JPH0641324B2 - Coal quality deterioration prevention method - Google Patents

Coal quality deterioration prevention method

Info

Publication number
JPH0641324B2
JPH0641324B2 JP81984A JP81984A JPH0641324B2 JP H0641324 B2 JPH0641324 B2 JP H0641324B2 JP 81984 A JP81984 A JP 81984A JP 81984 A JP81984 A JP 81984A JP H0641324 B2 JPH0641324 B2 JP H0641324B2
Authority
JP
Japan
Prior art keywords
coal
inert gas
air permeability
quality deterioration
pile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP81984A
Other languages
Japanese (ja)
Other versions
JPS60148830A (en
Inventor
隆 朝倉
正義 佐藤
潔 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP81984A priority Critical patent/JPH0641324B2/en
Publication of JPS60148830A publication Critical patent/JPS60148830A/en
Publication of JPH0641324B2 publication Critical patent/JPH0641324B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G3/00Storing bulk material or loose, i.e. disorderly, articles
    • B65G3/02Storing bulk material or loose, i.e. disorderly, articles in the open air

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Auxiliary Methods And Devices For Loading And Unloading (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)

Description

【発明の詳細な説明】 (発明の目的) 本発明は石炭積山における石炭品質劣化防止方法、特に
石炭積山中への不活性ガスの長期封入による石炭の品質
劣化防止を図る方法に関する。
The present invention relates to a method for preventing deterioration of coal quality in a coal pile, and more particularly to a method for preventing deterioration of coal quality by long-term encapsulation of an inert gas in the coal pile.

石炭をエネルギー源として大量に消費する工場、例えば
製鉄所、火力発電所等における石炭の貯蔵は、積山方式
による屋外貯蔵、つまり野積みによって行われることが
多い。しかし野積みのように石炭を長期にわたって大気
中に貯炭すると、石炭中の活性度の高い炭化水素質ある
いは硫黄分が大気中の酸素と結合してしまい石炭品質が
劣化し、さらに酸化が進むと発熱による貯蔵石炭の自然
発火の危険性も生ずる。
Storage of coal in factories that consume a large amount of coal as an energy source, such as a steel mill and a thermal power plant, is often performed by outdoor storage by the mountain stack method, that is, open storage. However, if coal is stored in the atmosphere for a long period of time like open piles, the highly active hydrocarbonaceous matter or sulfur content in the coal will combine with oxygen in the atmosphere to deteriorate the quality of coal and further promote oxidation. There is also a risk of spontaneous combustion of stored coal due to heat generation.

従来よりこのような石炭の品質劣化防止方法としては、
石炭を湿式で取り扱う方法、サイロ貯炭方式または貯炭
中の酸素を追い出す方法等が行われている。しかし湿式
法はコークス乾留熱量を増加させるため好ましくなく、
またサイロ貯炭はあくまでも小規模貯炭の場合を前提と
するため石炭の大量貯蔵には不向きである。そこで近年
着目されているのは、貯炭中の酸素を追い出す方法であ
り、具体的には石炭積山中へのドライアイスの投入、
石炭積山中への窒素ガスの吹き込み(特公昭54-3148
1)等がおこなわれているが、しかしこの方法において
も二酸化炭素ガスまたは窒素ガスが積山中にとどまって
いる間は有効に石炭の劣化がおさえられるが、時間の経
過と共に二酸化炭素ガスまたは窒素ガスは石炭積山中の
空隙部を通って大気中へ逃散し、この二酸化炭素ガスま
たは窒素ガスの大気中への逃散と共にこれに代って酸素
が再び進入して品質劣化防止効果も減少してくる。その
ため長期にわたって石炭の品質劣化を抑制するためには
大量の二酸化炭素ガスまたは窒素ガスを消費しなければ
ならず、これは経済的に好ましい方法とは言えない。し
たたがって、不活性ガスの消費量を最小限に抑え、しか
も長期間にわたって石炭の品質劣化を効果的に防止する
ことのできる方法として吹き込み不活性ガスの逃散を防
止する方法がいくつかが提案されている。
Conventionally, as a method for preventing such quality deterioration of coal,
A method of handling coal by a wet method, a silo coal storage method, a method of expelling oxygen in the coal storage, and the like are performed. However, the wet method is not preferable because it increases the amount of heat of carbonization of coke.
In addition, silo coal storage is not suitable for large-scale storage of coal because it is premised on the case of small-scale coal storage. Therefore, what has been attracting attention in recent years is the method of expelling oxygen from coal storage, specifically, the input of dry ice into the coal pile,
Injecting nitrogen gas into the pile of coal (Japanese Patent Publication No. 54-3148)
1) etc. are carried out, but even with this method, the deterioration of coal can be effectively suppressed while the carbon dioxide gas or nitrogen gas remains in the pile, but with the passage of time, carbon dioxide gas or nitrogen gas Escapes into the atmosphere through the voids in the coal pile, and at the same time as this carbon dioxide gas or nitrogen gas escapes into the atmosphere, oxygen enters again and the quality deterioration prevention effect also decreases. . Therefore, a large amount of carbon dioxide gas or nitrogen gas must be consumed in order to suppress deterioration of coal quality over a long period of time, which is not an economically preferable method. Therefore, as a method that can minimize the consumption of inert gas and effectively prevent the deterioration of coal quality over a long period of time, some methods have been proposed to prevent the escape of blown inert gas. Has been done.

