JPH0642824A - Operation control device for freezer - Google Patents

Operation control device for freezer

Info

Publication number
JPH0642824A
JPH0642824A JP19824492A JP19824492A JPH0642824A JP H0642824 A JPH0642824 A JP H0642824A JP 19824492 A JP19824492 A JP 19824492A JP 19824492 A JP19824492 A JP 19824492A JP H0642824 A JPH0642824 A JP H0642824A
Authority
JP
Japan
Prior art keywords
degree
opening
suction pressure
expansion valve
opening degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP19824492A
Other languages
Japanese (ja)
Inventor
Toshiyuki Momono
俊之 桃野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP19824492A priority Critical patent/JPH0642824A/en
Publication of JPH0642824A publication Critical patent/JPH0642824A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/21Refrigerant outlet evaporator temperature

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To realize a specified capability without adjusting any disturbance in sensing performance of a pressure sensor as well as a thermistor for use in controlling an over-heating degree in an operation control device for a freezer in which an over-heating degree control of refrigerant gas sucked into a compressor is carried out under an adjustment of a degree of opening of an electrical expansion valve. CONSTITUTION:This operation control device is comprised of a degree of opening adjusting means for adjusting a degree of opening by changing a degree of opening of the electrical expansion valve 3 in a stepwise manner, a suction pressure sensor 7 for sensing a suction pressure Ps and a degree of opening setting means 8 for fixing a degree of opening of the electrical expansion valve 3 at the time when a degree of variation of the sucking pressure Ps under a condition in which a degree of opening of the electrical adjusting means is adjusted to be increased after receiving an output signal of the sensor 7 is lower than a predetermined value.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、冷凍機の運転制御装
置に関し、特に冷凍機における過熱度のバラツキを防止
する対策に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerating machine operation control device, and more particularly to measures for preventing variations in superheat degree in refrigerating machines.

【0002】[0002]

【従来の技術】従来の冷凍機の運転制御装置として、例
えば特開昭59−145450号公報で知られているも
のでは、圧縮機、熱源側熱交換器、電子膨張弁及び利用
側熱交換器を順次接続してなる冷媒回路を備え、圧縮機
に吸込まれる冷媒ガスの吸込温度をサーミスタで検出し
て、過熱度制御運転の際には上記吸込温度を該冷凍機に
予め設定されている過熱度と比較し、大きい場合には電
子膨張弁の開度を大きくして吸込温度を下げる一方、小
さい場合には開度を小さくして吸込温度を上げるように
なされている。
2. Description of the Related Art As a conventional operation control device for a refrigerator, for example, a device known from Japanese Patent Laid-Open No. 59-145450 discloses a compressor, a heat source side heat exchanger, an electronic expansion valve and a utilization side heat exchanger. Are connected in sequence, the suction temperature of the refrigerant gas sucked into the compressor is detected by a thermistor, and the suction temperature is preset in the refrigerator during superheat control operation. When it is larger than the superheat degree, the opening degree of the electronic expansion valve is increased to lower the suction temperature, while when it is smaller, the opening degree is decreased to raise the suction temperature.

【0003】[0003]

【発明が解決しようとする課題】ところで、上記従来の
ものでは、サーミスタにより検出された信号を受けてこ
れを実際の吸込温度と見做し、これに基づいて過熱度制
御を行っているのであるが、一般的に使用されているサ
ーミスタには検出性能に±2℃程度のバラツキがある。
従って、このようなサーミスタに基づいて行われる過熱
度制御では、冷凍機により実際の過熱度に最大で4℃程
度のバラツキが不可避的に生じることとなり、同じ機種
でありながら各冷凍機の能力が必ずしも一定の値にはな
らないという不具合がある。
By the way, in the above-mentioned conventional device, the signal detected by the thermistor is received and regarded as the actual suction temperature, and the superheat control is performed based on this. However, commonly used thermistors have a variation in detection performance of about ± 2 ° C.
Therefore, in superheat control performed based on such a thermistor, variations in maximum actual superheat of about 4 ° C inevitably occur depending on the refrigerator, and the capacity of each refrigerator can be the same model. There is a problem that it does not always become a constant value.

【0004】これについては、冷凍機ごとにサーミスタ
の検出温度を補正するように調整することが考えられる
が、冷凍機によってバラツキの程度が異なっているため
に大変な手間がかかるという問題が生じる。そうする
と、精度の高いサーミスタを使用せざるを得なくなる
が、それではコストアップを招く結果となる。尚、圧力
センサを使って吸込圧を検出し、この吸込圧に基づいて
過熱度制御を行うようになされたものについても、圧力
センサの検出性能にバラツキがあり、上記と同様の不具
合がある。
Regarding this, it is conceivable to make adjustment so as to correct the temperature detected by the thermistor for each refrigerator, but there is a problem that it takes a lot of trouble because the degree of variation varies depending on the refrigerator. Then, a thermistor with high accuracy must be used, but this results in an increase in cost. It should be noted that even in the case where the suction pressure is detected by using the pressure sensor and the superheat control is performed based on the suction pressure, the detection performance of the pressure sensor varies, and the same problem as described above occurs.

【0005】この発明は斯かる諸点に鑑みてなされたも
のであり、その目的は、サーミスタや圧力センサの検出
性能のバラツキを調整することなく、各冷凍機ごとに一
定の能力を発揮できるようにすることにある。
The present invention has been made in view of the above points, and an object thereof is to make it possible to exert a certain capability for each refrigerator without adjusting the variation in the detection performance of the thermistor or the pressure sensor. To do.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するた
め、請求項1の発明では、過熱度制御運転を一旦行った
後、電子膨張弁の開度を段階的に大きくしていき、吸込
圧の変化の度合が十分に小さくなった段階で開度を固定
するようにした。
To achieve the above object, in the invention of claim 1, after the superheat control operation is once performed, the opening degree of the electronic expansion valve is gradually increased to increase the suction pressure. The opening is fixed when the degree of change of is sufficiently small.

【0007】すなわち、この発明では、図1に示すよう
に圧縮機(1)、熱源側熱交換器(2)、電子膨張弁
(3)及び利用側熱交換器(4)を順次接続してなる冷
媒回路(5)を備え、圧縮機(1)に吸込まれる冷媒ガ
スの過熱度制御を上記電子膨張弁(3)の開度調整によ
り行うようになされた冷凍機の運転制御装置が前提であ
る。
That is, in the present invention, as shown in FIG. 1, a compressor (1), a heat source side heat exchanger (2), an electronic expansion valve (3) and a utilization side heat exchanger (4) are sequentially connected. A refrigerating machine operation control device is provided which is provided with a refrigerant circuit (5) and is configured to control the degree of superheat of the refrigerant gas sucked into the compressor (1) by adjusting the opening degree of the electronic expansion valve (3). Is.

【0008】そして、上記過熱度制御運転の後で、電子
膨張弁(3)の開度を段階的に順次変更して開度調整を
行う開度調整手段(6)と、上記圧縮機(1)に吸込ま
れる冷媒ガスの吸込圧(Ps)を検出する吸込圧検出手
段(7)と、該検出手段(7)の出力信号を受け、上記
開度調整手段(6)により電子膨張弁(3)の開度が大
きくなるように調整されたときの吸込圧(Ps)の変化
の度合が所定値よりも小さくなった段階で電子膨張弁
(3)の開度を固定する開度設定手段(8)とを備えた
構成とする。
After the superheat control operation, the opening of the electronic expansion valve (3) is gradually changed stepwise to adjust the opening, and the compressor (1). ), The suction pressure detection means (7) for detecting the suction pressure (Ps) of the refrigerant gas, and the output signal of the detection means (7) are received, and the opening adjustment means (6) controls the electronic expansion valve (7). Opening degree setting means for fixing the opening degree of the electronic expansion valve (3) when the degree of change of the suction pressure (Ps) when the opening degree of 3) is adjusted to be large becomes smaller than a predetermined value. (8) is provided.

【0009】また、請求項2の発明では、上記請求項1
の発明において、過熱度制御運転の後で、吸込圧検出手
段(7)の出力信号を受け、吸込圧(Ps)のバラツキ
の度合が所定値よりも小さいことを判定する安定度判定
手段(9)と、該判定手段(9)の出力信号を受け、吸
込圧(Ps)のバラツキの度合が所定値よりも大きい場
合には開度調整時期を遅らせる開度保持手段(10)と
を備えた構成とする。
According to the invention of claim 2, the above-mentioned claim 1
In the invention, after the superheat control operation, the stability determination means (9) that receives the output signal of the suction pressure detection means (7) and determines that the degree of variation of the suction pressure (Ps) is smaller than a predetermined value. ) And an opening holding means (10) which receives the output signal of the judging means (9) and delays the opening adjustment timing when the degree of variation of the suction pressure (Ps) is larger than a predetermined value. The configuration.

