JPH0237301A - Antireflection film - Google Patents

Antireflection film

Info

Publication number
JPH0237301A
JPH0237301A JP63187202A JP18720288A JPH0237301A JP H0237301 A JPH0237301 A JP H0237301A JP 63187202 A JP63187202 A JP 63187202A JP 18720288 A JP18720288 A JP 18720288A JP H0237301 A JPH0237301 A JP H0237301A
Authority
JP
Japan
Prior art keywords
antireflection film
optical glass
glass
glass element
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63187202A
Other languages
Japanese (ja)
Inventor
Toshiaki Ogura
敏明 小倉
Naoko Shimamura
島村 奈保子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63187202A priority Critical patent/JPH0237301A/en
Publication of JPH0237301A publication Critical patent/JPH0237301A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surface Treatment Of Optical Elements (AREA)

Abstract

PURPOSE:To improve an adhesive property and durability by laminating dielectrics on an antireflection film to constitute the antireflection film and forming a 1st layer of this antireflection film from the surface side of the antireflection film of a layer consisting of silicon dioxide. CONSTITUTION:The administration of the shape, weight and surface quality of a glass articles is important and significantly affects the characteristics and mass productivity of the molded antireflection film 1. Said glass element is subjected to an etching treatment in order to improve the surface roughness of the glass article. This antireflection film is constituted by laminating the dielectric materials on the antireflection film formed by press forming of the glass particle which is preliminary subjected to etching treatment. The 1st layer from the surface side of the antireflection film is constituted of the silicon dioxide. The antireflection film having the excellent adhesive property and durability is obtd. in this way.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、ガラス物品をプレス成形してつくられた光学
プレスガラス素子の表面に誘電体物質を積層して構成す
る反射防止膜に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an antireflection film constructed by laminating a dielectric material on the surface of an optical press glass element made by press-molding a glass article.

従来の技術 近年、光学ガラスレンズ等の光学ガラス素子は、光学機
器のレンズ構成の簡略化、軽量化および光学特性の高性
能化を同時に達成するために非球面化の方向にある。こ
の非球面ガラス素子の製造にあたっては、従来の製造方
法である研磨法では加工および量産化が困難であり、コ
ダック社から提案されているダイレクトプレス成形法(
特公昭5438126号公報)が有望視されている。
BACKGROUND OF THE INVENTION In recent years, optical glass elements such as optical glass lenses are becoming more aspherical in order to simultaneously achieve simplification and weight reduction of the lens structure of optical equipment, as well as improved optical properties. When manufacturing this aspherical glass element, it is difficult to process and mass-produce it using the conventional manufacturing method, the polishing method.
Japanese Patent Publication No. 5438126) is considered to be promising.

また、いずれの製造法でつくられた光学ガラス素子であ
っても、光学特性の向上のため、光学ガラス素子表面に
誘電体物質を真空蒸着法等で積層し、反射防止膜を構成
することは一般技術として知られている。(例えば、久
保田氏他「光学技術ハンドブック」) 以下図面を参照しながら従来の光学ガラス素子の反射防
止膜について説明する。第3図は光学ガラス素子の表面
にフッ化マグネシウムからなる反射防止膜を形成した構
造を示す図であり、第4図の(C)は反射防止膜を光学
的膜厚λo/4(λo= 780nm)の厚さに形成し
た時の分光反射特性を示す図である。第3図においてl
は光学ガラス素子、5はフッ化マグネシウムよりなる反
射防止膜である。前記反射防止膜5は一般には真空蒸着
法によって形成される。
In addition, no matter which manufacturing method the optical glass element is made in, in order to improve the optical properties, it is not possible to form an anti-reflection film by laminating a dielectric material on the surface of the optical glass element using a vacuum evaporation method or the like. This is known as a general technique. (For example, "Optical Technology Handbook" by Mr. Kubota et al.) Hereinafter, a conventional antireflection film for an optical glass element will be explained with reference to the drawings. FIG. 3 is a diagram showing a structure in which an antireflection film made of magnesium fluoride is formed on the surface of an optical glass element, and (C) of FIG. 780 nm) is a diagram showing spectral reflection characteristics when formed to a thickness of 780 nm. In Figure 3, l
5 is an optical glass element, and 5 is an antireflection film made of magnesium fluoride. The antireflection film 5 is generally formed by a vacuum deposition method.