また従来までの石炭積山における石炭の品質劣化防止方
法における大きな問題点として、石炭銘柄ごとに異なる
品質劣化特性に充分追従出来ないという点がある。すな
わち、例えば石炭積山中に窒素ガスを吹き込む場合にお
いて、粒度、水分等の異なる石炭銘柄に対して同一の吹
き込み条件で窒素ガスの吹き込みを実施しても、常に同
程度の品質劣化防止効果を期待することは不可能であ
り、時には必要以上に窒素ガスを吹き込む可能性さえも
あった。したがって、経済面および品質管理面から石炭
銘柄ごとに異なる品質特性に応じて必要にして最小限の
品質劣化防止処置を行うことが要望されてきた。
Further, one of the major problems in the conventional coal quality deterioration prevention method in the coal pile is that it is not possible to adequately follow the quality deterioration characteristics that differ for each coal brand. That is, for example, when nitrogen gas is blown into a pile of coal, even if the nitrogen gas is blown under the same blowing conditions for coal brands with different particle sizes, moisture, etc., the same level of quality deterioration prevention effect is expected. It was impossible to do this, and sometimes even more nitrogen gas could be blown. Therefore, from the economic and quality control standpoints, it has been demanded to take necessary and minimum quality deterioration prevention measures according to different quality characteristics for each coal brand.

そこで本発明者らは、従来技術の問題点である、野積貯
蔵炭の最小限の不活性ガス消費による長期間にわたる効
果的な石炭の品質劣化防止ならびに石炭銘柄ごとに異な
る品質劣化特性を考慮した品質劣化防止技術を確立すべ
く研究を重ねた。その結果、今日までにすでに提案され
ている方法のうち、石炭積山中の空隙部の酸素を不活性
ガスで置換する不活性ガスの吹き込み方法、積山表層部
をローラー等により加圧締結して石炭積山中のかさ密度
を上昇させ、あるいは石炭積山表面に樹脂剤を撒布する
ことにより外気の流入および不活性ガスの流出を遮断
し、長期にわたって不活性ガスを積山中に封入する方法
にはいわゆる通気率に応じた最適条件がみられること、
ならびに石炭銘柄ごとに異なる品質劣化特性と通気率と
の間には強い相関がみれら、したがって入荷石炭の通気
率評価を行い、この評価に応じて上述の各処理方法の各
々を決定することにより不活性ガスによる品質劣化防止
を効果的にかつ経済的に長期間にわたって行い得ること
を見い出し本発明を完成させたものである。
Therefore, the present inventors considered the problem of the prior art, that is, effective prevention of quality deterioration of coal for a long period of time due to minimum inert gas consumption of stored coal, and different quality deterioration characteristics for each coal brand. We have continued our research to establish quality deterioration prevention technology. As a result, among the methods already proposed to date, a method of blowing an inert gas that replaces the oxygen in the voids in the coal pile with an inert gas, and pressure-bonding the surface layer of the pile with a roller, etc. The method of blocking the inflow of outside air and the outflow of inert gas by increasing the bulk density in the mountain or by spreading the resin agent on the surface of the coal mountain and enclosing the inert gas in the mountain for a long time is called so-called ventilation. Optimal conditions are found according to the rate,
In addition, there is a strong correlation between the quality deterioration characteristics and the air permeability that differ for each coal brand, and therefore the air permeability of the incoming coal is evaluated, and by determining each of the above treatment methods according to this evaluation. The inventors have completed the present invention by finding that quality deterioration due to an inert gas can be effectively and economically performed over a long period of time.

