JPH0640161B2 - Micro lens - Google Patents

Micro lens

Info

Publication number
JPH0640161B2
JPH0640161B2 JP60132707A JP13270785A JPH0640161B2 JP H0640161 B2 JPH0640161 B2 JP H0640161B2 JP 60132707 A JP60132707 A JP 60132707A JP 13270785 A JP13270785 A JP 13270785A JP H0640161 B2 JPH0640161 B2 JP H0640161B2
Authority
JP
Japan
Prior art keywords
layer
refractive index
continuously
lens
underlayer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60132707A
Other languages
Japanese (ja)
Other versions
JPS61290403A (en
Inventor
昌彦 池野
英夫 佐伯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP60132707A priority Critical patent/JPH0640161B2/en
Publication of JPS61290403A publication Critical patent/JPS61290403A/en
Publication of JPH0640161B2 publication Critical patent/JPH0640161B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明は、例えば感度向上のために固体撮像装置など
の光電変換面(受光面)の前方に配置される、あるいは
例えば光結合器、光分岐回路などの光学素子に使用する
マイクロレンズに関するものである。
The present invention is arranged in front of a photoelectric conversion surface (light receiving surface) of, for example, a solid-state image pickup device for improving sensitivity, or for an optical element such as an optical coupler and an optical branch circuit. The present invention relates to a microlens used.

〔従来の技術〕 第2図は固体撮像装置の従来のマイクロレンズについて
の概略を示す図であり、図において1a〜4aは例えば
ホトダイオードなどの光電変換部(受光領域)、1b〜
4bはそれぞれ上記光電変換部1a〜4aに蓄積された
電荷を読み出すための、スイッチング素子、例えばCC
Dなどの信号転送素子、配線などから構成される電荷読
出し部、1d〜4dは光電変換部の開口率(受光面の占
める面積の割合)を向上させるためにそれぞれ上記光電
変換部1a〜4aに対応して配置されたレンズ層、10
は固体撮像装置基板、11はレンズ層1d〜4dと光電
変換面の間の下地層、20は固体撮像装置へ入射する光
である。また、21は上記11,1d〜4dからなるマ
イクロレンズである。
[Prior Art] FIG. 2 is a diagram showing an outline of a conventional microlens of a solid-state image pickup device. In the figure, reference numerals 1a to 4a denote photoelectric conversion units (light receiving regions) such as photodiodes, and 1b to.
Reference numeral 4b is a switching element, for example, a CC, for reading out the charges accumulated in the photoelectric conversion units 1a to 4a.
The charge read-out portions 1d to 4d composed of signal transfer elements such as D and wirings are provided in the photoelectric conversion portions 1a to 4a, respectively, in order to improve the aperture ratio (ratio of the area occupied by the light receiving surface) of the photoelectric conversion portion. Correspondingly arranged lens layers, 10
Is a solid-state imaging device substrate, 11 is a base layer between the lens layers 1d to 4d and the photoelectric conversion surface, and 20 is light incident on the solid-state imaging device. Further, reference numeral 21 is a microlens composed of 11, 1d to 4d.

次に従来のマイクロレンズの機能についてホトダイオー
ド1aへ入射する光を例にとって説明する。
Next, the function of the conventional microlens will be described by taking light incident on the photodiode 1a as an example.

固体撮像装置の光電変換部1a上へ入射した光はその強
度に応じて光電変換部1a内で電荷を発生し、これは信
号電荷としてスイッチング素子、転送素子などで構成さ
れる電荷読出し部1bを介して外部へ読み出されて行
く。また、光電変換部1aより前方に配置されたレンズ
層1dは光電変換部1a以外の電荷読出し部1b,2b
上の領域へ入射してきた光もその集光作用により光電変
換部1a上へ集光させる。従って、実質的に光電変換部
1aの面積が増大したのと同様の効果、即ち開口率の向
上をもたらし、固体撮像装置の感度向上をもたらしてい
る。
The light incident on the photoelectric conversion unit 1a of the solid-state imaging device generates electric charges in the photoelectric conversion unit 1a according to the intensity of the electric charges. It is read out to the outside via. In addition, the lens layer 1d arranged in front of the photoelectric conversion section 1a includes charge reading sections 1b and 2b other than the photoelectric conversion section 1a.
The light that has entered the upper region is also condensed on the photoelectric conversion unit 1a by its condensing action. Therefore, substantially the same effect as the area of the photoelectric conversion unit 1a is increased, that is, the aperture ratio is improved, and the sensitivity of the solid-state imaging device is improved.