発明が解決しようとする課題 上記の光学ガラス素子の製造において、光学ガラス素子
の像形成性能は従来の研磨法による光学ガラス素子のそ
れにくらべてより優れている必要があり、非常に高い面
精度および面粗度が要求される。たとえば、高精度カメ
ラレンズの場合、面精度はニュートンリング5本、アメ
1本以内、面粗さは0.02μm以下であることが要求
される。また光学機器の小型化に伴なって光学部品を小
型化・軽量化することが望まれており、従来の研磨法で
はコンパクトな光学部品を多量かつ安価に製造すること
はできない。
Problems to be Solved by the Invention In manufacturing the above-mentioned optical glass elements, the image forming performance of the optical glass elements must be superior to that of optical glass elements produced by conventional polishing methods, and extremely high surface precision and Surface roughness is required. For example, in the case of a high-precision camera lens, the surface accuracy is required to be within five Newton rings or one candy, and the surface roughness is required to be 0.02 μm or less. Further, as optical equipment becomes smaller, it is desired to make optical components smaller and lighter, and conventional polishing methods cannot produce compact optical components in large quantities and at low cost.

高精度な光学ガラス素子を製造する方法として、ダイレ
クトプレス法が注目されている。ダイレクトプレス法の
中でとりわけ高精度な光学ガラス素子を製造するのにリ
ヒートプレス法が適している。
The direct press method is attracting attention as a method for manufacturing high-precision optical glass elements. Among the direct press methods, the reheat press method is particularly suitable for manufacturing highly precise optical glass elements.

リヒートプレス法とは所望の光学ガラス素子に近い面形
状を有したガラス物品を作り、前記ガラス物品を金型で
加熱、加圧した後、冷却して、成形した光学ガラス素子
を取り出す方法である。このリヒートプレス法では、ガ
ラス物品の形状、重量、面品質が重要であり、これらが
成形した光学ガラス素子の特性に大きな影響を及ぼす。
The reheat press method is a method in which a glass article having a surface shape similar to a desired optical glass element is made, the glass article is heated and pressurized in a mold, and then cooled and the molded optical glass element is taken out. . In this reheat press method, the shape, weight, and surface quality of the glass article are important, and these have a large effect on the characteristics of the molded optical glass element.

ガラス物品の製造方法として、ガラス素材をカーブジェ
ネレータにより研削加工し、さらに研磨加工して表面を
円滑にする方法が一般的である。研磨加工は良好な面精
度に仕上げることができるが、曲率半径の小さなガラス
物品を量産性よく加工することが困難でありコスト高に
なる。また、ガラス素材をカーブジェネレータによって
研削加工したままのガラス物品をプレス成形した場合、
ガラス物品表面の微細な凹凸が消滅せずに残るために、
光学ガラス素子の透過率が悪くなり光学性能が低下する
A common method for manufacturing glass articles is to grind a glass material using a curve generator and then polish it to make the surface smooth. Although polishing can provide a finish with good surface precision, it is difficult to process glass articles with a small radius of curvature with good mass production, resulting in high costs. In addition, if a glass article is press-molded after the glass material has been ground using a curve generator,
Because fine irregularities on the surface of glass articles remain without disappearing,
The transmittance of the optical glass element deteriorates and the optical performance deteriorates.

そのために、ガラス物品表面の微細な凹凸を除去するた
め、エツチング処理として前記ガラス物品をフッ化水素
水溶液に浸漬する工程と、水洗する工程と、水分を除去
する工程とからなる過程をくり返すことを行っている。
For this purpose, in order to remove minute irregularities on the surface of the glass article, a process consisting of immersing the glass article in an aqueous hydrogen fluoride solution, washing with water, and removing moisture is repeated as an etching treatment. It is carried out.