(発明の構成) すなわち、本発明は、石炭を積山方式により長期屋外保
存するに際し、下記式で定義される石炭の通気率に応じ
て、予め求めた通気率と酸化抑制有効期間との関係に基
づいて、目的とする貯蔵期間を外れない場合には、その
まま石炭積山中への不活性ガスの吹き込み、目的とする
貯蔵期間を外れる場合には、石炭積山表層部の加圧締結
によりまたはさらに石炭積山表面への樹脂剤の散布によ
る不活性ガスの封じ込みを行い、通気率の低下を図り、
目的とする貯蔵期間内に上記酸化抑制有効期間がくるよ
うに調整することを特徴とする、石炭の品質劣化防止方
法である。
(Structure of the invention) That is, the present invention, when the coal is stored outdoors for a long time by the pile method, depending on the air permeability of the coal defined by the following formula, the relationship between the air permeability and the oxidation suppression effective period determined in advance. Based on the above, if the target storage period is not exceeded, the inert gas is blown into the coal pile as it is, and if the target storage period is not reached, the coal is piled under pressure or further coal is applied. Inert gas is sealed by spraying a resin agent on the surface of the mountain and the ventilation rate is reduced.
It is a method for preventing deterioration of coal quality, which is characterized in that adjustment is made so that the above-mentioned effective period for inhibiting oxidation comes within a target storage period.

式: K:通気率[m2/Hr・m・水柱] ΔP:充填層の圧力硬化[m・水柱] L:充填層の厚さ[m] V:空塔速度[m/Hr] ここに、不活性ガスとは窒素、二酸化炭素を代表例とす
る非酸化性ガスであるが、特にそれらにのみ制限される
ものではない。また石炭の通気率は予め入荷石炭をサン
プリングすることによって決定すれば良く、そのように
して得た通気率に応じ各品質劣化方法が適宜選択される
のである。本来通気率とは多孔質物の気体透過性の尺度
であり、当業界において良く知られた内容であるが、本
発明の場合における如く石炭の通気率というと、本発明
者らの知見によれば、主に石炭の粒度分布および水分に
深く関連した因子である。したがって、貯蔵時の石炭劣
化の形態あるいは進行に深く相関するのであって、本発
明はそれらを制御因子として利用する方式ということが
できる。
formula: K: Air permeability [m 2 / Hr · m · water column] ΔP: Pressure hardening of packed bed [m · water column] L: Packed layer thickness [m] V: Superficial velocity [m / Hr] The active gas is a non-oxidizing gas typified by nitrogen and carbon dioxide, but is not particularly limited thereto. The air permeability of coal may be determined by sampling incoming coal in advance, and each quality deterioration method is appropriately selected according to the air permeability thus obtained. Originally, the air permeability is a measure of gas permeability of a porous material, and is a content well known in the art. However, according to the findings of the present inventors, the air permeability of coal as in the case of the present invention. , Mainly related to the particle size distribution and water content of coal. Therefore, the present invention is deeply correlated with the form or progress of coal deterioration during storage, and the present invention can be said to be a system utilizing them as a control factor.

以下、本発明についてさらに詳しく説明する。Hereinafter, the present invention will be described in more detail.

すでに述べたように積山における石炭の品質劣化を長期
にわたり防止する方法としては、(i)積山中に不活性
ガスを吹き込む方法、(ii)積山表層部をローラー等に
より加圧締結して積山表層部のかさ密度を上昇させて不
活性ガスを封じ込める方法、さらに(iii)積山表面に
樹脂剤を撒布することにより表面からの通気を遮断して
外気の流入および不活性ガスの流出を防止して不活性ガ
スを封じ込める方法がある。このような各手段を石炭の
通気率に応じ適宜採用することにより不活性ガスが長期
間にわたって石炭中に封入され、石炭の酸化による劣化
が経済的にかつ効果的に防止されることになる。
As described above, as a method for preventing the quality deterioration of coal in Mt.yama for a long time, (i) a method of blowing an inert gas into the mound, and (ii) pressure-bonding the Mt. Method to increase the bulk density of the part to contain the inert gas, and (iii) Spread the resin agent on the surface of the mountain to block the ventilation from the surface to prevent the inflow of outside air and the outflow of the inert gas. There is a method to contain the inert gas. By appropriately adopting each of these means according to the air permeability of the coal, the inert gas is enclosed in the coal for a long period of time, and the deterioration due to the oxidation of the coal is economically and effectively prevented.