【0010】請求項3の発明では、過熱度制御運転を一
旦行った後に電子膨張弁の開度を段階的に増大させるの
は同じで、利用側熱交換器の能力が略最大となった段階
で開度を固定するようにした。つまり、能力を最大化す
ることにより、その一定化を図るようにした。
According to the third aspect of the invention, it is the same that the opening degree of the electronic expansion valve is increased stepwise after the superheat control operation is once performed, and the capacity of the utilization side heat exchanger is substantially maximized. The opening is fixed with. In other words, by maximizing the ability, we tried to stabilize it.

【0011】すなわち、この発明では、圧縮機(1)、
熱源側熱交換器(2)、電子膨張弁(3)及び利用側熱
交換器(4)を順次接続してなる冷媒回路(5)を備
え、圧縮機(1)に吸込まれる冷媒ガスの過熱度制御を
上記電子膨張弁(3)の開度調整により行い、かつ利用
側熱交換器(4)の媒体流通部(4a)にて冷媒と被熱
交換媒体との間で熱交換を行うようになされた冷凍機の
運転制御装置が前提である。
That is, according to the present invention, the compressor (1),
A heat source side heat exchanger (2), an electronic expansion valve (3) and a use side heat exchanger (4) are connected in sequence to a refrigerant circuit (5), and the refrigerant gas sucked into the compressor (1) is Superheat control is performed by adjusting the opening degree of the electronic expansion valve (3), and heat is exchanged between the refrigerant and the heat exchange medium in the medium circulation portion (4a) of the utilization side heat exchanger (4). The operation control device for the refrigerator thus configured is a prerequisite.

【0012】そして、上記過熱度制御運転の後で、電子
膨張弁(3)の開度を段階的に順次変更して開度調整を
行う開度調整手段(6)と、上記被熱交換媒体の媒体流
通部(4a)入口での温度(Twi)を検出する入口温
度検出手段(11)と、媒体流通部(4a)出口での温
度(Two)を検出する出口温度検出手段(12)と、
上記入口温度検出手段(11)及び出口温度検出手段
(12)の各出力信号を受け、上記開度調整手段(6)
により電子膨張弁(3)の開度が大きくなるように調整
されたときの入口温度(Twi)と出口温度(Two)
との間の差が所定値よりも大きくなった段階で電子膨張
弁(3)の開度を固定する開度設定手段(8)とを備え
た構成とする。
After the superheat control operation, the opening adjustment means (6) for adjusting the opening by sequentially changing the opening of the electronic expansion valve (3) step by step, and the heat exchange medium. Inlet temperature detecting means (11) for detecting the temperature (Twi) at the inlet of the medium circulating portion (4a), and outlet temperature detecting means (12) for detecting the temperature (Two) at the outlet of the medium circulating portion (4a). ,
The opening adjusting means (6) receives the output signals of the inlet temperature detecting means (11) and the outlet temperature detecting means (12).
Temperature (Twi) and outlet temperature (Two) when the opening degree of the electronic expansion valve (3) is adjusted to be large by
And a degree of opening setting means (8) for fixing the degree of opening of the electronic expansion valve (3) when the difference between and becomes larger than a predetermined value.

【0013】また、請求項4の発明では、上記請求項3
の発明において、開度設定手段(8)を、今回の開度調
整後における入口温度(Twi)と出口温度(Two)
との間の差が前回よりも小さくなったことを判定するよ
うに構成する。そして、開度調整手段(6)を、上記開
度設定手段(8)の出力信号を受け、今回の開度調整後
における入口温度(Twi)と出口温度(Two)との
間の差が前回よりも小さくなった場合には電子膨張弁
(3)の開度を段階的に順次小さくする開度調整を行う
ように構成する。
According to the invention of claim 4, the above-mentioned claim 3 is adopted.
In the invention, the opening degree setting means (8) controls the inlet temperature (Twi) and the outlet temperature (Two) after the present opening adjustment.
It is configured to determine that the difference between and is smaller than the previous time. Then, the opening adjustment means (6) receives the output signal of the opening setting means (8), and the difference between the inlet temperature (Twi) and the outlet temperature (Two) after the current opening adjustment is determined to be the previous value. When it becomes smaller than the above, the opening degree of the electronic expansion valve (3) is adjusted to be gradually reduced stepwise.

【0014】また、請求項5の発明では、上記請求項3
又は4の発明において、圧縮機(1)に吸込まれる冷媒
ガスの吸込圧(Ps)を検出する吸込圧検出手段(7)
と、上記吸込圧検出手段(7)の出力信号を受け、過熱
度制御運転の後で、吸込圧(Ps)のバラツキの度合が
所定値よりも小さいことを判定する安定度判定手段
(9)と、該判定手段(9)の出力信号を受け、吸込圧
(Ps)のバラツキの度合が所定値よりも大きい場合に
は開度調整時期を遅らせる開度保持手段(10)とを備
えた構成とする。
According to the invention of claim 5, the above-mentioned claim 3 is adopted.
Or the suction pressure detecting means (7) for detecting the suction pressure (Ps) of the refrigerant gas sucked into the compressor (1).
And a stability determination means (9) that receives the output signal of the suction pressure detection means (7) and determines that the degree of variation of the suction pressure (Ps) is smaller than a predetermined value after the superheat control operation. And an opening holding means (10) for receiving the output signal of the determination means (9) and delaying the opening adjustment timing when the degree of variation in the suction pressure (Ps) is larger than a predetermined value. And

【0015】さらに、請求項6の発明では、上記請求項
1、2又は5の発明において、開度調整の後で、運転条
件の変化を判定する条件変化判定手段(13)と、該判
定手段(13)の出力信号を受け、運転条件が変化した
場合に過熱度制御運転を再度行わせる再設定手段(1
4)とを備えた構成とする。
Further, in the invention of claim 6, in the invention of claim 1, 2 or 5, the condition change judging means (13) for judging the change of the operating condition after the opening adjustment, and the judging means. A resetting means (1) for receiving the output signal of (13) and re-executing the superheat control operation when the operating conditions change.
4) and.

【0016】また、請求項7の発明では、上記請求項6
の発明において、条件変化判定手段(13)を、吸込圧
検出手段(7)の出力信号を受け、吸込圧(Ps)の安
定度に基づいて運転条件の変化を判定するように構成す
る。
According to the invention of claim 7, the above-mentioned claim 6 is used.
In the invention, the condition change determination means (13) is configured to receive the output signal of the suction pressure detection means (7) and determine the change in the operating condition based on the stability of the suction pressure (Ps).

【0017】[0017]

【作用】請求項1の発明では、先ず、電子膨張弁(3)
の開度調整による従来の吸込過熱度制御運転が行われ
る。この段階では、実際の過熱度には冷凍機により未だ
バラツキがあるものの、吸込ガスは湿りにはならない程
度には過熱されることになる。その後、開度調整手段
(6)により電子膨張弁(3)の開度が段階的に順次増
大する開度調整が行われる。これに応じて、吸込圧検出
手段(7)により検出される冷媒ガスの吸込圧(Ps)
が上昇する方向に変化し、この変化の度合が開度設定手
段(8)により判定される。そして、上記変化の度合が
所定値よりも小さくなった段階で、吸込ガスの湿りがゼ
ロに近く、利用側熱交換器(4)にとって性能的に最適
の効率で、冷凍機の所定能力が一定して発揮されるポイ
ントであると見做して電子膨張弁(3)の開度が固定さ
れる。
In the invention of claim 1, first, the electronic expansion valve (3)
The conventional suction superheat control operation is performed by adjusting the opening degree. At this stage, although the actual degree of superheat still varies depending on the refrigerator, the suction gas is overheated to the extent that it does not become wet. Then, the opening adjustment means (6) adjusts the opening of the electronic expansion valve (3) so that the opening gradually increases in stages. In response to this, the suction pressure (Ps) of the refrigerant gas detected by the suction pressure detection means (7)
Changes in an increasing direction, and the degree of this change is judged by the opening degree setting means (8). Then, when the degree of the above-mentioned change becomes smaller than a predetermined value, the wetness of the suction gas is close to zero, and the predetermined capacity of the refrigerator is constant at the efficiency optimum for the use side heat exchanger (4). The opening of the electronic expansion valve (3) is fixed by considering it as a point to be exerted.

【0018】また、請求項2の発明では、過熱度制御運
転の後、吸込圧検出手段(7)の出力信号を受けた安定
度判定手段(9)により、吸込圧(Ps)のバラツキの
度合が判定される。そして、バラツキの度合が所定値よ
りも大きい場合、つまり開度調整前の吸込圧(Ps)が
不安定でこのような吸込圧(Ps)に基づいて開度調整
後の吸込圧(Ps)の変化の度合を判定することが困難
である場合には、開度保持手段(10)により開度調整
の時期が遅延される。これにより、上記吸込圧(Ps)
の安定化が図られる。
Further, in the invention of claim 2, after the superheat control operation, the degree of variation of the suction pressure (Ps) is determined by the stability determination means (9) which receives the output signal of the suction pressure detection means (7). Is determined. When the degree of variation is larger than a predetermined value, that is, the suction pressure (Ps) before opening adjustment is unstable, and the suction pressure (Ps) after opening adjustment is based on such suction pressure (Ps). When it is difficult to determine the degree of change, the opening degree holding means (10) delays the timing of opening degree adjustment. As a result, the suction pressure (Ps)
Is stabilized.