しかしながら、前記工程による処理を施したガラス物品
をダイレクトプレスして製造した光学ガラス素子上に前
記従来例の反射防止膜を形成すると、この反射防止膜は
光学ガラス素子との密着性が悪く、耐久性も低いという
課題を有していた。
However, when the conventional anti-reflection film is formed on an optical glass element manufactured by directly pressing a glass article treated by the above process, this anti-reflection film has poor adhesion to the optical glass element and has poor durability. They also had the problem of low gender.

本発明は上記課題に鑑み、前記エツチング処理を施こし
たガラス物品をプレス成形してつくられた光学ガラス素
子に対して、密着性および耐久性に優れた反射防止膜を
提供するものである。
In view of the above-mentioned problems, the present invention provides an antireflection film with excellent adhesion and durability for an optical glass element made by press-molding a glass article subjected to the etching treatment.

課題を解決するための手段 本発明は前記課題を解決するために、光学ガラス素子上
に誘電体物質を積層して構成する反射防止膜であって、
前記反射防止膜は光学ガラス素子の表面側から第1層目
が二酸化ケイ素からなる層であることを特徴とする反射
防止膜を提供するものである。
Means for Solving the Problems In order to solve the above problems, the present invention provides an anti-reflection film formed by laminating a dielectric material on an optical glass element, comprising:
The anti-reflection film is characterized in that the first layer from the surface side of the optical glass element is a layer made of silicon dioxide.

作用 前述したように、高精度な光学ガラス素子を多量かつ安
価に製造する方法として、ダイレクトプレス法が注目さ
れている。さらに高精度な光学ガラス素子を製造するた
めにはリヒートプレス法が適していると言われている。
Function: As mentioned above, the direct press method is attracting attention as a method for producing high-precision optical glass elements in large quantities and at low cost. Furthermore, the reheat press method is said to be suitable for manufacturing highly precise optical glass elements.

リヒートプレス法で重要なことは、ガラス物品の形状、
重量および面品質の管理であり、これらが成形した光学
ガラス素子の特性および量産性に大きな影響を及ぼす。
What is important in the reheat press method is the shape of the glass article,
Weight and surface quality are controlled, and these have a great impact on the properties and mass productivity of molded optical glass elements.

ガラス物品の面粗度をよくするためにエツチング処理が
行なわれる。
Etching treatment is performed to improve the surface roughness of glass articles.

本発明は、あらかじめエンチング処理を施こしたガラス
物品をプレス成形してつくられた光学ガラス素子に誘電
体物質を積層して構成する反射防止膜であって、前記反
射防止膜の光学ガラス素子表面側から第1層目が二酸化
ケイ素からなる層である反射防止膜を提供するものであ
り、その結果、密着性および耐久性にすぐれた反射防止
膜を得ることができる。
The present invention provides an anti-reflection film formed by laminating a dielectric material on an optical glass element made by press-molding a glass article that has been previously subjected to an etching treatment, the anti-reflection film comprising a surface of the optical glass element of the anti-reflection film. The first layer from the side is a layer made of silicon dioxide to provide an antireflection film, and as a result, an antireflection film with excellent adhesion and durability can be obtained.

実施例 以下本発明の反射防止膜の一実施例について図面を参照
しながら説明する。
EXAMPLE Hereinafter, an example of the antireflection film of the present invention will be described with reference to the drawings.