本発明の1つの好適態様においては、計測された通気率
に応じて、上述の各手段(i)ないし(iii)は順次組
合せて行ってもよく、例えば一般にはまずはじめに不活
性ガスによって石炭積山中の酸素を完全に置換し、続い
てローラー等によるその表層部の加圧締結、次いでその
後に樹脂剤を表面に散布して完全に外気との遮断を行う
ことが好ましい。しかしこの工程の順序については各種
の変更が可能であり、本発明にあっては前述の如き不活
性ガスの吹き込み→加圧締結→樹脂剤撒布の組合せ・順
序にのみ制限されるものではない。目的とする貯蔵期間
内の酸化抑制有効期間を実現し得る通気率とすることが
できれば、特に制限されない。
In a preferred embodiment of the present invention, the above-mentioned means (i) to (iii) may be sequentially combined in accordance with the measured air permeability, and, for example, generally, first, the coal product is first mixed with an inert gas. It is preferable to completely replace the oxygen in the mountains, then press-fasten the surface layer with a roller or the like, and then spray the resin agent on the surface to completely shut off the air. However, various changes can be made to the order of this step, and the present invention is not limited only to the combination and order of the blowing of the inert gas, the pressure fastening, and the spreading of the resin agent as described above. The air permeability is not particularly limited as long as it has a ventilation rate that can realize the target oxidation suppression effective period within the storage period.

次にこれらの各方法の態様と上記通気率との相関につい
てさらに詳述する。
Next, the correlation between the aspect of each of these methods and the air permeability will be described in more detail.

まず、“不活性ガスの吹き込み”方法は石炭の不活性ガ
ス置換率を向上させるためのものであって、その吹き込
み量は本来は石炭のかさ密度(粒度分布)に応じて変化
させるべきものである。そこで平均粒径10mmと5mmの石
炭を利用して吹き込み流量速度を種々変化させて不活性
ガスの置換率(石炭積山にみられる空隙部中の酸素濃度
10%以下の領域/上記空隙部の全体積)を測定した。結
果を第1図にグラフにまとめて示す(ただし、吹き込み
ガス=窒素ガス、吹き込み時間=24時間、石炭積山=22
kt/山)。図中−●−は平均粒径10mm、−○−は平均粒
径5mmの場合をそれぞれ示す。第1図に示す結果より吹
き込み流量速度の増加につれて各粒度ごとに不活性ガス
の置換率は増加して行くが、1000Nm3/Hrを越えると置換
率はいずれの場合も飽和してしまい、粒度つまり通気率
との相関はみられなくなる。このことはいずれの粒度に
おいても有効な吹き込み流量速度は1000Nm3/Hr以下とす
ることにより、各通気率に応じた最適吹込み量がみられ
るということである。したがって、本発明においては石
炭のかさ密度に相関する因子として通気率を評価し、こ
れに応じた最適吹き込み流量速度を1000Nm3/Hr以下の範
囲で決定することにより有効品質劣化防止が図られる。
First of all, the “inert gas blowing” method is for improving the inert gas substitution rate of coal, and the blowing amount should be originally changed according to the bulk density (particle size distribution) of coal. is there. Therefore, by using coal with an average particle diameter of 10 mm and 5 mm, the flow rate of the blown gas was changed variously to replace the inert gas (oxygen concentration in the voids seen in coal piles).
The area of 10% or less / the total volume of the voids) was measured. The results are summarized in the graph in Figure 1 (however, blowing gas = nitrogen gas, blowing time = 24 hours, coal pile = 22).
kt / mountain). In the figure,-●-shows an average particle diameter of 10 mm, and-○-shows an average particle diameter of 5 mm. From the results shown in Fig. 1, the replacement rate of the inert gas increases with each particle size as the blowing flow rate increases, but when the rate exceeds 1000 Nm 3 / Hr, the replacement rate becomes saturated in all cases, and the particle size In other words, there is no correlation with the air permeability. This means that the effective blowing flow rate for any particle size is 1000 Nm 3 / Hr or less, so that the optimum blowing amount according to each air permeability can be seen. Therefore, in the present invention, effective quality deterioration can be prevented by evaluating the air permeability as a factor correlating with the bulk density of coal and determining the optimum blowing flow rate in the range of 1000 Nm 3 / Hr or less.

すなわち、通気率に応じた最適吹き込み流量速度は、積
山内の圧力降下ΔP(すなわち、ノズル元圧)が一定に
なる場合に達成できる。
That is, the optimum blowing flow rate according to the ventilation rate can be achieved when the pressure drop ΔP (that is, the nozzle original pressure) in the pile becomes constant.

例えば、不活性ガスとして窒素ガスを使用することを考
えると、前述のようにΔP=V・L/K=一定であり、
通常、石炭積山の高さLはヤード荷上げ装置の寸法上一
定となるため、ΔPを一定とするためにはV/K=一定
とすればよい。
For example, considering that nitrogen gas is used as the inert gas, ΔP = V · L / K = constant as described above,
Normally, the height L of the coal pile is constant in terms of the size of the yard lifting device, and therefore V / K = constant may be set in order to keep ΔP constant.