【0019】請求項3の発明では、過熱度制御運転が行
われた後に、開度調整手段(6)により電子膨張弁
(3)の開度が段階的に順次大きくされ、過熱度が下が
るのに応じて利用側熱交換器(4)の効率がよくなり、
能力が上がってくる。一方、該熱交換器(4)の媒体流
通部(4a)にて冷媒との間で熱交換が行われる被熱交
換媒体について、入口温度検出手段(9)により検出さ
れた媒体流通部(4a)入口での温度(Twi)と、出
口温度検出手段(10)により検出された媒体流通部
(4a)出口での温度(Two)との間の差の変化が、
開度設定手段(8)により判定される。この出入口温度
差は、上記能力の上昇に応じて大きくなるので、温度差
が最大となった段階で、冷凍機の能力は最大になったと
して電子膨張弁(3)の開度が固定される。
According to the third aspect of the present invention, after the superheat control operation is performed, the opening adjustment means (6) sequentially increases the opening of the electronic expansion valve (3) step by step, so that the superheat decreases. The efficiency of the heat exchanger (4) on the use side increases according to
The ability is rising. On the other hand, with respect to the heat exchange target medium whose heat is exchanged with the refrigerant in the medium flow section (4a) of the heat exchanger (4), the medium flow section (4a) detected by the inlet temperature detecting means (9). ) The change in the difference between the temperature (Twi) at the inlet and the temperature (Two) at the outlet of the medium circulation unit (4a) detected by the outlet temperature detecting means (10) is
It is determined by the opening degree setting means (8). Since this inlet / outlet temperature difference increases with the increase in the above capacity, the opening of the electronic expansion valve (3) is fixed at the stage when the temperature difference becomes maximum, assuming that the capacity of the refrigerator is maximum. .

【0020】また、請求項4の発明では、電子膨張弁
(3)の開度調整のある段階において、出入口温度差が
前回のものに比べて小さくなった場合に、開度設定手段
(8)により開度が大きくなり過ぎであると判定され、
この場合には、開度調整手段(6)により電子膨張弁
(3)の開度が段階的に順次小さくされる。
Further, according to the invention of claim 4, at a certain stage of the opening adjustment of the electronic expansion valve (3), when the inlet / outlet temperature difference becomes smaller than the previous one, the opening setting means (8). Is determined to be too large,
In this case, the opening degree of the electronic expansion valve (3) is gradually reduced by the opening degree adjusting means (6).

【0021】また、請求項5の発明では、過熱度制御運
転の後、吸込圧検出手段(7)の出力信号を受けた安定
度判定手段(9)により、吸込圧(Ps)のバラツキの
度合が判定される。そして、バラツキの度合が所定値よ
りも大きい場合、つまり開度調整前の吸込圧(Ps)が
不安定で、このような吸込圧(Ps)に基づいて開度調
整後の吸込圧(Ps)の変化の度合を判定することが困
難である場合には、開度保持手段(10)により開度調
整の時期が遅延される。これにより、上記吸込圧(P
s)の安定化が図られる。
Further, in the invention of claim 5, after the superheat control operation, the degree of variation of the suction pressure (Ps) is determined by the stability determining means (9) which receives the output signal of the suction pressure detecting means (7). Is determined. When the degree of variation is larger than a predetermined value, that is, the suction pressure (Ps) before the opening adjustment is unstable, and the suction pressure (Ps) after the opening adjustment is based on such suction pressure (Ps). When it is difficult to determine the degree of change of the opening degree, the opening degree holding means (10) delays the timing of the opening degree adjustment. As a result, the suction pressure (P
s) is stabilized.

【0022】さらに、請求項6の発明では、例えば外気
温度、吐出圧、吸込圧等の運転条件が変化した場合に、
条件変化判定手段(13)の出力信号を受けた再設定手
段(11)により過熱度制御運転が再度行われる。これ
により、運転条件に応じた能力の一定化が図られる。
Further, in the invention of claim 6, when the operating conditions such as the outside air temperature, the discharge pressure and the suction pressure are changed,
The superheat control operation is performed again by the resetting means (11) which has received the output signal of the condition change determining means (13). As a result, the capacity can be made constant according to the operating conditions.

【0023】また、請求項7の発明では、開度調整の後
に吸込圧検出手段(7)の出力信号を受けた条件変化判
定手段(12)により、吸込圧(Ps)の変化が大きく
なった場合に運転条件が変化したと判定される。
Further, according to the invention of claim 7, the change of the suction pressure (Ps) becomes large by the condition change judging means (12) which receives the output signal of the suction pressure detecting means (7) after the opening adjustment. In this case, it is determined that the operating conditions have changed.

【0024】[0024]

【実施例】以下、この発明の実施例を図面に基づいて説
明する。図2は、この実施例に係る冷却装置及びその制
御系を示し、冷却装置は、工作機械等を冷却する利用系
であるチリングユニット(B)と、該ユニット(B)の
被熱交換媒体としての冷却水を冷却するための冷凍機
(A)とからなる。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 2 shows a cooling device and its control system according to this embodiment. The cooling device serves as a chilling unit (B) which is a utilization system for cooling a machine tool and a heat exchange medium of the unit (B). And a refrigerator (A) for cooling the cooling water.

【0025】上記冷凍機(A)は、冷媒ガスを吸込んで
吐出する圧縮機(1)と、該圧縮機(1)から吐出され
た冷媒を凝縮、液化する熱源側熱交換器としての凝縮器
(2)と、該凝縮器(2)で液化された冷媒を膨張させ
る電動膨張弁(3)(電子膨張弁)と、該膨張弁(3)
で膨張した冷媒を蒸発、ガス化させる利用側熱交換器と
しての蒸発器(4)とを冷媒配管(15)で順次接続し
てなる冷媒回路(5)を備えている。上記圧縮機(1)
には、パイロット弁(16a)の開閉により容量をフル
ロードとアンロードとに切換えるためのアンローダ機構
(16)が配置されている。(16b)は逆流防止用キ
ャピラリチューブである。また、上記電動膨張弁(3)
はパルスモータを有し、該モータに与えられるパルス信
号のパルス数に応じて弁開度が可変とされている。
The refrigerator (A) includes a compressor (1) for sucking and discharging a refrigerant gas, and a condenser as a heat source side heat exchanger for condensing and liquefying the refrigerant discharged from the compressor (1). (2), an electric expansion valve (3) (electronic expansion valve) for expanding the refrigerant liquefied in the condenser (2), and the expansion valve (3)
A refrigerant circuit (5) is formed by sequentially connecting, via a refrigerant pipe (15), an evaporator (4) as a utilization side heat exchanger that evaporates and gasifies the refrigerant expanded in (1). The compressor (1)
An unloader mechanism (16) for switching the capacity between full load and unload by opening and closing the pilot valve (16a) is arranged in the. (16b) is a backflow preventing capillary tube. Further, the electric expansion valve (3)
Has a pulse motor, and the valve opening degree is variable according to the number of pulses of a pulse signal given to the motor.

【0026】上記蒸発器(4)は、チリングユニット
(B)のチラー回路(17)を循環する冷却水が流通す
る媒体流通部としての冷却水流通部(4a)を有してお
り、冷媒回路(5)において冷媒が凝縮器(2)で得た
冷熱を蒸発器(4)での熱交換により冷却水に付与し、
該冷却水を冷却するようになされている。
The evaporator (4) has a cooling water circulating portion (4a) as a medium circulating portion through which the cooling water circulating in the chiller circuit (17) of the chilling unit (B) flows, and the refrigerant circuit In (5), the refrigerant gives cold heat obtained in the condenser (2) to the cooling water by heat exchange in the evaporator (4),
The cooling water is cooled.

【0027】また、冷却装置にはセンサ類が配設されて
いる。(7)は圧縮機(1)に吸込まれる冷媒ガスの吸
込圧(Ps)を検出する吸込圧センサ(吸込圧検出手
段)、(18)は圧縮機(1)から吐出される冷媒ガス
の吐出圧(Pd)を検出する吐出圧センサ、(11)は
蒸発器(4)との間で熱交換される冷却水の熱交換入口
での水温(Twi)(入口温度)を検出する入口水温セ
ンサ(入口温度検出手段)、(12)は上記冷却水の出
口での水温(Two)(出口温度)を検出する出口水温
センサ(出口温度検出手段)である。上記各センサの出
力信号は冷凍機(A)の運転を制御するためのコントロ
ーラ(C)に入力されており、コントローラ(C)にお
いて、上記各センサの検出値等に基づいて電動膨張弁
(3)の開度調整による冷媒ガスの過熱度制御を含めた
冷却装置の運転を制御するようになされている。
Further, sensors are arranged in the cooling device. (7) is a suction pressure sensor (suction pressure detection means) for detecting the suction pressure (Ps) of the refrigerant gas sucked into the compressor (1), and (18) is the refrigerant gas discharged from the compressor (1). A discharge pressure sensor that detects the discharge pressure (Pd), and (11) is an inlet water temperature that detects the water temperature (Twi) (inlet temperature) at the heat exchange inlet of the cooling water that is heat-exchanged with the evaporator (4). Sensors (inlet temperature detecting means), (12) are outlet water temperature sensors (outlet temperature detecting means) for detecting the water temperature (Two) (outlet temperature) at the outlet of the cooling water. The output signal of each sensor is input to the controller (C) for controlling the operation of the refrigerator (A), and in the controller (C), the electric expansion valve (3 The operation of the cooling device including the control of the degree of superheat of the refrigerant gas by adjusting the degree of opening is controlled.

