JPS61290403A - Microlens - Google Patents

Microlens

Info

Publication number
JPS61290403A
JPS61290403A JP13270785A JP13270785A JPS61290403A JP S61290403 A JPS61290403 A JP S61290403A JP 13270785 A JP13270785 A JP 13270785A JP 13270785 A JP13270785 A JP 13270785A JP S61290403 A JPS61290403 A JP S61290403A
Authority
JP
Japan
Prior art keywords
layer
lens
refractive index
microlens
intermediate layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13270785A
Other languages
Japanese (ja)
Other versions
JPH0640161B2 (en
Inventor
Masahiko Ikeno
池野 昌彦
Hideo Saeki
佐伯 英夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP60132707A priority Critical patent/JPH0640161B2/en
Publication of JPS61290403A publication Critical patent/JPS61290403A/en
Publication of JPH0640161B2 publication Critical patent/JPH0640161B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a microlens having large NA and short focal length by forming recessed dents of an underlying layer and intermediate layer and forming a convex lens layer consisting of a material having the refractive index larger than the refractive indexes of the underlying layer and intermediate layer thereon. CONSTITUTION:The underlying layer 11 is formed to an optional thickness at which rugged shaped remain. The intermediate layer 12 to control the bottom surface shape of the lens layers 1d-4d is provided between the layer 11 and the lens layers 1d-4d. The microlens which is a convex lens is obtd. in the above-mentioned manner. The bottom surface shape of the lens is determined by the shapes of the underlying layer and the intermediate layer 12. The layer 11 is thus formed to such a shape at which the ruggedness remains to some extent on the surface of a solid-state image sensing device and the shape of the bottom surface of the lens can be controlled by adding the intermediate layer 12 thereto. The underlying layer is formed of the org. or inorg. material which is optically transparent and has the refractive index smaller than the refractive index of the material for the lens layers.

Description

【発明の詳細な説明】 この発明は、例えば感度向上のために固体撮像装置など
の光電変換面(受光面)の前方に配置される、あるいは
例えば光結合器、光分岐回路などの光学素子に使用する
マイクロレンズに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention is applicable to an optical element that is placed in front of a photoelectric conversion surface (light receiving surface) of a solid-state imaging device, for example, to improve sensitivity, or an optical element such as an optical coupler or optical branch circuit. This relates to the microlens used.

〔従来の技術〕[Conventional technology]

第2図は固体撮像装置の従来のマイクロレンズについて
の概略を示す図であり、図において1a〜4aは例えば
ホトダイオードなどの光電変換部(受光領域)、1b〜
4bはそれぞれ上記光電変換部1a〜4aに蓄積された
電荷を読み出すための、スイッチング素子、例えばCO
Dなどの信号転送素子、配線などから構成される電荷読
出し部、1d〜4dは光電変換部の開口率(受光面の占
める面積の割合)を向上させるためにそれぞれ上記光電
変換部1a〜4aに対応して配置されたレンズ層、10
は固体撮像装置基板、11はレンズ層1d〜4dと光電
変換面の間の下地層、20は固体撮像装置へ入射する光
である。また、21は上記11.ld〜4dからなるマ
イクロレンズである。
FIG. 2 is a diagram showing an outline of a conventional microlens for a solid-state imaging device. In the figure, 1a to 4a are photoelectric conversion units (light receiving areas) such as photodiodes,
4b is a switching element, e.g. CO
The charge readout sections 1d to 4d, which are composed of signal transfer elements such as D, wiring, etc., are attached to the photoelectric conversion sections 1a to 4a, respectively, in order to improve the aperture ratio (the ratio of the area occupied by the light receiving surface) of the photoelectric conversion section. correspondingly arranged lens layers, 10
is a solid-state imaging device substrate, 11 is a base layer between the lens layers 1d to 4d and the photoelectric conversion surface, and 20 is light incident on the solid-state imaging device. In addition, 21 is the above 11. This is a microlens consisting of ld to 4d.

