JPH0640543B2 - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device

Info

Publication number
JPH0640543B2
JPH0640543B2 JP58222034A JP22203483A JPH0640543B2 JP H0640543 B2 JPH0640543 B2 JP H0640543B2 JP 58222034 A JP58222034 A JP 58222034A JP 22203483 A JP22203483 A JP 22203483A JP H0640543 B2 JPH0640543 B2 JP H0640543B2
Authority
JP
Japan
Prior art keywords
oxide film
gate
film
drain
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58222034A
Other languages
Japanese (ja)
Other versions
JPS60115229A (en
Inventor
佳史 川本
康雄 井倉
雄二 谷田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58222034A priority Critical patent/JPH0640543B2/en
Publication of JPS60115229A publication Critical patent/JPS60115229A/en
Publication of JPH0640543B2 publication Critical patent/JPH0640543B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、半導体装置の製造方法に係り、特にドレイン
耐圧およびホツトキヤリア耐圧の高いLDD(Ligh tly
Doped Drain)構造をもつMOSFETの製造に好適な半導体
装置の製造方法に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor device, and more particularly to an LDD (Ligh tally) having high drain breakdown voltage and photocarrier breakdown voltage.
The present invention relates to a semiconductor device manufacturing method suitable for manufacturing a MOSFET having a Doped Drain structure.

〔発明の背景〕[Background of the Invention]

従来LDD構造のMOSFETの製造には、ゲート電極の加工
後、SiO膜もしくはPSG(リン硅酸ガラス)膜を
全表面に被着し、それを異方性ドライエツチしてゲート
側壁にSiOもしくはPSGを残存させる方法を用い
ていた。しかし、この場合ソース・ドレイン領域上にあ
つたゲート絶縁膜と同じ膜厚のSiOがエツチングさ
れSi基板が直接イオン衝撃を受ける。このためSi表
面が損傷を受け、ソース・ドレインの接合のリーク電流
が増加するという問題があつた。さらに、素子分離領域
のSiOもエツチングされ、寄生容量が増大する欠点
があつた。
Conventionally, in the manufacture of a MOSFET having an LDD structure, after processing a gate electrode, a SiO 2 film or a PSG (phosphosilicate glass) film is deposited on the entire surface, and anisotropic dry etching is performed to form SiO 2 or SiO 2 on a gate sidewall. The method of leaving PSG was used. However, in this case, SiO 2 having the same film thickness as the gate insulating film on the source / drain regions is etched and the Si substrate is directly subjected to ion bombardment. As a result, the Si surface is damaged and the leak current at the source / drain junction increases. In addition, SiO 2 in the element isolation region is also etched, resulting in an increase in parasitic capacitance.

〔発明の目的〕[Object of the Invention]

本発明の目的は、上記従来の問題を解決し、Si基板が
直接イオン衝撃を受けることなく、LDD構造を実現
し、ソース・ドレイン接合のリーク電流が十分小さい半
導体装置の製造方法を提供することである。
An object of the present invention is to solve the conventional problems described above, to provide an LDD structure without directly receiving an ion bombardment on a Si substrate, and to provide a method for manufacturing a semiconductor device having a sufficiently small leak current at a source / drain junction. Is.

〔発明の概要〕[Outline of Invention]

本発明は、従来不可能であつたシリコン窒化膜のSiO
に対する高選択な異方性エツチングが、C,H,Fを
含み、F対Hの比がほぼ2以下であるガスを反応ガスに
するドライエツチングで可能であるという新規な知見に
基づいてなされたものであり、CHFもしくはCH
を用いれば極めて好ましい結果が得られる(これら
のガスを単独もしくは混合して使用できることはいうま
でもない)。この高選択、異方性エツチングを用いるこ
とにより、ドライエツチングにおいてSi基板を直接イ
オン衝撃することなく、LDD構造を実現でき、したが
ってソース・ドレイン接合のリーク電流を低減できる。
The present invention is not possible with the conventional silicon nitride film made of SiO 2.
Highly selective anisotropic etching for 2, C, H, includes F, made on the basis of the novel finding that ratios of F to H are possible dry Etsu quenching of the reaction gas of the gas is approximately 2 or less CH 3 F or CH 2
Very good results are obtained with F 2 (it goes without saying that these gases can be used alone or in combination). By using this highly selective and anisotropic etching, the LDD structure can be realized without direct ion bombardment of the Si substrate in dry etching, and therefore the leak current of the source / drain junction can be reduced.