使用したガラスは、鉛ガラスSF8であり、ガラス素材
を曲率半径3.5mmおよび2.9mm、コバ径が6.
3mm、4心肉厚が8fflI11の両凸形状に研削処
理した。こうして得られたガラス物品を液温40°Cの
10%フン化水素酸に10秒間浸漬した後、蒸留水で3
分間洗浄し、さらに200″Cに保った乾燥機で15分
間乾燥した。このような浸漬工程を(り返して得たガラ
ス物品を、一方が15mm、他方が28mmの曲率半径
を有した一対の鏡面加工した金型を用いて前記ガラス物
品をプレス成形した。成形条件としては、金型温度52
0’C1成形圧力10 kg / c+a 、 成形時
間2分間であった。前記プレス成形後の光学ガラス素子
に真空蒸着法によって二酸化ケイ素を光学的膜圧λo/
4(λo= 780n m)の厚さに形成した。第1図
は本発明の第1の実施例における反射防止膜の構成を示
す図であり、第4図の(a)はその分光反射特性を示す
ものである。第1図において2は二酸化ケイ素からなる
第1層である。
The glass used was lead glass SF8, and the glass material had a radius of curvature of 3.5 mm and 2.9 mm, and an edge diameter of 6.5 mm.
It was ground into a biconvex shape with a thickness of 3 mm and a wall thickness of 4 cores of 8fflI11. The glass article thus obtained was immersed in 10% hydrofluoric acid at a liquid temperature of 40°C for 10 seconds, and then soaked in distilled water for 3 hours.
The glass articles were washed for 15 minutes and then dried for 15 minutes in a dryer kept at 200''C. The glass article was press-molded using a mirror-finished mold.The molding conditions included a mold temperature of 52
The 0'C1 molding pressure was 10 kg/c+a, and the molding time was 2 minutes. Silicon dioxide is applied to the press-molded optical glass element by vacuum evaporation at an optical film thickness of λo/
4 (λo=780 nm). FIG. 1 is a diagram showing the structure of an antireflection film in a first embodiment of the present invention, and FIG. 4(a) shows its spectral reflection characteristics. In FIG. 1, 2 is a first layer made of silicon dioxide.

上記本発明の実施例の反射防止膜と従来の反射防止膜と
の密着性、耐久性を比較するために行なった試験は、(
1)粘着テープ剥離試験(温度40″C1相対湿度85
%の高温・高温雰囲気中に300時間放置した後、粘着
テープを光学ガラス素子表面に密着し、引きはがす)(
2)耐湿試験(温度60°C1相対湿度85%の高温・
高温雰囲気中に1ooo時間放置)であり、比較のため
の従来の反射防止膜は、前記従来例の1つである光学ガ
ラス素子にフッ化マグネシウムの反射防止膜を真空蒸着
法によって光学的膜厚λo/4(λo=780nm)の
厚さに形成したものであり、第3図に示す構造のもので
ある。密着性、耐久性試験の結果は第1表に示すとおり
である。
A test was conducted to compare the adhesion and durability of the anti-reflective film of the example of the present invention and a conventional anti-reflective film.
1) Adhesive tape peeling test (temperature 40'' C1 relative humidity 85
% in a high temperature atmosphere for 300 hours, adhere the adhesive tape to the surface of the optical glass element and peel it off) (
2) Humidity test (temperature: 60°C, relative humidity: 85%)
The conventional anti-reflection film for comparison is one of the conventional examples, which is an anti-reflection film of magnesium fluoride applied to an optical glass element by vacuum evaporation. It is formed to a thickness of λo/4 (λo=780 nm) and has the structure shown in FIG. The results of the adhesion and durability tests are shown in Table 1.

表1 第1表かられかるように本発明の反射防止膜は、光学ガ
ラス素子表面側から第1層目が二酸化ケイ素からなる反
射防止膜であって、従来の反射防止膜より密着性、耐久
性の点ですぐれている。
Table 1 As can be seen from Table 1, the antireflection film of the present invention is an antireflection film in which the first layer from the surface side of the optical glass element is made of silicon dioxide, and has better adhesion and durability than conventional antireflection films. Excellent in terms of sex.

以下本発明の第2の実施例について図面を参照しながら
説明する。本実施例で使用した光学ガラス素子は前述の
鉛ガラスSF8からなるものであり、前述の同工程によ
って成形された光学ガラス素子である。
A second embodiment of the present invention will be described below with reference to the drawings. The optical glass element used in this example is made of the lead glass SF8 described above, and is an optical glass element molded by the same process described above.