光電変換部1a上への集光量はレンズ層1aの屈折率、
曲率半径、口径及び下地層11の厚さにより決り、レン
ズ層1aの屈折率と大気中の屈折率の差が大きい程、曲
率半径がある範囲内で小さいほど、また下地層11が厚
いほど、その集光能力は一般に大きくなる。しかしなが
らレンズ層1dに有機高分子材料などを用いた場合には
その屈折率はほぼ1.5前後にしかならず、また、レンズ
の曲率も位置関係などから制限される。
The amount of light collected on the photoelectric conversion unit 1a is the refractive index of the lens layer 1a,
Depending on the radius of curvature, the aperture and the thickness of the underlayer 11, the larger the difference between the refractive index of the lens layer 1a and the refractive index in the atmosphere, the smaller the radius of curvature within a certain range, and the thicker the underlayer 11, Its light-collecting ability generally increases. However, when an organic polymer material or the like is used for the lens layer 1d, its refractive index is only about 1.5, and the curvature of the lens is also limited due to the positional relationship.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

従来のマイクロレンズは以上のように構成されているの
で、高い集光率を得るためにはレンズ層1dと光電変換
部1aとの距離を大きくとる必要があり、このため下地
層11を厚くすると該下地層11より発生する膜間の応
力も大きくなり、ウエハのソリを引き起こしたり、熱サ
イクルがかかった場合に膜間応力の開放により膜が変形
するなどの問題点があった。また、下地層11が厚いた
めこの上面はほぼ平らとなり、集光作用を担うのはマイ
クロレンズの上面だけとなり、下面での集光作用が期待
できない分だけ、さらに下地層を厚くしなければならな
いという問題点があった。
Since the conventional microlens is configured as described above, it is necessary to increase the distance between the lens layer 1d and the photoelectric conversion unit 1a in order to obtain a high light collection rate. The inter-film stress generated from the underlayer 11 also becomes large, causing warpage of the wafer, and when the thermal cycle is applied, the film is deformed due to the release of the inter-film stress. Further, since the underlayer 11 is thick, this upper surface is almost flat, and only the upper surface of the microlens is responsible for the light condensing action, and the underlayer must be thicker by the amount that the lower surface cannot expect the light condensing action. There was a problem.

この発明は上記のような問題点を解消するためになされ
たもので、下地層の厚みが小さくても充分な集光能力を
もつ短焦点距離、大開口率(NA,numerical apertur
e)のマイクロレンズを得ることを目的としている。
The present invention has been made in order to solve the above problems, and has a short focal length and a large numerical aperture (NA, numerical aperture) with a sufficient light-collecting ability even if the thickness of the underlayer is small.
The purpose is to obtain the microlens of e).

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係るマイクロレンズは、その屈折率が下方に
向けて連続的に減少もしくは均一である屈折率n2′〜
n2をもつ下地層の表面の凹型のくぼみに、上面が凸形
かつ屈折率が層の上面から中心面に向けて連続的に増加
し、中心面から層の下面に向けて連続的に減少するよう
に形成された屈折率n1′〜n1(n1′>n1>n
2′≧n2)のレンズ層を形成するようにしたものであ
る。
The microlens according to the present invention has a refractive index n2 ', whose refractive index continuously decreases or is uniformed downward.
In the concave depression on the surface of the underlayer having n2, the upper surface is convex and the refractive index continuously increases from the upper surface of the layer to the center plane, and decreases continuously from the center surface to the lower surface of the layer. Refractive indices n1 'to n1 (n1'>n1> n)
2 '≧ n2) is formed.

また、その屈折率が下方に向けて連続的に減少もしくは
均一である屈折率n2′〜n2をもつ下地層の上に屈折
率n3′〜n3の中間層を形成して凹形のくぼみを作
り、さらにその上に中間層により区切られた位置に上面
が凸形かつ屈折率が層の上面から中心面に向けて連続的
に増加し、中心面から層の下面に向けて連続的に減少す
るように形成された屈折率n1′〜n1(n1′>n1
>n3′≧n3≧n2′≧n2)のレンズ層を形成する
ようにしたものである。
Further, an intermediate layer having a refractive index of n3 'to n3 is formed on an underlayer having a refractive index of n2' to n2 whose refractive index continuously decreases or is uniformed downward to form a concave depression. , And the upper surface is convex at a position further separated by the intermediate layer, and the refractive index continuously increases from the upper surface of the layer toward the central surface, and continuously decreases from the central surface toward the lower surface of the layer. Refractive indices n1 'to n1 (n1'> n1)
> N3 ′ ≧ n3 ≧ n2 ′ ≧ n2).