【0028】ここで、上記コントローラ(C)において
冷凍機(A)の蒸発器(4)による冷却能力を一定化す
るために行われる制御動作について、図3及び図4のフ
ローチャートに基づき説明する。
Here, the control operation performed in the controller (C) to make the cooling capacity of the evaporator (4) of the refrigerator (A) constant will be described with reference to the flowcharts of FIGS. 3 and 4.

【0029】先ず、ステップS1で圧縮機(1)に吸込
まれる冷媒ガスの過熱度(SH)の制御を行った後、ス
テップS2で吸込圧(Ps)及び吐出圧(Pd)をそれ
ぞれ入力し、ステップS3では入力した吸込圧(Ps)
及び吐出圧(Pd)を第1吸込圧(Ps1)及び第1吐
出圧(Pd1)に、また既にセットされている第1吸込
圧(Ps1)及び第1吐出圧(Pd1)を第2吸込圧
(Ps2)及び第2吐出圧(Pd2)に、さらに既にセ
ットされている第2吸込圧(Ps2)及び第2吐出圧
(Pd2)を第3吸込圧(Ps3)及び第3吐出圧(P
d3)にそれぞれセットする。ステップS4,S5で
は、吐出圧(Pd)の過熱度制御後におけるバラツキの
度合をそれぞれ判定する。すなわち、ステップS4では
第1吐出圧(Pd1)と第3吐出圧(Pd3)との間の
差の絶対値が、またステップS5では第1吐出圧(Pd
1)と第2吐出圧(Pd2)との間の差の絶対値がそれ
ぞれ定数(α)(例えば、0.5kgf/cm2 )よりも大であ
るか否かを判定する。これらの判定がYESのときに
は、吐出圧(Pd)については未だ安定していないとい
うことで、ステップS6に移行する。一方、ステップS
4,S5でそれぞれNOであるときには、吐出圧(P
d)については十分に安定したと見做して、ステップS
7,S8に移行し、今度は吸込圧(Ps)の安定度を判
定する。
First, in step S1, the superheat degree (SH) of the refrigerant gas sucked into the compressor (1) is controlled, and then in step S2, the suction pressure (Ps) and the discharge pressure (Pd) are input. , In step S3, the input suction pressure (Ps)
And the discharge pressure (Pd) to the first suction pressure (Ps1) and the first discharge pressure (Pd1), and the already set first suction pressure (Ps1) and the first discharge pressure (Pd1) to the second suction pressure. (Ps2) and the second discharge pressure (Pd2), the second suction pressure (Ps2) and the second discharge pressure (Pd2) that have already been set are set to the third suction pressure (Ps3) and the third discharge pressure (P
d3) respectively. In steps S4 and S5, the degree of variation in the discharge pressure (Pd) after the superheat control is determined. That is, the absolute value of the difference between the first discharge pressure (Pd1) and the third discharge pressure (Pd3) is determined in step S4, and the first discharge pressure (Pd is determined in step S5.
It is determined whether or not the absolute value of the difference between 1) and the second discharge pressure (Pd2) is larger than a constant (α) (for example, 0.5 kgf / cm 2 ). When these determinations are YES, it means that the discharge pressure (Pd) is not stable yet, and thus the process proceeds to step S6. On the other hand, step S
When NO in 4 and S5, respectively, the discharge pressure (P
Regarding d), it is considered to be sufficiently stable, and step S
7, the process proceeds to S8, and the stability of the suction pressure (Ps) is determined this time.

【0030】上記ステップS7,S8は、この発明にお
ける安定度判定手段(9)を構成するもので、ここで
は、吸込圧(Ps)の過熱度制御後におけるバラツキの
度合をそれぞれ判定する。すなわち、ステップS7では
第1吸込圧(Ps1)と第3吸込圧(Ps3)との間の
差の絶対値が、またステップS8では第1吸込圧(Ps
1)と第2吸込圧(Ps2)との間の差の絶対値がそれ
ぞれ上記定数(α)よりも小さい定数(β)(例えば、
0.05kgf/cm2 )に比べて大であるか否かを判定する。判
定がYESのときには、吸込圧(Ps)については未だ
十分に安定していないので、ステップS6に移行する。
The above steps S7 and S8 constitute the stability determination means (9) in the present invention, and here, the degree of variation of the suction pressure (Ps) after the superheat control is determined, respectively. That is, the absolute value of the difference between the first suction pressure (Ps1) and the third suction pressure (Ps3) is calculated in step S7, and the first suction pressure (Ps3) is calculated in step S8.
The absolute value of the difference between 1) and the second suction pressure (Ps2) is smaller than the above constant (α) by a constant (β) (for example,
0.05kgf / cm 2 ) It is judged whether it is large or not. When the determination is YES, the suction pressure (Ps) is not yet sufficiently stable, so the process proceeds to step S6.

【0031】上記ステップS6は、この発明における開
度保持手段(10)を構成するもので、ここでは、所定
時間(x)(例えば、3分間)の待機を行った後、さら
に待機後の安定度を判定するために上記ステップS2に
戻る。一方、ステップS7,S8でそれぞれNOと判定
されたときには、吸込圧(Ps)についても十分に安定
したとして、図4に示すステップS10に移行する。
The step S6 constitutes the opening holding means (10) in the present invention, and here, after waiting for a predetermined time (x) (for example, 3 minutes), the stability after the waiting is further stabilized. The process returns to step S2 to determine the degree. On the other hand, when NO is determined in each of steps S7 and S8, it is determined that the suction pressure (Ps) is also sufficiently stable, and the process proceeds to step S10 shown in FIG.

【0032】上記ステップS10は、この発明における
開度調整手段(6)を構成するもので、ここでは、所定
パルス数(a)(例えば、2パルス)の分だけ電動膨張
弁(3)の開度を大きくし、かつ運転条件の変化を判定
するために行う吸込圧(Ps)及び吐出圧(Pd)の安
定度についての判定回数(n)をn=20にセットし
て、ステップS11,S12に移行する。ステップS1
1で吸込圧(Ps)及び吐出圧(Pd)をそれぞれ入力
し、ステップS12では入力した吸込圧(Ps)及び吐
出圧(Pd)を第4吸込圧(Ps4)及び第4吐出圧
(Pd4)に、また既にセットされている第4吸込圧
(Ps4)及び第4吐出圧(Pd4)を第5吸込圧(P
s5)及び第5吐出圧(Pd5)に、さらに既にセット
されている第5吸込圧(Ps5)及び第5吐出圧(Pd
5)を第6吸込圧(Ps6)及び第6吐出圧(Pd6)
にそれぞれセットする。ステップS13では第6吸込圧
(Ps6)及び第6吐出圧(Pd6)がそれぞれ既にセ
ットされているか否かを判定し、判定がNOであればス
テップS14に移行して所定時間(y)の待機を行った
後、ステップS11に戻る。一方、ステップS13で判
定がYESであれば、ステップS15に移行して再び吸
込圧(Ps)及び吐出圧(Pd)をそれぞれ入力した
後、ステップS16,S17に移行する。
The step S10 constitutes the opening adjusting means (6) in the present invention, and here, the electric expansion valve (3) is opened by a predetermined pulse number (a) (for example, 2 pulses). The number of determinations (n) for the stability of the suction pressure (Ps) and the discharge pressure (Pd) for determining the change in the operating conditions is set to n = 20, and steps S11 and S12 are performed. Move to. Step S1
In 1, the suction pressure (Ps) and the discharge pressure (Pd) are input respectively, and in step S12, the input suction pressure (Ps) and discharge pressure (Pd) are the fourth suction pressure (Ps4) and the fourth discharge pressure (Pd4). And the already set fourth suction pressure (Ps4) and fourth discharge pressure (Pd4) to the fifth suction pressure (Ps4).
s5) and the fifth discharge pressure (Pd5), the fifth suction pressure (Ps5) and the fifth discharge pressure (Pd) that have already been set.
5) is the sixth suction pressure (Ps6) and the sixth discharge pressure (Pd6)
Set each to. In step S13, it is determined whether the sixth suction pressure (Ps6) and the sixth discharge pressure (Pd6) have already been set, and if the determination is NO, the process proceeds to step S14 and waits for a predetermined time (y). After performing, the process returns to step S11. On the other hand, if the determination is YES in step S13, the process proceeds to step S15, and the suction pressure (Ps) and the discharge pressure (Pd) are input again, and then the process proceeds to steps S16 and S17.