次に従来のマイクロレンズの機能についてホトダイオー
ド1aへ入射する光を例にとって説明する。
Next, the function of a conventional microlens will be explained using, as an example, light incident on the photodiode 1a.

固体撮像装置の光電変換部la上へ入射した光はその強
度に応じて光電変換部la内で電荷を発生し、これは信
号電荷としてスイッチング素子、転送素子などで構成さ
れる電荷読出し部1bを介して外部へ読み出されて行く
。また、光電変換部1aより前方に配置されたレンズ層
1dは光電変換部1a以外の電荷読出し部lb上の領域
へ入射してきた光もその集光作用により光電変換部la
上へ集光させる。従って、実質的に光電変換部1aの面
積が増大したのと同様の効果、即ち開口率の向上をもた
らし、固体撮像装置の感度向上をもたらしている。
The light incident on the photoelectric conversion section la of the solid-state imaging device generates charges in the photoelectric conversion section la according to its intensity, and this is used as a signal charge to send the charge readout section 1b consisting of a switching element, a transfer element, etc. It is read out to the outside via In addition, the lens layer 1d disposed in front of the photoelectric conversion section 1a also collects light incident on the area above the charge readout section lb other than the photoelectric conversion section 1a.
Focus the light upward. Therefore, the effect is substantially the same as that of increasing the area of the photoelectric conversion section 1a, that is, the aperture ratio is improved, and the sensitivity of the solid-state imaging device is improved.

光電変換部la上への集光量はレンズN1aの屈折率、
曲率半径、口径及び下地層11の厚さにより決り、レン
ズN1aの屈折率と大気中の屈折率の差が大きい程、曲
率半径がある範囲内で小さいほど、また下地層11が厚
いほど、その集光能力は一般に太き(なる。しかしなが
らレンズ層1dに有機高分子材料などを用いた場合には
その屈折率はほぼ1.5前後にしかならず、また、レン
ズの曲率も位置関係などから制限される。
The amount of light focused onto the photoelectric conversion part la is the refractive index of the lens N1a,
It is determined by the radius of curvature, the aperture, and the thickness of the base layer 11, and the larger the difference between the refractive index of the lens N1a and the refractive index in the atmosphere, the smaller the radius of curvature within a certain range, and the thicker the base layer 11. The light-gathering ability is generally thick. However, when an organic polymer material is used for the lens layer 1d, the refractive index is only around 1.5, and the curvature of the lens is also limited due to positional relationships. Ru.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来のマイクロレンズは以上のように構成されているの
で、高い集光率を得るためにはレンズ層1dと光電変換
部1aとの距離を大きくとる必要があり、このため下地
層11を厚くすると該下地層11より発生する膜間の応
力も大きくなり、ウェハのソリを引き起こしたり、熱サ
イクルがかかった場合に膜間応力の開放により膜が変形
するなどの問題点があった。また、下地層11が厚いた
めこの上面はほぼ平らとなり、集光作用を担うのはマイ
クロレンズの上面だけとなり、下面での集光作用が期待
できない分だけ、さらに下地層を厚くしなければならな
いという問題点があった。
Since the conventional microlens is configured as described above, in order to obtain a high light collection rate, it is necessary to increase the distance between the lens layer 1d and the photoelectric conversion part 1a.For this reason, if the base layer 11 is made thicker, The stress between the films generated by the base layer 11 also increases, causing problems such as warping of the wafer and deformation of the film due to the release of the stress between the films when thermal cycles are applied. In addition, since the base layer 11 is thick, the top surface is almost flat, and only the top surface of the microlens is responsible for the light-concentrating effect, so the base layer must be made even thicker to compensate for the fact that the bottom surface cannot be expected to have a light-concentrating effect. There was a problem.