〔作用〕[Action]

この発明においては、レンズ層はその屈折率が下方に向
けて連続的に減少もしくは均一である屈折率n2′〜n
2をもつ下地層の表面に形成された凹形のくぼみの上に
形成されるため、レンズ層の下面は下側に凸となり、下
地層(屈折率n2′〜n2)と、屈折率が層の上面から
中心面に向けて連続的に増加し、中心面から層の下面に
向けて連続的に減少するように形成された屈折率n1′
〜n1のレンズ層との間の屈折率差(n1′−n2>
0,n1−n2>0)により、この界面での集光作用が
生じ、下地層が薄くて済み、光電変換部以外の領域へ入
射してきた光も光電変換部へ集光され、実質的な開口率
の向上が達成される。
In the present invention, the lens layers have refractive indices n2 'to n2 whose refractive index continuously decreases or is uniformed downward.
Since it is formed on the concave recess formed on the surface of the underlayer having 2, the lower surface of the lens layer is convex downward, and the underlayer (refractive index n2 ′ to n2) and the refractive index are Of refractive index n1 ′ formed so as to continuously increase from the upper surface of the layer toward the central surface and decrease continuously from the central surface to the lower surface of the layer.
Refractive index difference (n1′-n2>
0, n1-n2> 0), a light-collecting action occurs at this interface, the underlying layer may be thin, and light incident on a region other than the photoelectric conversion unit is also condensed on the photoelectric conversion unit, so An improvement in aperture ratio is achieved.

また、レンズ層の上面を上側に凸の形状にすることによ
り、例えば大気(屈折率≒1)との間の屈折率差により
この界面での大きな集光能力も得られる。また、レンズ
層の屈折率が層の上面から中心面に向けて連続的に増加
し、中心面から層の下面に向けて連続的に減少するよう
に形成されているので、レンズ層内部においても集光効
果があり、この点からも集光能力が向上している。従っ
て、下面に凸、上面に凸の形状をレンズ層に持たせるこ
とにより、さらに大きな集光能力、即ち、短焦点距離の
大NAのマイクロレンズが得られる。
Further, by making the upper surface of the lens layer convex upward, a large light-collecting ability at this interface can also be obtained due to the difference in refractive index from the atmosphere (refractive index≈1), for example. Further, since the refractive index of the lens layer is continuously increased from the upper surface of the layer toward the center plane and continuously decreased from the center surface to the lower surface of the layer, the inside of the lens layer is also formed. There is a light-collecting effect, and the light-collecting ability is also improved from this point. Therefore, by providing the lens layer with a convex shape on the lower surface and a convex shape on the upper surface, it is possible to obtain a microlens having a larger light converging ability, that is, a large NA with a short focal length.

また、レンズ層は中間層と下地層とにより形成された凹
形のくぼみの上に形成されるため、中間層がない場合に
比しレンズ層の下面は下側により整った形で凸となり、
中間層(屈折率n3′〜n3)と、屈折率が層の上面か
ら中心面に向けて連続的に増加し、中心面から層の下面
に向けて連続的に減少するように形成された屈折率n
1′〜n1のレンズ層との間の屈折率差(n1′−n
3′>0,n1−n3′>0)により、この界面での集
光作用が生じ、レンズ周辺部の光電変換部以外の領域へ
入射してきた光も光電変換部へ集約され、実質的な開口
率の向上が達成される。
In addition, since the lens layer is formed on the concave recess formed by the intermediate layer and the underlayer, the lower surface of the lens layer is convex in a more ordered shape on the lower side than when the intermediate layer is not provided,
An intermediate layer (refractive index n3 ′ to n3) and a refraction index formed so that the refractive index continuously increases from the upper surface of the layer toward the central surface and decreases continuously from the central surface to the lower surface of the layer. Rate n
Refractive index difference between the lens layers 1'to n1 (n1'-n
3 '> 0, n1-n3'> 0), a condensing action occurs at this interface, and the light incident on a region other than the photoelectric conversion unit in the lens peripheral region is also collected in the photoelectric conversion unit, and An improvement in aperture ratio is achieved.

