For example, if the cathode electrode is directly formed as a thin film by vapor deposition on the back surface of the substrate (not the surface on which the mask is formed), it can be applied to various types of ships. There is no need to fabricate the layer 14, and the layer fabrication process can be simplified.

また、金属イオンはセシウムイオンに代えて、タリウム
イオンとしてもよい。
Further, the metal ion may be thallium ion instead of cesium ion.

発明の効果 本発明は、」二連したように構成したので、請求項1記
載の発明によれば、多孔質カラス又は多孔質ゲルを基板
に用いるのでドーパントである金属イオンを水溶液によ
り供給でき、低温での処理が可能となり、操作性及び生
産性のよいものとなり、また、電界を印加することによ
り屈折率分布の制御に自由度を持たせることができ、所
望光学特性のものを得ることができ、特に、請求項2や
請求項3記載の発明のような多孔質ガラス又は多孔質ゲ
ルを基板に用いることにより、基板作製容易にして、拡
散を迅速に行わせることができ、大口径のレンズの作製
も可能となり、さらには、請求項4記載の発明のような
電子分極率の大きな金属イオンを用いることにより、屈
折率差を大きくすることができ、開口数の大きなレンズ
の作製も可能となるものである。
Effects of the Invention The present invention is configured in such a way that it is double connected.According to the invention described in claim 1, since porous glass or porous gel is used for the substrate, metal ions as dopants can be supplied by an aqueous solution. Processing can be performed at low temperatures, resulting in good operability and productivity, and by applying an electric field, it is possible to control the refractive index distribution with a degree of freedom, making it possible to obtain desired optical properties. In particular, by using porous glass or porous gel as the substrate according to the inventions described in claims 2 and 3, the substrate can be easily manufactured and diffusion can be performed quickly. It is also possible to manufacture lenses, and furthermore, by using metal ions with high electronic polarizability as in the invention described in claim 4, it is possible to increase the difference in refractive index, and it is also possible to manufacture lenses with large numerical apertures. This is the result.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す工程図、第2図は]1
程斜視図、第3図は作製装置例を示す概略断面図、第4
図は作製された屈折率分布型レンスの斜視図、第5図は
従来例を示す概略断面図である。 11・・多孔質ガラス、20・・・屈折率分布型レンズ 3Zプ   Jl′□
Figure 1 is a process diagram showing one embodiment of the present invention, Figure 2 is ]1
FIG. 3 is a schematic cross-sectional view showing an example of a manufacturing apparatus, and FIG.
The figure is a perspective view of the manufactured gradient index lens, and FIG. 5 is a schematic cross-sectional view showing a conventional example. 11... Porous glass, 20... Gradient index lens 3Z lens Jl'□

Claims (1)