【0033】上記ステップS16,S17では運転条件
の変化により吸込圧(Ps)及び吐出圧(Pd)の安定
度が崩れていないかどうかをそれぞれ判定する。ステッ
プS16は、この発明における条件変化判定手段(1
3)を構成するもので、ここでは、新たに入力した吸込
圧(Ps)と、上記第4〜第6吸込圧(Ps4)〜(P
s6)の平均値との間の差の絶対値が上記定数(α)と
略同じ程度の定数(b)(例えば、0.5kgf/cm2 )より
も大であるか否かを判定する。そして、判定がYESの
ときには安定度が崩れたことで運転条件に変化があった
と判定し、上記ステップS1に戻って過熱度制御からや
り直す。一方、判定がNOのときにはステップS17に
移行する。ステップS17では、新たに入力された吐出
圧(Pd)と、上記第4〜第6吐出圧(Pd4)〜(P
d6)の平均値との間の差の絶対値が上記定数(β)と
略同じ程度の定数(c)(例えば、0.05kgf/cm2 )より
も大であるか否かをそれぞれ判定する。判定がYESの
ときには安定度が崩れたことで運転条件に変化があった
と判定し、上記ステップS1に戻って過熱度制御からや
り直す。一方、ステップS17でNOと判定されたとき
には、ステップS18で判定回数(n)から「1」を減
算してステップS19に移行しn=0かどうかを判定す
る。この判定でn≠0のときにはステップS11に戻
り、上記安定度についての判定を繰返す一方、n=0の
ときには、運転条件の変化はないとして、ステップS2
0に移行する。
In steps S16 and S17, it is determined whether or not the stability of the suction pressure (Ps) and the discharge pressure (Pd) has collapsed due to changes in operating conditions. Step S16 is a condition change determining means (1
3), and here, the newly input suction pressure (Ps) and the fourth to sixth suction pressures (Ps4) to (Ps).
It is determined whether the absolute value of the difference from the average value of s6) is larger than a constant (b) (for example, 0.5 kgf / cm 2 ) which is substantially the same as the above constant (α). Then, when the determination is YES, it is determined that the operating conditions have changed due to the deterioration of stability, and the process returns to step S1 and the superheat degree control is performed again. On the other hand, if the determination is NO, the process proceeds to step S17. In step S17, the newly input discharge pressure (Pd) and the fourth to sixth discharge pressures (Pd4) to (Pd).
Whether or not the absolute value of the difference from the average value of d6) is larger than the constant (c) (for example, 0.05 kgf / cm 2 ) which is substantially the same as the above constant (β) is determined. When the determination is YES, it is determined that the operating conditions have changed due to the deterioration of stability, and the process returns to step S1 and the superheat control is restarted. On the other hand, when NO is determined in step S17, "1" is subtracted from the number of determinations (n) in step S18, and the process proceeds to step S19 to determine whether n = 0. If n ≠ 0 in this determination, the process returns to step S11, and the determination on the stability is repeated. On the other hand, if n = 0, it is determined that there is no change in the operating conditions and step S2.
Move to 0.

【0034】上記ステップS20は、この発明における
開度設定手段(8)を構成するもので、ここでは、今回
の開度調整による吸込圧(Ps)が、今回の開度調整以
前の第1吸込圧(Ps1)に上記定数(b)よりも小さ
い定数(d)(例えば、0.01kgf/cm2 )を加算した値に
比べて大であるか否かを判定する。判定がNOのときに
は、吸込圧(Ps)の変化の度合が十分に小さくなった
として、処理を終了する。つまり、電動膨張弁(3)の
開度を現状の段階で固定する。一方、判定がYESのと
きには、未だ変化の度合が大きいとしてステップS21
に移行し、今回の開度調整による吸込圧(Ps)を第1
吸込圧(Ps1)にセットして、上記ステップS10に
戻り、電動膨張弁(3)の開度をさらに上げる。
The step S20 constitutes the opening degree setting means (8) in the present invention, in which the suction pressure (Ps) by the present opening adjustment is the first suction before the present opening adjustment. It is determined whether or not the pressure (Ps1) is larger than a value obtained by adding a constant (d) smaller than the above constant (b) (for example, 0.01 kgf / cm 2 ). If the determination is NO, it is determined that the degree of change in the suction pressure (Ps) has become sufficiently small, and the process ends. That is, the opening degree of the electric expansion valve (3) is fixed at the current stage. On the other hand, if the determination is YES, it is determined that the degree of change is still large, and step S21 is performed.
To the first suction pressure (Ps)
The suction pressure (Ps1) is set, the process returns to step S10, and the opening degree of the electric expansion valve (3) is further increased.

【0035】次に、冷凍機(A)の蒸発器(4)による
冷却能力を最大化することにより能力の一定化を図る制
御動作について、図5〜図7のフローチャートに基づき
説明する。尚、この制御では、ステップS′1〜S′
8、及びステップS′10〜S′19が上記した冷却能
力を一定化する制御動作と同じであり、それ以後のステ
ップS′20〜S′24と、ステップS′9が付加され
る点のみが異なるので、図3及び図4と同じ部分(ステ
ップS′1〜S′8及びステップS′10〜S′19)
については同じステップ番号を付してその説明は省略す
る。
Next, the control operation for making the capacity constant by maximizing the cooling capacity of the evaporator (4) of the refrigerator (A) will be described with reference to the flow charts of FIGS. In this control, steps S'1 to S '
8 and steps S'10 to S'19 are the same as the above-mentioned control operation for making the cooling capacity constant, and only steps S'20 to S'24 and step S'9 thereafter are added. 3 are different from those shown in FIGS. 3 and 4 (steps S'1 to S'8 and steps S'10 to S'19).
The same step number is assigned to the same item and its description is omitted.

【0036】図6のステップS′9では、開度調整前の
入口水温(Twi)及び出口水温(Two)を入力し、
ステップS′10〜S′19で開度調整と運転条件の変
化のないことの確認とを行った後に、図7のステップ
S′20に移行する。このステップS′20で、今回の
開度調整以前(ステップS′9)に入力した入口水温
(Twi)及び出口水温(Two)を第1入口水温(T
wi1)及び第1出口水温(Two1)にそれぞれセッ
トし、ステップS′21で今回の開度調整による入口水
温(Twi)及び出口水温(Two)をそれぞれ入力し
た後、ステップS′22,S′23に移行する。
In step S'9 of FIG. 6, the inlet water temperature (Twi) and the outlet water temperature (Two) before opening adjustment are input,
After adjusting the opening and confirming that the operating conditions are not changed in steps S'10 to S'19, the process proceeds to step S'20 in FIG. In this step S'20, the inlet water temperature (Twi) and the outlet water temperature (Two) input before the current opening adjustment (step S'9) are used as the first inlet water temperature (Twi).
Wi1) and the first outlet water temperature (Two1) respectively, and after inputting the inlet water temperature (Twi) and the outlet water temperature (Two) by the present opening adjustment in step S'21, the steps S'22, S ' Move to 23.

【0037】上記ステップS′22,S′23は、この
発明の開度設定手段(8)を構成するもので、ステップ
S′22では、開度調整以後の入口水温(Twi)から
出口水温(Two)を減算した値が、開度調整以前の第
1入口水温(Twi1)から第1出口水温(Two1)
を減算しかつ定数(d)(例えば、 0.1℃)を加算した
値よりも大きい、つまり今回の温度差が前回の温度差に
定数(d)を加算したものよりも大きいか否か(今回>
前回+d)を判定する。判定がYESのときには温度差
が未だ大きくなる可能性があるとしてステップS′10
に戻り、開度調整を再度行う。一方、判定がNOのとき
には、ステップS′23に移行する。
The steps S'22 and S'23 constitute the opening degree setting means (8) of the present invention. In step S'22, the inlet water temperature (Twi) after the opening adjustment is changed to the outlet water temperature (Twi). The value obtained by subtracting (Two) is the first outlet water temperature (Twi1) from the first inlet water temperature (Twi1) before the opening adjustment.
Is greater than the value obtained by subtracting and adding a constant (d) (for example, 0.1 ° C.), that is, whether the current temperature difference is greater than the previous temperature difference plus the constant (d) (this time>
The previous time + d) is determined. If the determination is YES, it is determined that the temperature difference may still be large and step S'10.
Return to and adjust the opening again. On the other hand, if the determination is NO, the process proceeds to step S'23.

【0038】上記ステップS′23では、開度調整以後
の上記入口水温(Twi)から出口水温(Two)を減
算した値が、開度調整以前の第1入口水温(Twi1)
から第1出口水温(Two1)を減算し、さらに上記定
数(d)と略同じ程度の定数(e)(例えば、 0.1℃)
を減算した値よりも小さい、つまり今回の温度差が前回
の温度差から定数(e)を減算したものよりも小さいか
否か(今回<前回−e)を判定する。判定がYESのと
きには、温度差が前回よりも小さくなったとして、ステ
ップS′24に移行する。
In step S'23, the value obtained by subtracting the outlet water temperature (Two) from the inlet water temperature (Twi) after the opening adjustment is the first inlet water temperature (Twi1) before the opening adjustment.
The first outlet water temperature (Two1) is subtracted from the above, and a constant (e) (for example, 0.1 ° C.) that is approximately the same as the above constant (d).
Is smaller than the value obtained by subtracting, that is, the current temperature difference is smaller than the value obtained by subtracting the constant (e) from the previous temperature difference (this time <previous-e). If the determination is YES, it is determined that the temperature difference is smaller than the previous time, and the process proceeds to step S'24.