また、レンズ層の上面を上側に凸の形状にすることによ
り、例えば大気(屈折率≒1)との間の屈折率差により
この界面での大きな集光能力も得られる。また、レンズ
層の屈折率が層の上面から中心面に向けて連続的に増加
し、中心面から層の下面に向けて連続的に減少するよう
に形成されているので、この点からも集光能力が向上し
ている。従って、下面に凸、上面に凸の形状をレンズ層
に持たせることにより、さらに大きな集光能力、即ち、
短焦点距離かつ大NAのマイクロレンズが得られる。そ
の結果、レンズ層と光電変換部の間の距離を短くでき、
下地層を薄くすることができる。
Further, by making the upper surface of the lens layer convex upward, a large light-collecting ability at this interface can also be obtained due to the difference in refractive index from the atmosphere (refractive index≈1), for example. In addition, since the refractive index of the lens layer is formed so as to continuously increase from the upper surface of the layer toward the center surface and continuously decrease from the center surface to the lower surface of the layer, also from this point. The light ability is improved. Therefore, by providing the lens layer with a convex shape on the lower surface and a convex shape on the upper surface, an even greater light-collecting ability, that is,
A microlens having a short focal length and a large NA can be obtained. As a result, the distance between the lens layer and the photoelectric conversion unit can be shortened,
The underlayer can be thinned.

〔発明の実施例〕Example of Invention

以下、この発明の一実施例を図について説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図はこの発明の一実施例によるマイクロレンズの断
面図であり、1a〜4a,1b〜4b,10,20は第
2図と同一のものである。
FIG. 1 is a sectional view of a microlens according to an embodiment of the present invention, and 1a to 4a, 1b to 4b, 10, 20 are the same as those in FIG.

11は従来のマイクロレンズ同様下地層であるが、この
実施例では従来技術と異なり、下地の固体撮像装置表面
の凹凸を積極的に利用するため、この部分の膜厚は凹凸
形状さえ残っていればよく、膜厚は任意に選べる。また
12はレンズ層1d〜4dの下面形状をコントロールす
るために、下地層11とレンズ層の間に設けられた中間
層である。
Reference numeral 11 is an underlayer like the conventional microlens, but in this embodiment, unlike the prior art, the unevenness of the surface of the solid-state image pickup device of the underlayer is positively utilized, so that the film thickness of this portion may have an uneven shape. The film thickness can be arbitrarily selected. Reference numeral 12 is an intermediate layer provided between the base layer 11 and the lens layer in order to control the shape of the lower surface of the lens layers 1d to 4d.

このように構成されたマイクロレンズは凸形レンズと考
えることができ、レンズの片面、例えば第1図での下面
の形状は、下地層11と中間層12の形状により決定さ
れる。この下地層11は固体撮像装置基板表面の凹凸を
ある程度残した形状とし、さらにこれに中間層12を付
加することによりレンズ下面の形状をコントロールする
ことができる。
The microlens thus configured can be considered as a convex lens, and the shape of one surface of the lens, for example, the lower surface in FIG. 1, is determined by the shapes of the underlayer 11 and the intermediate layer 12. The underlying layer 11 has a shape in which the surface of the substrate of the solid-state imaging device has some irregularities, and the intermediate layer 12 is added to this to control the shape of the lower surface of the lens.

下地層11の材質としては有機材料、無機材料いずれで
も良く、光学的に透明でレンズ層1d〜4dの材料の屈
折率より小さな屈折率をもつ材料で形成されていれば良
い。
The material of the base layer 11 may be either an organic material or an inorganic material, and may be formed of an optically transparent material having a refractive index smaller than that of the material of the lens layers 1d to 4d.

中間層12の材質としては、この部分へ入射してきた光
も光電変換部1a〜4aへ集光し利用するため、光学的
に透明な材料でレンズ層の材料の屈折率より小さな屈折
率を持つ材料であれば良く、下地層11と同材質のもの
でも良い。
The material of the intermediate layer 12 is an optically transparent material having a refractive index smaller than that of the material of the lens layer, since the light incident on this portion is also condensed and used by the photoelectric conversion units 1a to 4a. Any material may be used, and the same material as that of the base layer 11 may be used.