〔発明の実施例〕Example of Invention

本発明の一実施例を第1図により説明する。第1図(a)
に示すように、p型10Ω・cmのSi基板(1)上に通常
の半導体製造工程により、素子分離領域には0.6μmの
厚い熱酸化膜(2)を選択的に形成し、能動領域には20nm
の薄い熱酸化膜(3)を形成した。その後、全表面に、W
(4)を0.3μmスパツタ蒸着し、さらにその上にPSG
(リン硅酸ガラス(5)をCVD(化学気相蒸着)した。
その後、第1図(a)に示すように、通常の写真蝕刻法に
より、ゲート電極パターンを形成した、PSGおよびW
はそれぞれ、CHFガス、SFガスを用いてドライ
エツチングした。またW上にPSGを設けたのは、ソー
ス・ドレインのイオン打ち込みの際チヤネリングにより
ゲート下にn型不純物が導入されるのを防止するためで
ある。つぎにリンを加速電圧100kV、打ち込み量3×
1013cm-2の条件でイオン打ち込みし、ソース・ドレイン
領域に低濃度のn型不純物層(6)を形成する。その後、
第1図(b)に示すように全面にSi(7)をCVD法
で0.3μmの厚さに形成した。しかる後CHガス
を用いてSiを異方性エツチし、ゲート側壁にS
(8)を残存させた。エツチングは、0.3μmのS
をエツチングする時間の10%オーバーに行なつ
たが、このときのソース・ドレインの上の薄いSiO
(3)の膜厚減少量は約1nmにすぎなかつた。したがつ
て、ソース・ドレインのSiが直接イオン衝撃されるこ
とがなく、Si基板が損傷を受けることがなかつた。ま
たイオン打ち込みのチヤネリング防止のPSG膜(5)も
3nmしか膜厚減少しなかつた。次に、ヒ素を加速電圧8
0kV、打ち込み量5×1015cm-2の条件でイオン打ち込み
し、ソース・ドレイン領域の高濃度n型不純物層(9)を
形成した。その後通常の半導体製造工程に従い、パツシ
ベーション膜としてPSG(10)を被着し、コンタクト穴
加工、およびA電極配線(11)を行なつて、LDD構造
を持つMOS−FETを製作した。
An embodiment of the present invention will be described with reference to FIG. Fig. 1 (a)
As shown in Fig. 3, a 0.6μm thick thermal oxide film (2) is selectively formed in the element isolation region on the Si substrate (1) of p-type 10Ω · cm by the normal semiconductor manufacturing process, and the active region is formed. Is 20 nm
A thin thermal oxide film (3) was formed. After that, W on all surfaces
(4) is 0.3μm sputtered and PSG is deposited on it.
(Phosphorus silicate glass (5) was subjected to CVD (chemical vapor deposition).
Then, as shown in FIG. 1 (a), PSG and W were formed with a gate electrode pattern by an ordinary photo-etching method.
Were dry-etched using CHF 3 gas and SF 6 gas, respectively. Further, PSG is provided on W to prevent n-type impurities from being introduced under the gate due to channeling at the time of source / drain ion implantation. Next, phosphorus is used at an acceleration voltage of 100 kV and an implantation amount of 3 ×
Ions are implanted under the condition of 10 13 cm -2 to form a low concentration n-type impurity layer (6) in the source / drain regions. afterwards,
As shown in FIG. 1 (b), Si 3 N 4 (7) was formed on the entire surface by CVD to a thickness of 0.3 μm. After that, Si 3 N 4 is anisotropically etched using CH 2 F 2 gas, and S is deposited on the side wall of the gate.
i 3 N 4 (8) was left. Etching is 0.3 μm S
The etching time for i 3 N 4 was over 10%, but the thin SiO 2 on the source / drain at this time was over.
The thickness reduction amount of (3) was only about 1 nm. Therefore, the Si of the source / drain was not directly bombarded with ions, and the Si substrate was not damaged. Moreover, the film thickness of the PSG film (5) for preventing ion implantation channeling was reduced by only 3 nm. Next, arsenic is accelerated at an acceleration voltage of 8
Ion implantation was performed under the conditions of 0 kV and an implantation amount of 5 × 10 15 cm -2 to form a high concentration n-type impurity layer (9) in the source / drain regions. Then, according to a normal semiconductor manufacturing process, PSG (10) was deposited as a passivation film, contact hole processing and A electrode wiring (11) were performed to manufacture a MOS-FET having an LDD structure.