【0039】上記ステップS′24は、この発明におけ
る開度調整手段(6)を構成するものであり、ここで
は、開度を上記所定パルス数(a)の分だけ小さくし
て、前回の調整段階に戻す。そして、運転条件変化の判
定回数(n)をn=20にセットした後、ステップS′
11に戻る。一方、判定がNOのときには、入口水温
(Twi)と出口水温(Two)との間の差が略最大に
なった(前回−e≦今回≦前回+d)と判定して処理を
終了し、電動膨張弁(3)の開度を現状の段階で固定す
る。
The step S'24 constitutes the opening adjusting means (6) in the present invention. Here, the opening is reduced by the predetermined number of pulses (a) and the previous adjustment is performed. Return to stage. Then, after setting the number of times (n) of determination of change in operating conditions to n = 20, step S '
Return to 11. On the other hand, when the determination is NO, it is determined that the difference between the inlet water temperature (Twi) and the outlet water temperature (Two) has become substantially the maximum (previous −e ≦ this time ≦ previous + d), the processing is terminated, and the electric operation is performed. The opening of the expansion valve (3) is fixed at the current stage.

【0040】以上のように構成された冷却装置及びその
コントローラ(C)の作動について説明する。
The operation of the cooling device and the controller (C) thereof configured as described above will be described.

【0041】圧縮機(1)から吐出された冷媒ガスは、
図2に示す矢印の方向に流れて凝縮器(2)に流入し、
この凝縮器(2)で凝縮、液化されて冷熱を得た後、電
動膨張弁(3)で膨張し、蒸発器(4)に流入する。こ
の蒸発器(4)で冷媒は蒸発、ガス化し、上記冷熱を蒸
発器(4)の冷却水流通部(4a)にてチラー回路(1
7)内の冷却水に付与した後、上記圧縮機(1)に吸込
まれる。
The refrigerant gas discharged from the compressor (1) is
Flowing in the direction of the arrow shown in FIG. 2 and flowing into the condenser (2),
After being condensed and liquefied in this condenser (2) to obtain cold heat, it is expanded by the electric expansion valve (3) and flows into the evaporator (4). In the evaporator (4), the refrigerant evaporates and gasifies, and the cold heat is transferred to the chiller circuit (1) in the cooling water flow section (4a) of the evaporator (4).
After being applied to the cooling water in 7), it is sucked into the compressor (1).

【0042】そして、冷凍機(A)の能力一定化制御で
は、先ず、圧縮機(1)に吸込まれる冷媒ガスの吸込温
度が所定の過熱度に一致するように電動膨張弁(3)の
開度を制御する過熱度制御運転が行われる。この段階で
は、冷凍機(A)により過熱度のバラツキがあって能力
は未だ一定ではないが、湿りにならない程度の過熱は得
られる。過熱度制御の後、吸込圧センサ(7)及び吐出
圧センサ(18)の各出力信号を受けたコントローラ
(C)により、吸込圧(Ps)及び吐出圧(Pd)の安
定度に基づいて冷凍機(A)の運転状態が安定したと判
定されると、電動膨張弁(3)の開度が段階的に順次増
大される。
In the constant capacity control of the refrigerator (A), first, the electric expansion valve (3) is controlled so that the suction temperature of the refrigerant gas sucked into the compressor (1) matches a predetermined superheat degree. A superheat control operation for controlling the opening is performed. At this stage, the refrigerator (A) has a variation in the degree of superheat and the capacity is not constant yet, but the degree of superheat that does not become wet can be obtained. After the superheat control, the controller (C) that receives the output signals of the suction pressure sensor (7) and the discharge pressure sensor (18) freezes it based on the stability of the suction pressure (Ps) and the discharge pressure (Pd). When it is determined that the operating state of the machine (A) is stable, the opening degree of the electric expansion valve (3) is gradually increased stepwise.

【0043】上記開度調整により、冷媒量が多くなって
吸込圧(Ps)が上がり、過熱度が下がって吸込冷媒ガ
スの湿りが略ゼロであるポイント、すなわち蒸発器
(4)にとって性能的に一番効率のよい最適ポイントに
近づいてくる。そして、吸込圧(Ps)の変化の度合が
十分に小さくなった段階が、上記最適ポイントであると
判定されて、その段階で電動膨張弁(3)の開度が固定
される。また、運転中に運転条件が変化した場合には、
吸込圧(Ps)及び吐出圧(Pd)の安定度が崩れたか
否かの判定に基づいて過熱度制御運転が再度行われ、能
力一定化制御に基づき電動膨張弁(3)の開度が再設定
される。
By adjusting the opening, the amount of refrigerant increases, the suction pressure (Ps) rises, the degree of superheat decreases, and the wetness of the suction refrigerant gas is substantially zero, that is, performance is improved for the evaporator (4). It approaches the most efficient and optimal point. Then, the stage where the degree of change in the suction pressure (Ps) becomes sufficiently small is determined to be the optimum point, and the opening degree of the electric expansion valve (3) is fixed at that stage. Also, if the operating conditions change during operation,
The superheat control operation is performed again based on the determination whether the stability of the suction pressure (Ps) and the discharge pressure (Pd) has collapsed, and the opening degree of the electric expansion valve (3) is reset based on the capacity constant control. Is set.

【0044】これにより、過熱度制御運転による過熱度
に冷凍機(A)によるバラツキがある場合でも、冷凍機
(A)に一定の能力を発揮させることができる。
As a result, even if the superheat degree due to the superheat control operation varies depending on the refrigerator (A), the refrigerator (A) can be made to exhibit a certain capacity.

【0045】一方、能力最大化制御により冷凍機(A)
の能力一定化を図る際にも、先ず、圧縮機(1)に吸込
まれる冷媒ガスの吸込温度が所定の過熱度に一致するよ
うに電動膨張弁(3)の開度を制御する過熱度制御運転
が行われた後、吸込圧(Ps)及び吐出圧(Pd)の安
定度に基づいて冷凍機(A)の運転状態が安定したと判
定されると、電動膨張弁(3)の開度が段階的に順次大
きくされる。
On the other hand, the refrigerator (A) is controlled by the capacity maximization control.
In order to make the capacity of the compressor constant, first, the degree of superheat that controls the opening degree of the electric expansion valve (3) so that the suction temperature of the refrigerant gas sucked into the compressor (1) matches a predetermined degree of superheat. After the control operation is performed, if it is determined that the operation state of the refrigerator (A) is stable based on the stability of the suction pressure (Ps) and the discharge pressure (Pd), the electric expansion valve (3) is opened. The degree is gradually increased step by step.

【0046】上記開度調整により、過熱度が下がって蒸
発器(4)の冷却能力が上昇すると、これに応じて、冷
却水流通部(4a)において冷却水の入口水温(Tw
i)と出口水温(Two)との間の差が拡大していく。
そして、出入口水温差が略最大となった段階で、電動膨
張弁(3)の開度が固定される。もしも、開度調整によ
り水温差が前回の開度調整の段階よりも下がった場合に
は、開度が小さくされることにより水温差は略最大とな
る。
When the degree of superheat is lowered and the cooling capacity of the evaporator (4) is increased by the adjustment of the opening degree, the inlet water temperature (Tw) of the cooling water in the cooling water flow section (4a) is correspondingly increased.
The difference between i) and the outlet water temperature (Two) increases.
Then, when the inlet / outlet water temperature difference becomes substantially maximum, the opening degree of the electric expansion valve (3) is fixed. If the water temperature difference becomes lower than the previous stage of the opening adjustment by the opening adjustment, the water temperature difference becomes the maximum by reducing the opening.

【0047】これにより、過熱度制御運転による過熱度
に冷凍機(A)によるバラツキがある場合でも、冷凍機
(A)に一定の能力である最大能力を発揮させることが
できる。尚、この能力最大化制御は、基本的にはフルロ
ード運転のときに行われ、アンロード運転のときには最
大能力の必要がなく、また±数%の能力差も実用上は問
題とならないので行われないが、アンロード運転が継続
する場合等には上記制御を行うことによりCOPの向上
を図ることができる。
As a result, even when the superheat degree due to the superheat control operation varies depending on the refrigerator (A), the refrigerator (A) can exhibit a maximum capacity which is a constant capacity. Note that this capacity maximization control is basically performed during full load operation and does not require maximum capacity during unload operation, and a capacity difference of ± several% is not a problem in practice. Although not denied, the COP can be improved by performing the above control when the unloading operation continues.

【0048】尚、上記実施例では、利用系をチラーユニ
ット(B)としたが、この発明はかかる実施例に限定さ
れるものではなく、利用側熱交換器を凝縮器として温水
を供給するものや、被熱交換媒体を空気とし、その出口
温度を制御するようにした空気調和装置に適用すること
も可能である。
Although the chiller unit (B) is used as the utilization system in the above embodiment, the present invention is not limited to this embodiment, and the utilization side heat exchanger is used as a condenser to supply hot water. Alternatively, it can be applied to an air conditioner in which the heat exchange medium is air and the outlet temperature thereof is controlled.