第2図は本発明の第2の実施例における反射防止膜の構
成を示す図であり、第4図の(b)はその分光反射特性
を示すものである。第2図において2は二酸化ケイ素か
らなる第1層、3は酸化アルミニウムからなる第2層、
4は二酸化チタンからなる第3層、5はフン化マグネシ
ウムからなる第4層であり、各層の光学的膜厚はそれぞ
れ、λo/4゜λo/4.λo/2.λo/4(λo=
780nm)である。
FIG. 2 is a diagram showing the structure of an antireflection film in a second embodiment of the present invention, and FIG. 4(b) shows its spectral reflection characteristics. In FIG. 2, 2 is a first layer made of silicon dioxide, 3 is a second layer made of aluminum oxide,
4 is a third layer made of titanium dioxide, 5 is a fourth layer made of magnesium fluoride, and the optical thickness of each layer is λo/4°λo/4. λo/2. λo/4(λo=
780 nm).

前記本発明の第2の実施例の反射防止膜に対しても前記
の粘着テープ剥離試験と耐湿試験を行なったが、第1の
実施例と同様、全く異常なかった。
The anti-reflection film of the second example of the present invention was also subjected to the adhesive tape peel test and moisture resistance test, and as with the first example, no abnormalities were found.

また第4図かられかるように本実施例の分光反射特性は
約600nmから1l100nにわたって従来例よりす
ぐれている。
Further, as can be seen from FIG. 4, the spectral reflection characteristics of this embodiment are superior to the conventional example over a range from about 600 nm to 11100 nm.

なお、前記第1、第2の実施例の反射防止膜の膜厚は特
に上記の値に限定されるものではなく、設計波長に応じ
て変化させればよく、反射防止膜の層枚も所望の特性に
よって適当な値にすればよく、光学ガラス素子表面側か
ら1層目が二酸化ケイ素から形成されておれば何でもよ
い。
The thickness of the anti-reflection film in the first and second embodiments is not particularly limited to the above values, and may be changed depending on the design wavelength, and the thickness of the anti-reflection film can also be changed as desired. Any value may be used as long as the first layer from the surface of the optical glass element is made of silicon dioxide.

発明の効果 以上の説明から明らかなように、本発明の反射防止膜は
、あらかじめエツチング処理を施こしたガラス物品をプ
レス成形してつくられていた光学ガラス素子に誘電体物
質を積層して構成する反射防止膜であって、光学ガラス
素子の表面側から第1層目を二酸化ケイ素から構成する
ことにより、密着性、耐久性に優れた反射防止膜を得る
ことができ、その実用上の価値は大なるものがある。
Effects of the Invention As is clear from the above explanation, the antireflection film of the present invention is constructed by laminating a dielectric material on an optical glass element that is made by press-molding a glass article that has been etched in advance. By composing the first layer from the surface side of the optical glass element with silicon dioxide, it is possible to obtain an anti-reflection film with excellent adhesion and durability, and its practical value is There is something big about it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例における反射防止膜の構
成図、第2図は本発明の第2の実施例における反射防止
膜の構成図、第3図は、従来の反る。 1・・・・・・光学ガラス素子、2・・・・・・二酸化
ケイ素からなる層、3・・・・・・酸化アルミニウムか
らなる層、4・・・・・・二酸化チタンからなる層、5
・・・・・・フッ化マグネシウムからなる層。 代理人の氏名 弁理士 粟野重孝 はか1名1−光学ガ
ラス素子 2−・ 二隊ブとケイ素わ1らrよる珊フヅ化マク不シ
ウムからする1
FIG. 1 is a block diagram of an anti-reflection film in a first embodiment of the present invention, FIG. 2 is a block diagram of an anti-reflection film in a second embodiment of the present invention, and FIG. 3 is a diagram of a conventional anti-reflection film. 1... Optical glass element, 2... Layer made of silicon dioxide, 3... Layer made of aluminum oxide, 4... Layer made of titanium dioxide, 5
・・・・・・A layer made of magnesium fluoride. Name of agent: Patent attorney Shigetaka Awano 1 person 1 - Optical glass element 2 - 1 made from coral fluoride made from 2 groups and silicon 1 r

Claims (2)