ここで、通気率Kは前述のように計測することで求めら
れるから、それに応じた最適Vが決定される。
Here, since the air permeability K is obtained by measuring as described above, the optimum V is determined accordingly.

このことは、換言すれば、所定の不活性ガス流量Vでの
石炭充填層の圧力損失ΔPを測定することによってKは
決定できるとも言える。
In other words, it can be said that K can be determined by measuring the pressure loss ΔP of the coal packed bed at a predetermined inert gas flow rate V.

なお、Kは充填密度すなわち空げき率ε、石炭の粒径d
pによって依存することを確認した。下式で整理され
る。
Note that K is the packing density, that is, the void ratio ε, and the particle size d of coal.
It was confirmed to depend on p. It is arranged by the following formula.

ここで、gc:重力換算係数 φ:形状係数(0.5) μ:不活性ガスの粘度(kgf・hr/m2) 上式を用いれば、通気率Kが各積山毎の粒径、充填密度
に応じて決定できるため、それを適宜調整することで所
用酸化抑制有効期間を確保するとともに、V/K=一定
の関係より、最適の不活性ガス吹き込み量V(これは通
気率算出式では空塔速度として定義されるが、通常積山
の面積をほぼ一定であるため一般には不活性ガス吹込流
量速度(Nm3/Hr)と同等に扱うことができる)が決定され
る。
Here, gc: Gravity conversion factor φ: Shape factor (0.5) μ: Viscosity of inert gas (kgf · hr / m 2 ) If the above formula is used, the air permeability K will be the particle size and packing density of each pile. Since the required oxidation suppression effective period can be secured by adjusting it appropriately, the optimum inert gas blowing amount V (this is the empty column in the ventilation rate calculation formula can be determined from the relationship of V / K = constant). It is defined as velocity, but generally the area of cumulus is almost constant, so generally it can be treated as an inert gas blowing rate (Nm 3 / Hr)).

次に“不活性ガスの封じ込み”方法と通気率との相関を
調べるために、ガス封じ込みを行わない状態での酸化抑
制有効期間(ここに言う“有効”とは不活性ガス置換率
が60%以上であることを意味する)の測定を通気率に対
して行った。結果を第2図にグラフで示す(ただし、吹
き込みガス=窒素ガス、吹き込み時間=24時間、石炭積
山=22kt/山)。第2図より通気率の比較的大きな石炭
では、酸化抑制有効期間が短く、不活性ガスの封じ込み
が必要になってくることがわかる。したがって、石炭の
通気率に応じて、例えばローラーの重量を変えて石炭積
山表層部の加圧締結を行ったり、あるいは石炭積山表面
に樹脂剤の散布を行うことにより必要にしてかつ十分な
不活性ガスの封じ込みを行う。具体的には所要貯蔵期間
中不活性ガス置換率60%以上を維持できる程度に不活性
ガスの封じ込みを行い得れば十分である。また不活性ガ
スの封じ込みに使用する樹脂剤については、石炭積山表
面に樹脂層を形成して外気と石炭積山内空隙部の気体と
の実質的遮断を行えるようなものであればどのようなも
のでもよく、例えば特開昭58-117270号に開示されてい
る樹脂でもよいが、本発明にあっては特にそのような特
定の樹脂組成・種類に制限されるものではない。
Next, in order to investigate the correlation between the "inert gas containment" method and the air permeability, the oxidation suppression effective period without gas containment ("effective" here means the inert gas replacement rate (Meaning 60% or more) was performed on the air permeability. The results are shown graphically in Fig. 2 (however, blowing gas = nitrogen gas, blowing time = 24 hours, coal pile = 22 kt / mountain). It can be seen from FIG. 2 that coal having a relatively large air permeability has a short oxidation suppression effective period, and it is necessary to contain an inert gas. Therefore, depending on the air permeability of the coal, for example, by changing the weight of the roller to perform pressure fastening of the surface layer of the coal pile, or by spraying the resin agent on the surface of the coal pile, necessary and sufficient inertness is achieved. Contain gas. Specifically, it is sufficient if the inert gas can be confined to the extent that the inert gas substitution rate of 60% or more can be maintained during the required storage period. As for the resin agent used for containing the inert gas, any resin agent can be used as long as it can form a resin layer on the surface of the coal pile to substantially block the outside air and the gas in the void inside the coal pile. For example, the resin disclosed in JP-A-58-117270 may be used, but the present invention is not particularly limited to such a specific resin composition and type.