【0049】また、上記実施例では、吸込圧に直接に基
づいて制御を行っているが、吸込圧から得られる吸込温
度に基づいて行ってもよい。
Further, in the above-described embodiment, the control is performed directly based on the suction pressure, but it may be performed based on the suction temperature obtained from the suction pressure.

【0050】さらに、上記実施例では、運転条件の変化
を吸込圧の変化に基づいて判定しているが、例えば外気
温度、水温、高圧、高低圧等の変化に基づいて判定する
ようにしてもよい。
Further, in the above embodiment, the change of the operating condition is judged based on the change of the suction pressure, but it may be judged based on the change of the outside air temperature, the water temperature, the high pressure, the high pressure and the low pressure. Good.

【0051】[0051]

【発明の効果】請求項1の発明によれば、吸込過熱度制
御の後に、電子膨張弁の開度を段階的に増大させ、吸込
圧の変化の度合が十分に小さくなった段階で開度を固定
するようにしたので、上記過熱度制御が検出性能にバラ
ツキのあるサーミスタや圧力センサの検出値に基づいて
行われる場合でも、利用側熱交換器の効率を性能的に最
適化することができ、冷凍機の能力を一定にすることが
できる。
According to the invention of claim 1, after the suction superheat degree control, the opening degree of the electronic expansion valve is increased stepwise, and when the degree of change of the suction pressure becomes sufficiently small, the opening degree is increased. Since the above is fixed, even if the above superheat control is performed based on the detection value of the thermistor or pressure sensor with variations in detection performance, it is possible to optimize the efficiency of the use side heat exchanger in terms of performance. Therefore, the capacity of the refrigerator can be made constant.

【0052】また、請求項2の発明によれば、過熱度制
御後、開度調整を行う前に吸込圧の安定状態を得ること
ができるので、上記請求項1の発明において、開度調整
による吸込圧の変化の度合を適正に判定することができ
る。
Further, according to the invention of claim 2, it is possible to obtain a stable state of the suction pressure after the superheat control and before the adjustment of the opening degree. The degree of change in suction pressure can be properly determined.

【0053】請求項3の発明では、吸込過熱度制御の後
に、電子膨張弁の開度を段階的に大きくし、利用側熱交
換器にて冷媒との間で熱交換を行う被熱交換媒体の出入
口温度差が最大となる段階で開度を固定するようにした
ので、上記過熱度制御が検出性能にバラツキのあるサー
ミスタや圧力センサの検出値に基づいて行われても、各
冷凍機の能力を最大のレベルで一定にすることができ
る。
According to the third aspect of the present invention, after the suction superheat control, the opening degree of the electronic expansion valve is gradually increased and the heat exchange medium for exchanging heat with the refrigerant in the heat exchanger on the use side. Since the opening is fixed at the stage where the inlet / outlet temperature difference becomes maximum, even if the above superheat control is performed based on the detection value of the thermistor or pressure sensor with variations in detection performance, Ability can be constant at maximum level.

【0054】また、請求項4の発明では、今回の出入口
温度差が前回のものよりも小さかった場合に、開度を小
さくして最大能力を回復するようにしたので、上記請求
項3の発明において、開度が大きくなり過ぎることによ
る能力低下を回避することができる。
Further, in the invention of claim 4, when the difference in inlet / outlet temperature of this time is smaller than that of the previous time, the opening is reduced to restore the maximum capacity. In, it is possible to avoid a decrease in capacity due to an excessively large opening.

【0055】また、請求項5の発明によれば、上記請求
項3又は4の発明において、請求項2の発明と同様の効
果を奏することができる。
According to the invention of claim 5, in the invention of claim 3 or 4, the same effect as that of the invention of claim 2 can be obtained.

【0056】さらに、請求項6の発明では、開度調整の
段階で、運転条件の変化に基づいて開度を再設定するよ
うにしたので、上記請求項1、2又は5の発明におい
て、運転条件の変化に応じて冷凍機の能力を一定化する
ことができる。
Further, in the invention of claim 6, the opening is reset at the stage of adjusting the opening based on the change of the operating condition. Therefore, in the invention of claim 1, 2 or 5, the operation is performed. The capacity of the refrigerator can be made constant according to changes in conditions.

【0057】また、請求項7の発明では、吸込圧の安定
度に基づいて運転条件の変化を判定するようにしたの
で、上記請求項6の発明において、新たな検出手段を用
いることなく運転条件の変化を判定することができる。
Further, according to the invention of claim 7, the change of the operating condition is judged based on the stability of the suction pressure. Therefore, in the invention of claim 6, the operating condition is changed without using a new detecting means. Can be determined.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の構成を示す図である。FIG. 1 is a diagram showing a configuration of the present invention.

【図2】この発明の実施例に係る冷却装置及びそのコン
トローラのブロック図である。
FIG. 2 is a block diagram of a cooling device and its controller according to an embodiment of the present invention.

【図3】能力一定化制御の前半部を示すフローチャート
図である。
FIG. 3 is a flowchart showing a first half of constant capacity control.

【図4】能力一定化制御の後半部を示すフローチャート
図である。
FIG. 4 is a flowchart showing the latter half of the capability constant control.

【図5】能力最大化制御の前段部を示すフローチャート
図である。
FIG. 5 is a flowchart showing a front stage part of capacity maximization control.

【図6】能力最大化制御の中段部を示すフローチャート
図である。
FIG. 6 is a flowchart showing a middle stage part of capacity maximization control.

【図7】能力最大化制御の後段部を示すフローチャート
図である。
FIG. 7 is a flowchart showing a latter part of the capacity maximization control.

【符号の説明】[Explanation of symbols]

(1) 圧縮機 (2) 凝縮器(熱源側熱交換器) (3) 電動膨張弁(電子膨張弁) (4) 蒸発器(利用側熱交換器) (4a) 冷却水流通部(媒体流通部) (5) 冷媒回路 (6) 開度調整手段 (7) 吸込圧センサ(吸込圧検出手段) (8) 開度設定手段 (9) 安定度判定手段 (10) 開度保持手段 (11) 入口水温センサ(入口温度検出手段) (12) 出口水温センサ(出口温度検出手段) (13) 条件変化判定手段 (14) 再設定手段 (Ps) 吸込圧 (Twi) 入口水温(入口温度) (Two) 出口水温(出口温度) (1) Compressor (2) Condenser (heat source side heat exchanger) (3) Electric expansion valve (electronic expansion valve) (4) Evaporator (use side heat exchanger) (4a) Cooling water flow section (medium flow) Part) (5) refrigerant circuit (6) opening adjustment means (7) suction pressure sensor (suction pressure detection means) (8) opening setting means (9) stability determination means (10) opening holding means (11) Inlet water temperature sensor (inlet temperature detection means) (12) Outlet water temperature sensor (outlet temperature detection means) (13) Condition change determination means (14) Resetting means (Ps) Suction pressure (Twi) Inlet water temperature (inlet temperature) (Two) ) Outlet water temperature (outlet temperature)