【特許請求の範囲】[Claims] (1)あらかじめエッチング処理を施こしたガラス物品
をプレス成形してつくられた光学ガラス素子に誘電体物
質を積層して構成する反射防止膜であって、前記反射防
止膜は光学ガラス素子の表面側から第1層目が二酸化ケ
イ素からなる層であることを特徴とする反射防止膜。
(1) An anti-reflection film formed by laminating a dielectric material on an optical glass element made by press-molding a glass article that has been subjected to an etching process, the anti-reflection film being formed on the surface of the optical glass element. An antireflection film characterized in that the first layer from the side is a layer made of silicon dioxide.
(2)エッチング処理は、ガラス素材をフッ化水素酸水
溶液に浸漬する工程と、水洗する工程と、水分を除去す
る工程とからなることを特徴とする請求項(1)記載の
反射防止膜。
(2) The antireflection film according to claim 1, wherein the etching treatment comprises the steps of immersing the glass material in an aqueous solution of hydrofluoric acid, washing with water, and removing moisture.
JP63187202A 1988-07-27 1988-07-27 Antireflection film Pending JPH0237301A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63187202A JPH0237301A (en) 1988-07-27 1988-07-27 Antireflection film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63187202A JPH0237301A (en) 1988-07-27 1988-07-27 Antireflection film

Publications (1)

Publication Number Publication Date
JPH0237301A true JPH0237301A (en) 1990-02-07

Family

ID=16201880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63187202A Pending JPH0237301A (en) 1988-07-27 1988-07-27 Antireflection film

Country Status (1)

Country Link
JP (1) JPH0237301A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003088210A (en) * 2001-09-17 2003-03-25 Akihiro Ito Working position-indicating tool
CN103553361A (en) * 2013-11-21 2014-02-05 南通博凯新能源科技有限公司 Preparation method of Al2O3-SiO2-TiO2 inorganic antireflection film
KR20170012353A (en) 2014-05-26 2017-02-02 도판 인사츠 가부시키가이샤 Counterfeit preventing structure and counterfeit preventing article

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6273203A (en) * 1985-09-27 1987-04-03 Hitachi Ltd Non-reflection-treated substrate and its production

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6273203A (en) * 1985-09-27 1987-04-03 Hitachi Ltd Non-reflection-treated substrate and its production

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003088210A (en) * 2001-09-17 2003-03-25 Akihiro Ito Working position-indicating tool
CN103553361A (en) * 2013-11-21 2014-02-05 南通博凯新能源科技有限公司 Preparation method of Al2O3-SiO2-TiO2 inorganic antireflection film
KR20170012353A (en) 2014-05-26 2017-02-02 도판 인사츠 가부시키가이샤 Counterfeit preventing structure and counterfeit preventing article
KR20180097787A (en) 2014-05-26 2018-08-31 도판 인사츠 가부시키가이샤 Counterfeit preventing structure and counterfeit preventing article

Similar Documents

Publication Publication Date Title
KR101614179B1 (en) Manufacturing method for glass substrate with thin film
US7175878B2 (en) Cold antireflection layer deposition process
JPS6262321B2 (en)
JPH07111484B2 (en) Antireflection film for plastic optical parts and method for forming the same
NL194413C (en) Composite optical element of the reflection type.
JPH0237301A (en) Antireflection film
JPH10123301A (en) Optical article having antireflection layer
JP2007156321A (en) Method for manufacturing optical multilayer filter
JPH01102401A (en) Formation of antireflecting film
JPH0543649B2 (en)
JPS6361201A (en) Formation of antireflection film
JP4345123B2 (en) Resin bonded optical element and manufacturing method thereof
JPS63170243A (en) Formation of antireflection film
JPH0258003A (en) Antireflection film
JPH0643260B2 (en) Method of forming antireflection film
JPH0421606B2 (en)
JP2003246632A (en) Method of manufacturing periodic structure finer than wavelength and optical element
JPH0585778A (en) Optical parts with antireflection film
JPH01166002A (en) Formation of antireflection film
JPH01287501A (en) Reflection reducing coating
JPH01102402A (en) Formation of reflection preventing film
JPH077126B2 (en) Synthetic resin reflector
JPH09159803A (en) Antireflection film
JPH0653578B2 (en) Optical glass element molding method
WO2024219214A1 (en) Laminate and method for manufacturing eyeglass lens