なお、以上のように本発明にあっては石炭の通気率に応
じ各処理手段を選択するのであるが、そのときの石炭の
積山の通気率は可及的に一定であるべきであって、例え
ば石炭の粒度分布のバラツキが大きく、通常の積付方法
では積山内部の粒度偏析が大きくなってしまう場合、積
山の1部分の通気率の異常な増加によって吹き込んだ不
活性ガスが吹き抜けてしまう場合がある。そこで本発明
によれば石炭銘柄ごとに通気率の評価を行い、これによ
って粒度分布のバラツキが確認された場合には、石炭の
屋外貯蔵に際しての積付方法を一般の一条積からいわゆ
る俵積みにして、石炭山全体の粒度および通気率を可及
的に均一にすることが有効となる。
In the present invention as described above, each processing means is selected according to the air permeability of coal, but the air permeability of the pile of coal at that time should be as constant as possible, For example, when the variation in the particle size distribution of coal is large and the particle size segregation inside the pile becomes large by the usual loading method, when the inert gas blown in due to an abnormal increase in the air permeability of one part of the pile is blown out. There is. Therefore, according to the present invention, the aeration rate is evaluated for each coal brand, and if a variation in the particle size distribution is confirmed by this, the loading method for outdoor storage of coal is changed from general one-row loading to so-called bale loading. Therefore, it is effective to make the particle size and air permeability of the entire coal mine as uniform as possible.

次に実施例によって本発明をさらに詳しく説明する。Next, the present invention will be described in more detail by way of examples.

(発明の効果) 実施例1 不活性ガスの封じ込みによる効果を比較するために、下
記の条件で石炭積山中への不活性ガスの吹き込みを行
い、不活性ガスの封じ込みの有無による石炭の品質劣化
防止効果の違いをFI値の測定により行った。ただしこ
こに言うFI値とは石炭の品質を表す指標であり、一般
に最高流動度の対数で表す。実験Aは、不活性ガスの封
じ込みを行い、実験Bは行わなかったものである。
(Effects of the invention) Example 1 In order to compare the effects due to the containment of the inert gas, the inert gas was blown into the coal pile under the following conditions, and the presence or absence of the containment of the inert gas The difference in quality deterioration prevention effect was measured by measuring the FI value. However, the FI value mentioned here is an index showing the quality of coal and is generally expressed by the logarithm of the maximum fluidity. Experiment A was one in which the inert gas was sealed in and Experiment B was not performed.

実験条件 (実験A・B) 対象銘柄:ピットン炭 入荷時石炭FI値:3.7 石炭重量:22kt/山 不活性ガス吹き込み(窒素ガス) 平均流量速度:500Nm3/Hr 吹き込み時間:24時間 吹き込み量:12000Nm3 石炭積付方法:一条積 貯蔵期間:120日 (実験Aのみ) 不活性ガス封じ込み :ローラー(接地圧0.5kg/cm2)による積山表層部加圧
成形および樹脂(アクリル系樹脂剤)の表面撒布、ただ
しガスの吹き込み後に行った。本例の通気率は105m2/Hr
・m・水柱が、樹脂剤撒布後には102m2/Hr・m・水柱と
なった。実験結果(FI値) 実験A:3.3 実験B:2.5 実験結果より明らかなように、ガスの封じ込み以外はす
べて同条件で行ったA、BのFI値を比較するとAは入
荷時に比べて−0.4、Bは−1.2とガスの吹き込み直後に
封じ込みを行うことにより約3倍の品質劣化防止効果が
確認された。
Experimental conditions (Experiments A and B) Target brand: Pitton coal Coal FI value at arrival: 3.7 Coal weight: 22kt / mountain Inert gas injection (nitrogen gas) Average flow rate: 500Nm 3 / Hr Injection time: 24 hours Injection amount: 12000Nm 3 Coal loading method: 1-row loading Storage period: 120 days (Experiment A only) Encapsulation of inert gas : Roller (ground pressure 0.5kg / cm 2 ) pressure molding of pile surface layer and resin (acrylic resin agent) The surface was sprinkled, but after blowing gas. The air permeability of this example is 10 5 m 2 / Hr
・ The m · water column became 10 2 m 2 / Hr · m · water column after spraying the resin agent. Experiment results (FI value) Experiment A: 3.3 Experiment B: 2.5 As is clear from the experiment results, when the FI values of A and B were compared under the same conditions except that the gas was confined, A was compared to when it arrived. 0.4 and B were -1.2, and it was confirmed that the quality deterioration prevention effect of about 3 times was confirmed by sealing immediately after the gas was blown.