本発明の製造方法で製作したMOS−FETは、従来の
ソース・ドレインを1回のイオン打ち込みで形成した構
造のMOSFETに対し、ゲートのチヤネル長1.5μm
の素子で約2Vのドレインでレークダウン電圧の向上が
図られた。ドレインとSi基板の接合のリーク電流は、
従来のゲート側壁にSiOまたはPSGを残存させた
場合ソース・ドレインのSi基板が直接イオン衝撃され
ることにより、ドレイン電圧5Vで8×10-11Aであつ
たのに対し、本実施例に示した素子では、5×10-12
以下となつた。したがつて、リーク電流は1桁以上低減
できた。
The MOS-FET manufactured by the manufacturing method of the present invention has a gate channel length of 1.5 μm as compared with the conventional MOSFET having a structure in which the source and drain are formed by one-time ion implantation.
In the device of No. 2, the rake voltage was improved with a drain of about 2V. The leakage current of the junction between the drain and the Si substrate is
When SiO 2 or PSG is left on the side wall of the gate in the related art, the Si substrate of the source / drain is directly bombarded with ions, resulting in 8 × 10 −11 A at a drain voltage of 5 V. In the element shown, 5 × 10 -12 A
The following. Therefore, the leak current could be reduced by one digit or more.

実施例2 第2図(a)に示すように、p型10Ω・cmのSi基板(51)
上に通常の半導体製造工程により、素子分離領域には0.
6μmの厚い熱酸化膜(52)を選択的に形成し、能動領域
には20nmの薄い熱酸化膜(53)を形成した。その後、前表
面にW(54)を0.3μmスパツタ蒸着し、更にその上にP
SG(リン硅酸ガラス)(55)をCVD法により0.1μm
蒸着した。その後第2図(a)に示すように通常の写真蝕
刻法により、ゲート電極パターンを形成した。この時、
PSGはCHFガスを用いてドライエツチした。ま
た、WはSFガスを用いてドライエツチしたが、この
エツチングは0.3μmのWをエツチングする時間の10%
オーバに行なつた結果PSGに対しWが片側で0.1μm
細くなつた。オーバエツチ時間の調整により、このWの
細りは加減できる。次に第2図(b)に示すように全面に
Si(57)をCVD法で0.3μmの厚さに形成し
た。しかる後CHガスを用いてこのSi
異方性エツチし、PSGの庇の下のゲート側壁のSi
(58)を残存させた〔第2図(c)〕。エツチングは、
0.3μmのSiをエツチングする時間の50%オー
バに行ない、PSGの庇の下部のSi(58′)の
みを残すようにした。この時、ソース・ドレイン上の薄
いSiO(3)は5nm程しか減少せず、Siが直接イオ
ン衝撃されることもなかつた。次にヒ素を加速電圧80k
V、打ち込み量5×1015cm-3の条件でイオン打ち込み
し、ソース・ドレイン領域の高濃度不純物層(59)を形成
した〔第2図(d)〕。次に、第2図(e)に示すように、ソ
ース・ドレイン上の薄いSiO(53)をドライエツチで
除去し、熱処理をして、そのダメージを回復させた。こ
の時の条件は950℃10分のNアニールであつた。
この後、全面に100nmのPtをスパツタ蒸着し、45
0℃の熱処理で、ソース・ドレイン上に白金シリサイド
(PtSi)(62)を形成した。その後、王水を用いて、
酸化膜、及び未反応のPtのみ除去した。その後、通常
の半導体製造工程に従い、パツシベーシヨン膜としてP
SG(60)を被着し、コンタクト穴加工、及びA電極配
線(61)を行なつて、第2図(f)の如きMOS−FETを
製作した。
Example 2 As shown in FIG. 2 (a), a p-type 10 Ω · cm Si substrate (51)
Due to the normal semiconductor manufacturing process above, 0.
A 6 μm thick thermal oxide film (52) was selectively formed, and a 20 nm thin thermal oxide film (53) was formed in the active region. After that, 0.3 μm of W (54) was deposited on the front surface by sputtering, and P
SG (phosphorus silicate glass) (55) is 0.1 μm by CVD method.
It was vapor-deposited. Thereafter, as shown in FIG. 2 (a), a gate electrode pattern was formed by a usual photo-etching method. At this time,