この発明は上記のような問題点を解消するためになされ
たもので、下地層の厚みが小さくても充分な集光能力を
もつ短焦点距離、大開口率(NA。
This invention was made to solve the above-mentioned problems, and has a short focal length and a large aperture ratio (NA) that has sufficient light gathering ability even if the thickness of the underlying layer is small.

numerical aperture )のマイクロ
レンズを得ることを目的としている。
The objective is to obtain a microlens with a large numerical aperture.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係るマイクロレンズは、屈折率n2をもつ下
地層の上に、中間層を形成して凹形のくぼみを作り、さ
らにその上に中間層により区切られた位置に上面が凸形
の屈折率nl  (nl〉n2)のレンズ層を形成した
ものである。
In the microlens according to the present invention, an intermediate layer is formed on a base layer having a refractive index of n2 to form a concave depression, and a refractive lens having a convex upper surface is formed at a position separated by the intermediate layer. A lens layer having a ratio nl (nl>n2) is formed.

〔作用〕[Effect]

この発明においては、レンズ層は中間層と下地層とによ
り形成された凹形のくぼみ上に形成されるため、レンズ
層の下面は下側に凸となり、下地層(屈折率n2)とレ
ンズ層(屈折率nl)との間の屈折率差(n 1−n 
2 >0)によりこの界面での集光作用が生じ、光電変
換部以外の領域へ入射してきた光も光電変換部へ集光さ
れ、実質的な開口率の向上が達成される。
In this invention, since the lens layer is formed on the concave depression formed by the intermediate layer and the base layer, the lower surface of the lens layer is convex downward, and the base layer (refractive index n2) and the lens layer (refractive index nl) and the refractive index difference (n 1-n
2 > 0), a light condensing effect occurs at this interface, and light incident on areas other than the photoelectric conversion section is also condensed to the photoelectric conversion section, thereby achieving a substantial improvement in the aperture ratio.

また、レンズの上面を上側に凸の形状にすることにより
、例えば大気(屈折率#1)との間の屈折率差によりこ
の界面での大きな集光能力も得られる。従って、下面に
凹、上面に凸の形状をレンズ層に持たせることにより、
さらに大きな集光能力、即ち、短焦点距離の大NAのマ
イクロレンズが得られる。
Further, by making the upper surface of the lens convex upward, a large light-gathering ability can be obtained at this interface due to the difference in refractive index with the atmosphere (refractive index #1), for example. Therefore, by giving the lens layer a concave shape on the bottom surface and a convex shape on the top surface,
It is possible to obtain a microlens with an even greater light-gathering ability, that is, a short focal length and a large NA.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の一実施例を図について説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図はこの発明の一実施例によるマイクロレンズの断
面図であり、1a〜4a、lb〜4b。
FIG. 1 is a cross-sectional view of a microlens according to an embodiment of the present invention, 1a to 4a and lb to 4b.

10.20は第2図と同一のものである。10.20 is the same as in FIG.

11は従来のマイクロレンズ同様下地層であるが、この
実施例では従来技術と異なり、下地の固体撮像装置表面
の凹凸を積極的に利用するため、この部分の膜厚は凹凸
形状さえ残っていればよく、膜厚は任意に選べる。また
12はレンズ層1d〜4dの下面形状をコントロールす
るために、下地層11とレンズ層の間に設けられた中間
層である。
Reference numeral 11 is a base layer similar to the conventional microlens, but unlike the conventional technology, in this example, since the unevenness of the surface of the underlying solid-state imaging device is actively utilized, the film thickness in this part is such that even the uneven shape does not remain. The film thickness can be selected arbitrarily. Further, 12 is an intermediate layer provided between the base layer 11 and the lens layer in order to control the shape of the lower surface of the lens layers 1d to 4d.

このように構成されたマイクロレンズは凸形しンズと考
えることができ、レンズの片面、例えば第1図での下面
の形状は、下地層11と中間層12の形状により決定さ
れる。この下地層11は固体撮像装置基板表面の凹凸を
ある程度残した形状とし、さらにこれに中間層12を付
加することによりレンズ下面の形状をコントロールする
゛ことができる。
A microlens configured in this manner can be considered as a convex lens, and the shape of one side of the lens, for example, the bottom surface in FIG. 1, is determined by the shapes of the base layer 11 and the intermediate layer 12. This base layer 11 has a shape that leaves some of the irregularities on the surface of the solid-state imaging device substrate, and by further adding an intermediate layer 12 to this, the shape of the lower surface of the lens can be controlled.