レンズ層1d〜4dは光学的に透明な材料で、かつ屈折
率n1の大きな材料(望ましくはn1>1.8)で形成す
る。また、上面の形状は上側に凸状で大気とレンズ層上
面との間の屈折率差により集光能力を得られる。
The lens layers 1d to 4d are made of an optically transparent material and have a large refractive index n1 (preferably n1> 1.8). In addition, the shape of the upper surface is convex upward, and the light collecting ability can be obtained by the difference in refractive index between the atmosphere and the upper surface of the lens layer.

以上のような下地層、中間層、レンズ層は半導体分野で
はよく使われているプレーナテクノロジーを駆使するこ
とにより形成することができ、レンズ層としてはアレイ
状のもの、ストライプ状のものいずれを用いても上記構
成のものが形成できる。
The underlayer, intermediate layer, and lens layer as described above can be formed by making full use of the planar technology that is often used in the semiconductor field. The lens layer may be an array-shaped one or a stripe-shaped one. However, the above structure can be formed.

次に作用効果について説明する 本実施例のマイクロレンズでは、入射光20はレンズ層
1d上面で大気とレンズ層1dの屈折率の差及び上側に
凸の形状の効果により一回目の集光作用を受け、次いで
レンズ層1d下面でレンズ層1dと下地層11または中
間層12の屈折率差及び下側に凸の形状の効果により二
回目の集光作用を受け、光電変換部1aへ集光される。
従って、従来の上側にのみ凸の形状をもつマイクロレン
ズに比べ、同一口径、同一肉厚で短焦点距離、即ちNA
の大きなマイクロレンズが得られる。
In the microlens of the present embodiment, the incident light 20 has a first condensing action due to the difference in refractive index between the atmosphere and the lens layer 1d on the upper surface of the lens layer 1d and the effect of the convex shape on the upper side. The light is then received by the lower surface of the lens layer 1d and the light is condensed for the second time due to the difference in refractive index between the lens layer 1d and the base layer 11 or the intermediate layer 12 and the effect of the convex shape on the lower side. It
Therefore, compared with the conventional microlens having a convex shape only on the upper side, the same aperture, the same thickness, and a short focal length, that is, NA
A large microlens can be obtained.

また、上記実施例では、レンズ層1d〜4dの屈折率の
み変化させたが、下地層11もしくは中間層12または
その両方の屈折率を下方に向けてn2〜n2′(n2>
n2′),n3〜n3′(n3>n3′)と連続的に変
化させた場合にも上記実施例と同様の効果をより大きく
得ることができる。
Further, in the above embodiment, only the refractive indexes of the lens layers 1d to 4d are changed, but the refractive indexes of the underlayer 11 and / or the intermediate layer 12 or both of them are set to n2 to n2 '(n2>).
The same effect as that of the above-described embodiment can be obtained even when the values are continuously changed from n2 ') and n3 to n3'(n3> n3 ').

〔発明の効果〕〔The invention's effect〕

以上のように、この発明に係るマイクロレンズによれ
ば、その表面に一定間隔でくぼみを有し、その屈折率が
下方に向けて連続的に減少もしくは均一である屈折率n
2′〜n2の下地層と、上記くぼみの表面により構成さ
れる凹状面上にその上面が凸状面となるように形成さ
れ、その屈折率が層の上面から中心面に向けて連続的に
増加し、中心面から層の下面に向けて連続的に減少する
ように形成された屈折率n1′〜n1(n1′>n1>
n2′≧n2)のレンズ層とを設けるようにしたので、
同一口径、同一肉厚で従来のマイクロレンズよりはNA
の大きな短焦点距離のマイクロレンズを得ることがで
き、例えば固体撮像装置用としては下地層の厚さを減ら
すことができ、膜間に働く応力を減らすことができると
ともに、レンズ層の形状が球形に近づくため熱サイクル
などのストレスに対しても安定なマイクロレンズを得る
ことができる効果がある。
As described above, according to the microlens of the present invention, the surface of the microlens has indentations at regular intervals, and the refractive index thereof is continuously reduced or uniform toward the lower side.
It is formed on the concave surface formed by the underlayer 2 ′ to n2 and the surface of the depression so that the upper surface thereof becomes a convex surface, and the refractive index thereof is continuously increased from the upper surface of the layer toward the center surface. Refractive indices n1 ′ to n1 (n1 ′>n1>) formed so as to increase and decrease continuously from the central surface to the lower surface of the layer.
n2 ′ ≧ n2) is provided, so that
NA of the same diameter and same thickness as conventional microlenses
, A microlens with a large short focal length can be obtained. For example, for a solid-state imaging device, the thickness of the underlayer can be reduced, the stress acting between the films can be reduced, and the shape of the lens layer is spherical. Therefore, it is possible to obtain a microlens that is stable against stress such as heat cycle.