【特許請求の範囲】 1、多孔質ガラス又は多孔質ゲルによる基板に、少なく
とも一方の表面の一部に電子分極率の大きな金属イオン
溶液を所定時間接触させて前記金属イオンを多孔質ガラ
ス又は多孔質ゲル内に不均一拡散させた後、多孔質ガラ
ス又は多孔質ゲルを高温熱処理するようにした屈折率分
布型レンズの製造方法において、屈折率分布を形成する
不均一拡散を電界印加により制御するようにしたことを
特徴とする屈折率分布型レンズの製造方法。 2、多孔質ガラスを、分相性ガラスの分相処理及び酸処
理により得られるもの、又は、金属アルコキシドの加水
分解により得られる多孔質ゲルの熱処理により得られる
ものとしたことを特徴とする請求項1記載の屈折率分布
型レンズの製造方法。 3、多孔質ゲルを、金属アルコキシドの加水分解により
得られるものとしたことを特徴とする請求項1記載の屈
折率分布型レンズの製造方法。 4、電子分極率の大きな金属イオンを、タリウムイオン
又はセシウムイオンとしたことを特徴とする請求項1記
載の屈折率分布型レンズの製造方法。
[Scope of Claims] 1. A metal ion solution having a large electronic polarizability is brought into contact with a part of at least one surface of a substrate made of porous glass or porous gel for a predetermined period of time, and the metal ions are transferred to the substrate made of porous glass or porous gel. In a method for manufacturing a gradient index lens, in which porous glass or porous gel is heat-treated at a high temperature after non-uniform diffusion in a solid gel, non-uniform diffusion that forms a refractive index distribution is controlled by applying an electric field. A method of manufacturing a gradient index lens, characterized in that: 2. A claim characterized in that the porous glass is obtained by phase separation treatment and acid treatment of a phase-splitting glass, or by heat treatment of a porous gel obtained by hydrolysis of a metal alkoxide. 1. The method for manufacturing a gradient index lens according to 1. 3. The method for manufacturing a gradient index lens according to claim 1, wherein the porous gel is obtained by hydrolysis of a metal alkoxide. 4. The method for manufacturing a gradient index lens according to claim 1, wherein the metal ion having a large electronic polarizability is a thallium ion or a cesium ion.
JP29127090A 1990-10-29 1990-10-29 Production of lens having refractive index distribution Pending JPH04164824A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29127090A JPH04164824A (en) 1990-10-29 1990-10-29 Production of lens having refractive index distribution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29127090A JPH04164824A (en) 1990-10-29 1990-10-29 Production of lens having refractive index distribution

Publications (1)

Publication Number Publication Date
JPH04164824A true JPH04164824A (en) 1992-06-10

Family

ID=17766703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29127090A Pending JPH04164824A (en) 1990-10-29 1990-10-29 Production of lens having refractive index distribution

Country Status (1)

Country Link
JP (1) JPH04164824A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015034108A (en) * 2013-08-08 2015-02-19 国立大学法人東京工業大学 Double-sided chemically strengthened glass and method for manufacturing the same
US20220024817A1 (en) * 2018-12-21 2022-01-27 Corning Incorporated Strengthened 3d printed surface features and methods of making the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015034108A (en) * 2013-08-08 2015-02-19 国立大学法人東京工業大学 Double-sided chemically strengthened glass and method for manufacturing the same
US20220024817A1 (en) * 2018-12-21 2022-01-27 Corning Incorporated Strengthened 3d printed surface features and methods of making the same
US11970421B2 (en) * 2018-12-21 2024-04-30 Corning Incorporated Strengthened 3D printed surface features and methods of making the same

Similar Documents

Publication Publication Date Title
JPH04234005A (en) Manufacture of lightguide tube by ion exchange method
GB2078388A (en) Passive electro-optic display cell and method of manufacture thereof
JPH04164824A (en) Production of lens having refractive index distribution
JPH03150239A (en) Production of embedded low-loss waveguide channel
US3900249A (en) Soft-focus optical element
JPH0210784B2 (en)
JPS62153148A (en) Glass panel to be irradiated with electron ray and rpoduction thereof
JPH0341406A (en) Production of optical waveguide
JPH0643259B2 (en) Method of forming antireflection film
JP2002148411A (en) Method for manufacturing planar lens
JPH0210783B2 (en)
JPH0353263B2 (en)
JPH0623804B2 (en) Method of manufacturing embedded optical waveguide
JPH0573705B2 (en)
JPS6037724A (en) Manufacture of thin film semiconductor device
JPH0462644B2 (en)
JPS62212605A (en) Production of optical waveguide
JPH04209721A (en) Production of lens of refractive index distribution type
JPH06281830A (en) Manufacture of optical waveguide substrate
JPH0582337B2 (en)
SU762364A1 (en) Method for making optical waveguides
JPS61261239A (en) Production of refractive index distribution type planar lens
JPS6177807A (en) Production of optical element by ion exchange
JPH044261B2 (en)
JPS62133402A (en) Preparation of hologram lens