下地N11の材質としては有機材料、無機材料いずれで
も良く、光学的に透明でレンズ層1d〜4dの材料の屈
折率より小さな屈折率をもつ材料で形成されていれば良
い。
The material of the base N11 may be either an organic material or an inorganic material, as long as it is optically transparent and has a refractive index smaller than the refractive index of the materials of the lens layers 1d to 4d.

中間層12の材質としては、この部分へ入射してきた光
も光電変換部1a〜4aへ集光し利用するため、光学的
に透明な材料でレンズ層の材料の屈折率より小さな屈折
率を持つ材料であれば良く、下地層11と同材質のもの
でも良い。
The material of the intermediate layer 12 is an optically transparent material with a refractive index smaller than that of the material of the lens layer, since the light incident on this part is also collected and used by the photoelectric conversion parts 1a to 4a. Any material may be used, and it may be made of the same material as the base layer 11.

レンズ層1d〜4dは光学的に透明な材料で、かつ屈折
率n1の大きな材料(望ましくはnl>1.8)で形成
する。また、上面の形状は上側に凸状で大気とレンズ層
上面との間の屈折率差により集光能力を得られる。
The lens layers 1d to 4d are formed of an optically transparent material and a material with a large refractive index n1 (preferably nl>1.8). Further, the upper surface has an upwardly convex shape, and the light gathering ability can be obtained by the difference in refractive index between the atmosphere and the upper surface of the lens layer.

以上のような下地層、中間層、レンズ層は半導体分野で
はよく使われているブレーナテクノロジーを駆使するこ
とにより形成することができ、レンズ層としてはアレイ
状のもの、ストライプ状のものいずれを用いても上記構
成のものが形成できる。
The base layer, intermediate layer, and lens layer described above can be formed by making full use of Brainer technology, which is often used in the semiconductor field. Even if it is used, the structure described above can be formed.

次に作用効果について説明する 本実施例のマイクロレンズでは、入射光20はレンズ層
1d上面で大気とレンズ層1dの屈折率の差及び上側に
凸の形状の効果により一回目の集光作用を受け、次いで
レンズ層1d下面でレンズ層1dと下地層11または中
間層12の屈折率差及び下側に凸の形状の効果により二
回目の集光□作用を受け、光電変換部1aへ集光される
。従って、従来の上側にのみ凸の形状をもつマイクロレ
ンズに比べ、同一口径、同一肉厚で短焦点距離、即ちN
Aの大きなマイクロレンズが得られる。
Next, in the microlens of this example, whose functions and effects will be explained, the incident light 20 has a first condensing effect on the upper surface of the lens layer 1d due to the difference in refractive index between the atmosphere and the lens layer 1d and the effect of the upwardly convex shape. Then, on the lower surface of the lens layer 1d, due to the difference in refractive index between the lens layer 1d and the base layer 11 or the intermediate layer 12 and the effect of the downwardly convex shape, the light is focused a second time □ and focused on the photoelectric conversion part 1a. be done. Therefore, compared to the conventional microlens that has a convex shape only on the upper side, it has the same aperture, the same wall thickness, and a short focal length, that is, N
A large microlens with A is obtained.

なお、上記実施例ではレンズ層1d〜4dは均一な屈折
率n1を持つものを示したが、レンズ層の屈折率は不均
一であってもよく、屈折率を下方に向けてnl’ 〜n
l  (nl’  >nl)と変化させた場合にも上記
実施例と同様の効果を得ることができる。特に、ある規
則性をもって屈折率を変化させた場合にはレンズ層と外
部の層との界面のみでなく、レンズ層内でも光線の方向
を変えることができるので、一段とレンズの集光能力を
向上させることができる。
In addition, in the above embodiment, the lens layers 1d to 4d have a uniform refractive index n1, but the refractive index of the lens layer may be non-uniform, and the refractive index is directed downward to have a uniform refractive index nl' to n1.
The same effect as in the above embodiment can be obtained even when the value is changed to l (nl'> nl). In particular, when the refractive index is changed with a certain regularity, the direction of light rays can be changed not only at the interface between the lens layer and external layers, but also within the lens layer, which further improves the light-gathering ability of the lens. can be done.