実施例2 試料であるブルークリーク炭の通気率評価を行い、本発
明により以下の最適条件の下で野積貯蔵を行った。さら
に第1表の条件によって実験を行い、10日ごとにFI値
を測定してその結果を第3図にグラフで示す。ただし図
中の符号は、−○−:実験C、−●−:実験D、−△
−:実験E、−▲−:実験Fを各々表す。
Example 2 A sample of Blue Creek charcoal was evaluated for air permeability, and was stored under the following optimum conditions according to the present invention. Further, an experiment was conducted under the conditions shown in Table 1, the FI value was measured every 10 days, and the results are shown in a graph in FIG. However, the symbols in the figure are-○-: Experiment C,-●-: Experiment D,-△
−: Experiment E, − ▲ −: Experiment F, respectively.

通気率=5000m2/Hr・m・水柱 FI値=3.5 処理条件: 不活性ガスの吹き込み:流量速度:600Nm3/時間 不活性ガスの封じ込み:ローラー接地圧0.4kg/cm2 樹脂剤散布 樹脂剤撒布後の通気率:102m2/Hr・m・水柱 石炭の積付方式:一条積 第3図の結果より各方式とも貯蔵期間の経過と共に、各
々FI値が低下しているが、120日の時点で比較すると
入荷時のFI値からの低下は、最大の品質劣化防止効果
を示した実験Cでは−0.3、全く品質劣化防止を行わな
かった実験Fでは−2.0と、本発明により品質劣化が約1
/7になることが確認された。また不活性ガスの吹き込み
+封じ込みを行った本発明の実験C、Dは、貯蔵期間12
0日の時点での入荷時からのFI値低下−0.3〜−1.2で
あり、従来の品質劣化防止方法である不活性ガス吹き込
みのみを行った実験Eの−1.8に比べて非常に優れた品
質劣化防止効果を示した。さらに同じ不活性ガスの吹き
込み+封じ込みを行った場合でも、通気率評価によって
最適な不活性ガス吹き込み流量速度600Nm2/Hrで行った
実験C(FI値低下−0.3)が、非最適値の300Nm3/Hrで
行った実験C(FI値低下−1.2)に比べて約4倍の品
質劣化防止効果を示した。
Air permeability = 5000 m 2 / Hr · m · water column FI value = 3.5 Processing conditions: Inert gas blowing: Flow rate: 600 Nm 3 / hour Inert gas containment: Roller ground pressure 0.4 kg / cm 2 Resin agent spray resin Air permeability after spraying: 10 2 m 2 / Hr ・ m ・ water column Coal loading method: 1 row volume From the results in Fig. 3, the FI value decreases with the passage of storage time for each method, but when compared at the time of 120 days, the decrease from the FI value at the time of receipt shows the maximum quality deterioration prevention effect. In Experiment C, the quality deterioration was about -0.3, and in Experiment F in which the quality deterioration was not prevented at all, it was -2.0.
It was confirmed to be / 7. In addition, Experiments C and D of the present invention, in which the inert gas was blown in and contained, were stored for 12 hours.
The FI value declined from the time of arrival at the 0th day was -0.3 to -1.2, which is a very superior quality compared to -1.8 of Experiment E in which only the inert gas blowing, which is a conventional quality deterioration prevention method, was performed. It showed the effect of preventing deterioration. Even when the same inert gas was blown in and confined, the experiment C (FI value decrease -0.3) conducted at the optimum inert gas blowing flow rate of 600 Nm 2 / Hr by the evaluation of the air permeability was the non-optimal value. Compared to the experiment C (FI value decrease −1.2) conducted at 300 Nm 3 / Hr, the effect of preventing quality deterioration was about 4 times.

以上の説明より明らかなように、本発明によれば最小限
の不活性ガス消費により長期間にわたって石炭の品質劣
化防止ができるばかりではなく、石炭銘柄ごとに異なる
品質劣化防止特性を考慮して、さらに有効に石炭の品質
劣化が防止できるものである。
As is clear from the above description, according to the present invention, not only can the quality deterioration of coal be prevented for a long period of time by the minimum inert gas consumption, but considering different quality deterioration prevention characteristics for each coal brand, Further, it is possible to effectively prevent the quality deterioration of coal.

【図面の簡単な説明】[Brief description of drawings]