また、この発明に係るマイクロレンズによれば、その表
面に一定間隔でくぼみを有し、その屈折率が下方に向け
て連続的に減少もしくは均一である屈折率n2′〜n2
の下地層と、該下地層上の複数のくぼみの間に形成され
た屈折率n3′〜n3の中間層と、上記くぼみの表面と
該中間層外面により構成される凹状面上に形成され、そ
の屈折率が層の上面から中心面に向けて連続的に増加
し、中心面から層の下面に向けて連続的に減少するよう
に形成された屈折率n1′〜n1(n1′>n1>n
3′≧n3≧n2′≧n2)のレンズ層とを設けるよう
にしたので、NAのより大きな短焦点距離のマイクロレ
ンズを得ることができる効果がある。
Further, according to the microlens of the present invention, the refractive index n2 ′ to n2 has dents on its surface at regular intervals and the refractive index thereof continuously decreases or is uniform toward the lower side.
Of the underlayer, an intermediate layer having a refractive index of n3 ′ to n3 formed between a plurality of depressions on the underlayer, and a concave surface formed by the surface of the depression and the outer surface of the intermediate layer, Refractive indices n1 ′ to n1 (n1 ′>n1>) formed such that the refractive index thereof continuously increases from the upper surface of the layer toward the central surface and continuously decreases from the central surface to the lower surface of the layer. n
3 ′ ≧ n3 ≧ n2 ′ ≧ n2), the microlens having a short focal length with a larger NA can be obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の一実施例によるマイクロレンズを示
す断面図、第2図は従来のマイクロレンズを示す断面図
である。 図において、1a〜4aは光電変換部、1b〜4bは電
荷読出し部、1d〜4dはレンズ層、10は固体撮像装
置基板、11は下地層、12は中間層、20は入射光、
21はマイクロレンズである。 なお図中同一符号は同一又は相当部分を示す。
FIG. 1 is a sectional view showing a microlens according to an embodiment of the present invention, and FIG. 2 is a sectional view showing a conventional microlens. In the figure, 1a to 4a are photoelectric conversion units, 1b to 4b are charge reading units, 1d to 4d are lens layers, 10 is a solid-state imaging device substrate, 11 is a base layer, 12 is an intermediate layer, and 20 is incident light.
21 is a microlens. The same reference numerals in the drawings indicate the same or corresponding parts.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭58−214101(JP,A) 特開 昭59−92568(JP,A) 特開 昭60−26902(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-58-214101 (JP, A) JP-A-59-92568 (JP, A) JP-A-60-26902 (JP, A)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】その表面に一定間隔でくぼみを有し、その
屈折率が下方に向けて連続的に減少もしくは均一である
屈折率n2′〜n2の下地層と、 上記くぼみの表面により構成される凹状面上にその上面
が凸状面となるように形成され、その屈折率が層の上面
から中心面に向けて連続的に増加し、中心面から層の下
面に向けて連続的に減少するように形成された屈折率n
1′〜n1(n1′>n1>n2′≧n2)のレンズ層
とを備えたことを特徴とするマイクロレンズ。
1. An underlayer having refractive indices n2 'to n2, which have dents at regular intervals on its surface, and whose refractive index continuously decreases or is uniform downward, and a surface of the dents. The concave surface is formed so that its upper surface becomes a convex surface, and its refractive index continuously increases from the top surface of the layer to the center surface, and decreases continuously from the center surface to the bottom surface of the layer. Refractive index n formed to
A microlens having a lens layer of 1'-n1 (n1 '>n1>n2' ≧ n2).
【請求項2】その表面に一定間隔でくぼみを有し、その
屈折率が下方に向けて連続的に減少もしくは均一である
屈折率n2′〜n2の下地層と、 該下地層上の複数のくぼみの間に形成された屈折率n
3′〜n3の中間層と、 上記くぼみの表面と該中間層の外面により構成される凹
状面上に形成され、その屈折率が層の上面から中心面に
向けて連続的に増加し、中心面から層の下面に向けて連
続的に減少するように形成された屈折率n1′〜n1
(n1′>n1>n3′≧n3≧n2′≧n2)のレン
ズ層とを備えたことを特徴とするマイクロレンズ。
2. An underlayer having refractive indices n2 ′ to n2, which have dents at regular intervals on its surface, and whose refractive index continuously decreases or is uniformed downward, and a plurality of underlayers on the underlayer. Refractive index n formed between the depressions
3'-n3 intermediate layer, a concave surface formed by the surface of the depression and the outer surface of the intermediate layer, the refractive index of which increases continuously from the upper surface of the layer toward the central plane, Refractive indices n1 ′ to n1 formed so as to decrease continuously from the surface to the lower surface of the layer
(N1 ′>n1> n3 ′ ≧ n3 ≧ n2 ′ ≧ n2) lens layers.
【請求項3】上記中間層の屈折率n3′〜n3が下方に
向けて連続的に減少もしくは均一であることを特徴とす
る特許請求の範囲第2項記載のマイクロレンズ。
3. The microlens according to claim 2, wherein the refractive indices n3 'to n3 of the intermediate layer are continuously reduced or uniform downward.
JP60132707A 1985-06-18 1985-06-18 Micro lens Expired - Lifetime JPH0640161B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60132707A JPH0640161B2 (en) 1985-06-18 1985-06-18 Micro lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60132707A JPH0640161B2 (en) 1985-06-18 1985-06-18 Micro lens