PSG was dry etched using CHF 3 gas. Also, W was dry-etched using SF 6 gas, but this etching is 10% of the etching time of 0.3 μm W.
As a result of overshooting, W is 0.1 μm on one side of PSG
Natsuta thin. By adjusting the overetch time, the thinness of W can be adjusted. Next, as shown in FIG. 2 (b), Si 3 N 4 (57) was formed on the entire surface by CVD to a thickness of 0.3 μm. Thereafter CH 2 F 2 gas with the Si 3 N 4 anisotropically Etsuchi, Si gate sidewall under the eaves of the PSG 3
N 4 (58) was left behind [Fig. 2 (c)]. Etching is
The etching time was 50% over 0.3 μm of Si 3 N 4 so that only Si 3 N 4 (58 ′) under the eaves of the PSG was left. At this time, the thin SiO 2 (3) on the source / drain was reduced only by about 5 nm, and Si was not directly bombarded with ions. Arsenic is then accelerated to 80k
Ions were implanted under the conditions of V and an implantation amount of 5 × 10 15 cm −3 to form a high concentration impurity layer (59) in the source / drain regions [FIG. 2 (d)]. Next, as shown in FIG. 2 (e), the thin SiO 2 (53) on the source / drain was removed by dry etching and heat treatment was performed to recover the damage. The condition at this time was N 2 annealing at 950 ° C. for 10 minutes.
After that, 100 nm Pt is sputter-deposited on the entire surface, and 45
By heat treatment at 0 ° C., platinum silicide (PtSi) (62) was formed on the source / drain. After that, using aqua regia,
Only the oxide film and unreacted Pt were removed. After that, according to a normal semiconductor manufacturing process, P is used as a passivation film.
By depositing SG (60), processing a contact hole, and performing A electrode wiring (61), a MOS-FET as shown in FIG. 2 (f) was manufactured.

本実施例によれば、ゲート上のPSGの庇が、エツチン
グのストツパとなつてその下部のSiを残すた
め、0.1μm程度の薄いサイドウオールを確実に形成で
きた。また、オーバエツチも十分に行なえるので、ウエ
ハ面内ばらつきも小さく抑える事ができた。
According to the present example, the eaves of PSG on the gate act as an etching stopper and leave Si 3 N 4 underneath it, so that a thin sidewall of about 0.1 μm could be reliably formed. Further, since overetching can be sufficiently performed, the variation within the wafer surface can be suppressed to be small.

こうして作つたMOS−FETは、シート抵抗が3Ω/
ロ以下に抑えられ、また0.1μmのオフセツトがあるた
め、実効ゲート長が1.0μmと短い所で動作可能であ
り、高速化がはかれた。
The MOS-FET thus made has a sheet resistance of 3Ω /
B) It can be operated at a place where the effective gate length is as short as 1.0 μm because it is suppressed to less than or equal to 0.1 μm and the offset is 0.1 μm.