第1図は吹き込み流量速度の変化による石炭中の気体の
不活性ガスによる置換率を示すグラフ; 第2図は、通気率と酸化抑制有効期間との関係を示すグ
ラフ;および 第3図は、貯蔵期間の経過による石炭の品質劣化を示す
グラフである。
FIG. 1 is a graph showing the rate of replacement of gas in coal with an inert gas due to changes in the blowing flow rate; FIG. 2 is a graph showing the relationship between air permeability and oxidation suppression effective period; and FIG. It is a graph which shows the quality deterioration of coal with progress of a storage period.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】石炭を積山方式により長期屋外保存するに
際し、下記式で定義される石炭の通気率に応じて、予め
求めた通気率と酸化抑制有効期間との関係に基づいて、
目的とする貯蔵期間を外れない場合には、そのまま石炭
積山中への不活性ガスの吹き込み、目的とする貯蔵期間
を外れる場合には、石炭積山表層部の加圧締結によりま
たはさらに石炭積山表面への樹脂剤の散布による不活性
ガスの封じ込みを行い、通気率の低下を図り、目的とす
る貯蔵期間内に上記酸化抑制有効期間がくるように調整
することを特徴とする、石炭の品質劣化防止方法。 式: K:通気率〔m2/Hr・m・水柱〕 ΔP:充填層の圧力硬化〔m・水柱〕 L:充填層の厚さ〔m〕 V:空塔速度〔m/Hr〕
1. When the coal is stored outdoors for a long time by the mountain stack method, based on the relationship between the air permeability and the oxidation inhibition effective period, which is determined in advance, according to the air permeability of the coal defined by the following formula:
If the target storage period is not exceeded, the inert gas is blown into the coal pile as it is, and if the target storage period is not reached, by pressure fastening of the coal pile surface layer or further to the coal pile surface. The deterioration of coal quality, which is characterized by containing inert gas by spraying the resin agent in order to reduce the air permeability and adjusting so that the above-mentioned effective period for inhibiting oxidation comes within the intended storage period. Prevention method. formula: K: Permeability [m 2 / Hr · m · water column] ΔP: Pressure hardening of packed bed [m · water column] L: Packed layer thickness [m] V: Superficial velocity [m / Hr]
JP81984A 1984-01-09 1984-01-09 Coal quality deterioration prevention method Expired - Lifetime JPH0641324B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP81984A JPH0641324B2 (en) 1984-01-09 1984-01-09 Coal quality deterioration prevention method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP81984A JPH0641324B2 (en) 1984-01-09 1984-01-09 Coal quality deterioration prevention method

Publications (2)

Publication Number Publication Date
JPS60148830A JPS60148830A (en) 1985-08-06
JPH0641324B2 true JPH0641324B2 (en) 1994-06-01

Family

ID=11484274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP81984A Expired - Lifetime JPH0641324B2 (en) 1984-01-09 1984-01-09 Coal quality deterioration prevention method

Country Status (1)

Country Link
JP (1) JPH0641324B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102638049B1 (en) 2019-03-28 2024-02-16 제이에프이 스틸 가부시키가이샤 Method for producing coal mixture and method for producing coke
CN115140487A (en) * 2022-08-12 2022-10-04 内蒙古大唐国际克什克腾煤制天然气有限责任公司 Long-term storage method for lignite blocks

Also Published As

Publication number Publication date
JPS60148830A (en) 1985-08-06

Similar Documents

Publication Publication Date Title
JPH0641324B2 (en) Coal quality deterioration prevention method
WO2005035698A1 (en) Method for treating coal piles, apparatus for applying said method and assembly of apparatus and a coal pile
US4269721A (en) Dust abatement with calcium sulfate
JP2005105029A (en) Method for preventing spontaneous ignition of coal
JPS6012404B2 (en) Passivation method of sponge iron
JP3173495B2 (en) Manufacturing method and manufacturing equipment for artificial stone
JPH10279969A (en) Aging of improved coal and aged improved coal
JPH0453766B2 (en)
JP2865511B2 (en) Method and apparatus for promoting hydration and crushing of steelmaking slag
JP2005194447A (en) Spontaneous ignition inhibitor for coal and method for preventing spontaneous ignition
JP2007145457A (en) Moisture increase preventive method of sintered ore
JPS6012405A (en) Prevention against deterioration in piling coal
US3926617A (en) Passivation of metallized pellets in bulk
JP2000073127A (en) Raw material for blast furnace, and its manufacture
SU1225856A1 (en) Method of charging blast furnace
SK277901B6 (en) Device for heat elaborating and/or gassing of granular materials
JP2000062939A (en) Method and device for preventing raise of dust in carrying raw material
CN217302818U (en) Sludge direct-doping feeding system
Sammt et al. Handling & shipping of DRI/HBI-Will it burn?
Lee Combustion kinetics and NO and SO sub 2 emission behavior of coke pellet mixed with lime/limestone
JPS5716660A (en) Method for keeping silage quality using carbon dioxide gas
JPS5716661A (en) Method for keeping silage quality using carbon dioxide gas
KR101253895B1 (en) Method of treating surface of finex hot compact iron
JP2003313054A (en) Method of treating granulated blastfurnace slag
RU2176213C2 (en) Method of storage and transportation of iron-rich pellets