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機(1)、熱源側熱交換器(2)、
電子膨張弁(3)及び利用側熱交換器(4)を順次接続
してなる冷媒回路(5)を備え、圧縮機(1)に吸込ま
れる冷媒ガスの過熱度制御を上記電子膨張弁(3)の開
度調整により行うようになされた冷凍機の運転制御装置
であって、 上記過熱度制御運転の後で、電子膨張弁(3)の開度を
段階的に順次変更して開度調整を行う開度調整手段
(6)と、 上記圧縮機(1)に吸込まれる冷媒ガスの吸込圧(P
s)を検出する吸込圧検出手段(7)と、 上記吸込圧検出手段(7)の出力信号を受け、上記開度
調整手段(6)により電子膨張弁(3)の開度が大きく
なるように調整されたときの吸込圧(Ps)の変化の度
合が所定値よりも小さくなった段階で電子膨張弁(3)
の開度を固定する開度設定手段(8)とを備えたことを
特徴とする冷凍機の運転制御装置。
1. A compressor (1), a heat source side heat exchanger (2),
The electronic expansion valve (3) and the usage-side heat exchanger (4) are connected in sequence to provide a refrigerant circuit (5) for controlling the degree of superheat of the refrigerant gas sucked into the compressor (1). The operation control device for a refrigerator configured to perform the opening degree adjustment of 3), wherein the opening degree of the electronic expansion valve (3) is sequentially changed stepwise after the superheat control operation. An opening adjustment means (6) for adjusting, and a suction pressure (P of the refrigerant gas sucked into the compressor (1).
s) is detected, and the output signals of the suction pressure detecting means (7) are received, so that the opening degree adjusting means (6) increases the opening degree of the electronic expansion valve (3). When the degree of change of the suction pressure (Ps) when adjusted to 0 becomes smaller than a predetermined value, the electronic expansion valve (3)
And an opening degree setting means (8) for fixing the opening degree of the refrigerator.
【請求項2】 過熱度制御運転の後で、吸込圧検出手段
(7)の出力信号を受け、吸込圧(Ps)のバラツキの
度合が所定値よりも小さいことを判定する安定度判定手
段(9)と、 上記安定度判定手段(9)の出力信号を受け、吸込圧
(Ps)のバラツキの度合が所定値よりも大きい場合に
は開度調整時期を遅らせる開度保持手段(10)とを備
えたことを特徴とする請求項1記載の冷凍機の運転制御
装置。
2. A stability determining means for receiving an output signal of the suction pressure detecting means (7) after the superheat control operation and determining that the degree of variation of the suction pressure (Ps) is smaller than a predetermined value. 9) and an opening holding means (10) for receiving the output signal of the stability judging means (9) and delaying the opening adjustment timing when the degree of variation of the suction pressure (Ps) is larger than a predetermined value. The operation control device for a refrigerator according to claim 1, further comprising:
【請求項3】 圧縮機(1)、熱源側熱交換器(2)、
電子膨張弁(3)及び利用側熱交換器(4)を順次接続
してなる冷媒回路(5)を備え、圧縮機(1)に吸込ま
れる冷媒ガスの過熱度制御を上記電子膨張弁(3)の開
度調整により行い、かつ利用側熱交換器(4)の媒体流
通部(4a)にて冷媒と被熱交換媒体との間で熱交換を
行うようになされた冷凍機の運転制御装置であって、 上記過熱度制御運転の後で、電子膨張弁(3)の開度を
段階的に順次変更して開度調整を行う開度調整手段
(6)と、 上記被熱交換媒体の媒体流通部(4a)入口での温度
(Twi)を検出する入口温度検出手段(11)と、 上記被熱交換媒体の媒体流通部(4a)出口での温度
(Two)を検出する出口温度検出手段(12)と、 上記入口温度検出手段(11)及び出口温度検出手段
(12)の各出力信号を受け、上記開度調整手段(6)
により電子膨張弁(3)の開度が大きくなるように調整
されたときの入口温度(Twi)と出口温度(Two)
との間の差が所定値よりも大きくなった段階で電子膨張
弁(3)の開度を固定する開度設定手段(8)とを備え
たことを特徴とする冷凍機の運転制御装置。
3. A compressor (1), a heat source side heat exchanger (2),
The electronic expansion valve (3) and the usage-side heat exchanger (4) are connected in sequence to provide a refrigerant circuit (5) for controlling the degree of superheat of the refrigerant gas sucked into the compressor (1). Operation control of a refrigerator which is performed by adjusting the opening degree of 3) and is configured to perform heat exchange between the refrigerant and the heat exchange medium in the medium circulation portion (4a) of the utilization side heat exchanger (4). An apparatus for controlling the opening degree of the electronic expansion valve (3) by gradually changing the opening degree of the electronic expansion valve (3) after the superheat control operation, and the heat exchange medium. Temperature detecting means (11) for detecting the temperature (Twi) at the inlet of the medium circulating portion (4a) of the above, and an outlet temperature for detecting the temperature (Two) at the outlet of the medium circulating portion (4a) of the heat exchange target medium Detection means (12) and respective output signals of the inlet temperature detection means (11) and the outlet temperature detection means (12) In response to the above, the opening adjustment means (6)
Temperature (Twi) and outlet temperature (Two) when the opening degree of the electronic expansion valve (3) is adjusted to be large by
And an opening degree setting means (8) for fixing the opening degree of the electronic expansion valve (3) at a stage when the difference between the above and the predetermined value becomes larger than a predetermined value.
【請求項4】 開度設定手段(8)は、今回の開度調整
後における入口温度(Twi)と出口温度(Two)と
の間の差が前回よりも小さくなったことを判定するよう
に構成されており、 開度調整手段(6)は、上記開度設定手段(8)の出力
信号を受け、今回の開度調整後における入口温度(Tw
i)と出口温度(Two)との間の差が前回よりも小さ
くなった場合には電子膨張弁(3)の開度を段階的に順
次小さくする開度調整を行うように構成されていること
を特徴とする請求項3記載の冷凍機の運転制御装置。
4. The opening degree setting means (8) determines that the difference between the inlet temperature (Twi) and the outlet temperature (Two) after the present opening adjustment is smaller than that of the previous time. The opening adjusting means (6) receives the output signal of the opening setting means (8) and receives the inlet temperature (Tw) after the current opening adjustment.
When the difference between i) and the outlet temperature (Two) becomes smaller than the previous time, the opening degree of the electronic expansion valve (3) is adjusted to be gradually reduced stepwise. The operation control device for a refrigerator according to claim 3, wherein.
【請求項5】 圧縮機(1)に吸込まれる冷媒ガスの吸
込圧(Ps)を検出する吸込圧検出手段(7)と、 上記吸込圧検出手段(7)の出力信号を受け、過熱度制
御運転の後で、吸込圧(Ps)のバラツキの度合が所定
値よりも小さいことを判定する安定度判定手段(9)
と、 上記安定度判定手段(9)の出力信号を受け、吸込圧
(Ps)のバラツキの度合が所定値よりも大きい場合に
は開度調整時期を遅らせる開度保持手段(10)とを備
えたことを特徴とする請求項3又は4記載の冷凍機の運
転制御装置。
5. A superheat degree is obtained by receiving a suction pressure detecting means (7) for detecting a suction pressure (Ps) of a refrigerant gas sucked into a compressor (1) and an output signal of the suction pressure detecting means (7). After the control operation, the stability determination means (9) for determining that the degree of variation in the suction pressure (Ps) is smaller than a predetermined value.
And an opening holding means (10) that receives the output signal of the stability determination means (9) and delays the opening adjustment timing when the degree of variation of the suction pressure (Ps) is larger than a predetermined value. The operation control device for a refrigerator according to claim 3 or 4, characterized in that.
【請求項6】 開度調整の後で、運転条件の変化を判定
する条件変化判定手段(13)と、 上記条件変化判定手段(13)の出力信号を受け、運転
条件が変化した場合に過熱度制御運転を再度行わせる再
設定手段(14)とを備えたことを特徴とする請求項
1、2又は5記載の冷凍機の運転制御装置。
6. After the opening adjustment, a condition change determination means (13) for determining a change in operating conditions and an output signal from the condition change determination means (13) are received, and when the operating conditions change, overheating occurs. The operation control device for a refrigerator according to claim 1, 2 or 5, further comprising a resetting means (14) for re-performing the temperature control operation.
【請求項7】 条件変化判定手段(13)は、吸込圧検
出手段(7)の出力信号を受け、吸込圧(Ps)の安定
度に基づいて運転条件の変化を判定するように構成され
ていることを特徴とする請求項6記載の冷凍機の運転制
御装置。
7. The condition change determination means (13) is configured to receive the output signal of the suction pressure detection means (7) and determine a change in operating conditions based on the stability of the suction pressure (Ps). The operation control device for a refrigerator according to claim 6, wherein
JP19824492A 1992-07-24 1992-07-24 Operation control device for freezer Withdrawn JPH0642824A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19824492A JPH0642824A (en) 1992-07-24 1992-07-24 Operation control device for freezer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19824492A JPH0642824A (en) 1992-07-24 1992-07-24 Operation control device for freezer

Publications (1)

Publication Number Publication Date
JPH0642824A true JPH0642824A (en) 1994-02-18

Family

ID=16387907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19824492A Withdrawn JPH0642824A (en) 1992-07-24 1992-07-24 Operation control device for freezer

Country Status (1)

Country Link
JP (1) JPH0642824A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004083656A1 (en) * 2003-03-20 2004-09-30 Atsushi Ota Intermediate insert nut

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004083656A1 (en) * 2003-03-20 2004-09-30 Atsushi Ota Intermediate insert nut

Similar Documents

Publication Publication Date Title
KR100484800B1 (en) Compressor&#39;s Operating Method in Air Conditioner
US6779356B2 (en) Apparatus and method for controlling operation of air conditioner
CN108779939B (en) Refrigerating device
JP2004340470A (en) Refrigeration unit
JP4290480B2 (en) Temperature control method
KR100505237B1 (en) Control method of air-conditioner
JP3208923B2 (en) Operation control device for air conditioner
CN113551437B (en) Air conditioning system and control method
KR100625568B1 (en) Multi type air conditioner
JP2003106615A (en) Air conditioner
JPH09184662A (en) Air conditioner
JPH0642824A (en) Operation control device for freezer
JPH07243711A (en) Two-stage cooler
KR100565995B1 (en) Method for Operating of Multi Type Air-conditioner by Install Position of Indoor-unit
AU2018411936B2 (en) Hot water supply apparatus
JPH06317357A (en) Air conditioner
JPH02192536A (en) Heater device
JPH0239179Y2 (en)
KR880001545B1 (en) Air conditioner
JP3232755B2 (en) Air conditioner
JP2504424B2 (en) Refrigeration cycle
JP2002061979A (en) Cooling and heating system
JPH04295550A (en) Refrigerating cycle apparatus
WO2021149247A1 (en) Air conditioner
KR100304553B1 (en) Heatpump air-conditioner and method for controlling warming mode thereof

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19991005