Publications (2)

Publication Number Publication Date
JPS61290403A JPS61290403A (en) 1986-12-20
JPH0640161B2 true JPH0640161B2 (en) 1994-05-25

Family

ID=15087680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60132707A Expired - Lifetime JPH0640161B2 (en) 1985-06-18 1985-06-18 Micro lens

Country Status (1)

Country Link
JP (1) JPH0640161B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0521769A (en) * 1991-07-15 1993-01-29 Sharp Corp Solid-state image sensor
KR960705347A (en) * 1993-09-17 1996-10-09 루이스 지 지아호스 FORMING MICROLENSES ON SOLID STATE IMAGER

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58214101A (en) * 1982-06-07 1983-12-13 Sanyo Haujingu:Kk Lens plate and heat medium warming method using said lens plate
JPS5992568A (en) * 1982-11-18 1984-05-28 Mitsubishi Electric Corp Photo receptor such as solid-state image pickup element and manufacture thereof
JPS6026902A (en) * 1983-07-26 1985-02-09 Kiyoshi Hajikano Plural micro-diameter lens group

Also Published As

Publication number Publication date
JPS61290403A (en) 1986-12-20

Similar Documents

Publication Publication Date Title
JP3128297B2 (en) Solid-state imaging device and manufacturing method thereof
KR100590124B1 (en) Solid state imaging device
JP3044734B2 (en) Solid-state imaging device
KR100791842B1 (en) Image sensor having no shift of microlens and method thereof
JP2002280532A (en) Solid-state imaging device
JPH061824B2 (en) Method of manufacturing solid-state imaging device
JPH08139300A (en) Solid state image sensor
JPH0640161B2 (en) Micro lens
JP3240752B2 (en) Solid-state imaging device
JPH02103962A (en) Solid-state image sensing device and manufacture thereof
JPH0150157B2 (en)
JP2956132B2 (en) Solid-state imaging device
JPH0540216A (en) Microlens and production thereof
JP2876838B2 (en) Solid-state imaging device
TWM624315U (en) Light sensing module
JPS61154283A (en) Solid image pick-up element
JPS63291466A (en) Solid-state image sensing device
JP2003174155A (en) Imaging device
JP3972426B2 (en) Imaging device
JP3049856B2 (en) Solid-state imaging device
JPH06132502A (en) Solid-state image sensing device
JPH02309674A (en) Solid-state image sensing device
JPS6212154A (en) Solid-state image pickup device
JPS59182561A (en) Semiconductor image sensor
JPH0475384A (en) Solid-state image sensing element

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term