実施例3 第3図(a)に示すようにp型10ΩcmのSi基板101
上に通常の半導体製造工程により、素子分離領域には0.
6μmの厚い熱酸化膜102を選択的に形成し、能動領
域には、非常に薄いSiO(約2nm)103および5
0nmのSi104の2層絶縁膜を形成した。その
後、全面に多結晶Siを約0.3μmの厚さに堆積させ、
通常の写真蝕刻法により所定の形状に加工した105。
この後多結晶Siのまわりに約10nmのSiO106
を形成し、この状態で、リンを加速電圧100kV、打ち
込み量3×1013cm-2の条件でイオン打ち込みし、ソース
・ドレイン領域に低濃度のn型不純物層107を形成す
る。その後、第3図(b)に示すように、全面にSi
108をCVD法で0.3μmの厚さに形成した。しか
るのち、CHガスを用いて、Siを異方性
エツチし、第3図(c)に示すように、ゲート側壁にSi
108を残存させた。エツチングは、基板上のS
を完全に除去するため0.35μmのSi
エツチングする時間の10%オーバーに行なつたが、こ
の時の多結晶SiのまわりのSiO106の膜厚減少
は約2nm、Si基板上のSiO103の膜厚減少は約
1nmにすぎず、多結晶SiおよびSi基板が直接イオン
衝撃されることがなく、損傷を受けることがなかつた。
第3図(d)に示すように、次にヒ素を加速電圧80kV、打
ち込み量5×1015cm-2の条件でイオン打ち込みし、ソー
ス・ドレイン領域の高濃度n型不純物層109を形成し
た。その後、通常の半導体製造工程に従い、パツシベー
シヨン膜として、PSG110を被着し、コンタクト穴
加工、およびA電極配線111を行なつて、LDD構
造をもつMNOS FETを製作した。このようにして
製作されたMNOS FETは、前の実施例と同様な高
耐圧化が実現でき、高性能のメモリを実現できた。
Example 3 As shown in FIG. 3 (a), a p-type 10 Ωcm Si substrate 101
Due to the normal semiconductor manufacturing process above, 0.
A 6 μm thick thermal oxide film 102 is selectively formed, and a very thin SiO 2 film (about 2 nm) 103 and 5 is formed in the active region.
A two-layer insulating film of 0 nm Si 3 N 4 104 was formed. After that, polycrystalline Si is deposited on the entire surface to a thickness of about 0.3 μm,
105 is processed into a predetermined shape by a usual photo-etching method.
After this, about 10 nm of SiO 2 106 is deposited around the polycrystalline Si.
Then, phosphorus is ion-implanted under the conditions of an accelerating voltage of 100 kV and an implantation amount of 3 × 10 13 cm -2 to form a low-concentration n-type impurity layer 107 in the source / drain regions. Then, as shown in FIG. 3 (b), Si 3 N is formed on the entire surface.
4 108 was formed to a thickness of 0.3 μm by the CVD method. After that, Si 3 N 4 is anisotropically etched using CH 2 F 2 gas, and Si is formed on the gate sidewall as shown in FIG. 3 (c).
3 N 4 108 was left. Etching is S on the board
i 3 N 4 but the has fallen completely rows 10% over the time of etching the 0.35μm the Si 3 N 4 for the removal, reduction in film thickness of the SiO 2 106 around the polycrystalline Si at that time was about 2nm The thickness reduction of SiO 2 103 on the Si substrate was only about 1 nm, and the polycrystalline Si and Si substrate were not directly bombarded with ions and were not damaged.
As shown in FIG. 3 (d), arsenic was then ion-implanted under the conditions of an acceleration voltage of 80 kV and an implantation amount of 5 × 10 15 cm -2 to form a high-concentration n-type impurity layer 109 in the source / drain regions. . Then, according to a normal semiconductor manufacturing process, PSG110 was deposited as a passivation film, contact holes were processed, and A electrode wiring 111 was performed to manufacture a MNOS FET having an LDD structure. The MNOS FET manufactured in this manner can realize a high breakdown voltage as in the previous embodiment and can realize a high-performance memory.

〔発明の効果〕〔The invention's effect〕

上記説明から明らかなように、本発明によれば、Si
をSiOに対し高選択で異方性ドライエツチし
て、ゲートなどの導電体パターンの側部にSi
残すことができるので、Si基板を直接イオン衝撃する
ことがない。したがつて、ソース・ドレイン領域のSi
基板が損傷を受けないので、それらの接合のリーク電流
を低減できる効果がある。また、特にWなどの高融点金
属のチヤネリング防止膜としてSiOやPSGを用い
る場合には、それらの膜厚が減少することがないため、
チヤネリング防止に必要な最小限の膜厚にすることがで
き、ゲートの加工寸法の精度を向上できるという効果も
ある。
As is clear from the above description, according to the present invention, Si 3
Since N 4 can be anisotropically dry-etched with high selectivity with respect to SiO 2 to leave Si 3 N 4 on the side portion of a conductor pattern such as a gate, the Si substrate is not directly bombarded with ions. Therefore, Si in the source / drain region
Since the substrate is not damaged, there is an effect that the leak current of those junctions can be reduced. Further, especially when SiO 2 or PSG is used as a channeling prevention film of a refractory metal such as W, the film thickness of those films does not decrease.
There is also an effect that the minimum film thickness necessary for preventing channeling can be obtained, and the accuracy of the processing size of the gate can be improved.

このような効果は、Siのドライエツチングを、
C,HおよびFなる組成を有し、F対Hの比がほぼ2以
下のガスを反応ガスとして用いたために得られたもので
あり、CHFおよびまたはCHを用いれば、と
くに好ましい結果が得られる。
Such an effect is obtained by performing dry etching of Si 3 N 4 ,
It was obtained because a gas having a composition of C, H and F and an F to H ratio of about 2 or less was used as a reaction gas, and when CH 3 F and / or CH 2 F 2 was used, Good results are obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図乃至第3図は、それぞれ本発明の異なる実施例を
説明するための工程図である。 1……Si基板、2……SiO、3……SiO、4
……タングステン、5……PSG膜、6……低濃度n型
不純物層、7……Si、8……Si、9…
…高濃度n型不純物層、10……PSG膜、11……ア
ルミニウム。
1 to 3 are process drawings for explaining different embodiments of the present invention. 1 ... Si substrate, 2 ... SiO 2 , 3 ... SiO 2 , 4
... Tungsten, 5 ... PSG film, 6 ... Low-concentration n-type impurity layer, 7 ... Si 3 N 4 , 8 ... Si 3 N 4 , 9 ...
... High-concentration n-type impurity layer, 10 ... PSG film, 11 ... Aluminum.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】半導体基板上にゲート酸化膜を形成する工
程と、該ゲート酸化膜上に所望の形状を有し、上面にシ
リコンを含む酸化膜を有するゲート電極を形成する工程
と、該ゲート電極をマスクとしてソース及びドレイン用
の第1の不純物領域を該半導体基板表面に形成する工程
と、その後該半導体基板上に該ゲート酸化膜よりも厚い
シリコン窒化膜を形成する工程と、該シリコン窒化膜を
有する該半導体基板を、CHガスを反応ガスとし
て該ゲート電極の側壁に形成された該シリコン窒化膜、
該ゲート電極の上部に形成された該シリコンを含む酸化
膜及び該ゲート酸化膜を残し、他の領域に形成されたシ
リコン窒化膜をドライエッチングする工程と、該ゲート
電極と該ゲート電極の側壁に形成された該シリコン窒化
膜とをマスクとして該第1の不純物領域よりも高濃度の
第2の不純物領域を形成する工程とを有することを特徴
とする半導体装置の製造方法。
1. A step of forming a gate oxide film on a semiconductor substrate, a step of forming a gate electrode having a desired shape on the gate oxide film and having an oxide film containing silicon on the upper surface, and the gate. Forming a first impurity region for source and drain on the surface of the semiconductor substrate by using the electrode as a mask; thereafter forming a silicon nitride film thicker than the gate oxide film on the semiconductor substrate; The semiconductor substrate having a film, the silicon nitride film formed on the side wall of the gate electrode using CH 2 F 2 gas as a reaction gas,
A step of dry-etching the silicon-containing oxide film formed on the gate electrode and the silicon oxide film formed in other regions, leaving the gate oxide film and the gate oxide film on the sidewalls of the gate electrode and the gate electrode; And a step of forming a second impurity region having a concentration higher than that of the first impurity region by using the formed silicon nitride film as a mask.
【請求項2】上記シリコンを含む酸化膜は、上記ゲート
電極の側面にも形成されていることを特徴とする特許請
求の範囲第1項記載の半導体装置の製造方法。
2. The method for manufacturing a semiconductor device according to claim 1, wherein the oxide film containing silicon is also formed on a side surface of the gate electrode.
JP58222034A 1983-11-28 1983-11-28 Method for manufacturing semiconductor device Expired - Lifetime JPH0640543B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58222034A JPH0640543B2 (en) 1983-11-28 1983-11-28 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58222034A JPH0640543B2 (en) 1983-11-28 1983-11-28 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPS60115229A JPS60115229A (en) 1985-06-21
JPH0640543B2 true JPH0640543B2 (en) 1994-05-25

Family

ID=16776044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58222034A Expired - Lifetime JPH0640543B2 (en) 1983-11-28 1983-11-28 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JPH0640543B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2753368B2 (en) * 1990-03-16 1998-05-20 株式会社日立製作所 Etching method
KR100403992B1 (en) * 2001-04-18 2003-11-03 주성엔지니어링(주) Manufacturing method of semiconductor device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5846645A (en) * 1981-09-14 1983-03-18 Toshiba Corp Manufacture of semiconductor device

Also Published As

Publication number Publication date
JPS60115229A (en) 1985-06-21

Similar Documents

Publication Publication Date Title
US5723893A (en) Method for fabricating double silicide gate electrode structures on CMOS-field effect transistors
US4432132A (en) Formation of sidewall oxide layers by reactive oxygen ion etching to define submicron features
US6191462B1 (en) Nitride-oxide sidewall spacer for salicide formation
US4954867A (en) Semiconductor device with silicon oxynitride over refractory metal gate electrode in LDD structure
US5231038A (en) Method of producing field effect transistor
EP0076105B1 (en) Method of producing a bipolar transistor
EP0404372B1 (en) Method for forming polycrystalline silicon contacts
US6417056B1 (en) Method to form low-overlap-capacitance transistors by forming microtrench at the gate edge
JP3313432B2 (en) Semiconductor device and manufacturing method thereof
JPH08111527A (en) Preparation of semiconductor device with self-conformity silicide region
US6627527B1 (en) Method to reduce metal silicide void formation
US6221760B1 (en) Semiconductor device having a silicide structure
JP3626009B2 (en) Manufacturing method of semiconductor device
US5146309A (en) Method for forming polycrystalline silicon contacts
JPH0640543B2 (en) Method for manufacturing semiconductor device
JP3284415B2 (en) Method for manufacturing semiconductor device
JPH1064898A (en) Manufacturing method of semiconductor device
JP2624656B2 (en) Method of manufacturing GaAs field effect transistor
KR0170436B1 (en) Method of manufacturing mosfet
JPH0611074B2 (en) Method for manufacturing semiconductor device
KR100439770B1 (en) Method for fabricating semiconductor device to prevent channeling phenomenon caused by ldd ion implantation and reduce resistance of silicide
JPS63275181A (en) Manufacture of semiconductor device
KR19990030830A (en) Manufacturing Method of Semiconductor Device
JPH04245642A (en) Mos transistor and its manufacture
JPH04230024A (en) Manufacture of semiconductor device