また、上記実施例では、レンズ層1d〜4dの屈折率の
み変化させたが、下地層11もしくは中間層12または
その両方の屈折率を下方に向けてn2〜n2’  (n
2>n2’ )、n3〜n3゛ (n3>n3’ )と
変化させた場合にも上記実施例と同様の効果を得ること
ができる。
Further, in the above embodiment, only the refractive index of the lens layers 1d to 4d was changed, but the refractive index of the base layer 11, the intermediate layer 12, or both was directed downward to n2 to n2' (n
2>n2') and n3 to n3'(n3>n3'), the same effect as in the above embodiment can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明にかかるマイクロレンズによれ
ば、下地層と中間層により凹状の(ぼみを形成し、その
上に下地層、中間層よりは屈折率の大きな材料で凸状の
レンズ層を形成したので、同一口径、同一肉厚で従来の
マイクロレンズよりはNAの大きな短焦点距離のマイク
ロレンズを得ることができ、例えば固体撮像装置用とし
ては下地層の厚さを減らすことができ、膜間に働く応力
を減らすことができるとともに、レンズ層の形状が球形
に近ずくため熱サイクルなどのストレスに対しても安定
なマイクロレンズを得ることができる効果がある。
As described above, according to the microlens according to the present invention, a concave (indentation) is formed by the base layer and the intermediate layer, and a convex lens is formed using a material having a higher refractive index than the base layer and the intermediate layer. By forming a layer, it is possible to obtain a microlens with a short focal length and a larger NA than conventional microlenses with the same aperture and thickness, and for example, for solid-state imaging devices, it is possible to reduce the thickness of the base layer. This has the effect of reducing the stress acting between the films, and making it possible to obtain microlenses that are stable against stress such as thermal cycles because the shape of the lens layer approaches a spherical shape.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例によるマイクロレンズを示
す断面図、第2図は従来のマイクロレンズを示す断面図
である。 図において、1a〜4aは光電変換部、1b〜4bは電
荷読出し部、1d〜4dはレンズ層、10は固体撮像装
置基板、11は下地層、12は中間層、20は入射光、
21はマイクロレンズである。 なお図中同一符号は同−又は相当部分を示す。
FIG. 1 is a sectional view showing a microlens according to an embodiment of the present invention, and FIG. 2 is a sectional view showing a conventional microlens. In the figure, 1a to 4a are photoelectric conversion units, 1b to 4b are charge readout units, 1d to 4d are lens layers, 10 is a solid-state imaging device substrate, 11 is a base layer, 12 is an intermediate layer, 20 is incident light,
21 is a microlens. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (4)

【特許請求の範囲】[Claims] (1)その表面に一定間隔でくぼみを有する屈折率n_
2の下地層と、該下地層上の2つのくぼみの間に形成さ
れた中間層と、上記くぼみの表面と該中間層外面とで構
成される凹状面上に形成された屈折率n_1(n_1>
n_2)のレンズ層とを備えたことを特徴とするマイク
ロレンズ。
(1) Refractive index n_ with depressions at regular intervals on its surface
refractive index n_1 (n_1 >
A microlens characterized by comprising a lens layer of n_2).
(2)上記レンズ層の屈折率が下方に向けて単調減少し
ていることを特徴とする特許請求の範囲第1項記載のマ
イクロレンズ。
(2) The microlens according to claim 1, wherein the refractive index of the lens layer monotonically decreases downward.
(3)上記下地層の屈折率が下方にむけて単調減少して
いることを特徴とする特許請求の範囲第1項または第2
項記載のマイクロレンズ。
(3) Claim 1 or 2, characterized in that the refractive index of the underlayer monotonically decreases downward.
Microlens as described in section.
(4)上記中間層の屈折率が下方にむけて単調減少して
いることを特徴とする特許請求の範囲第1項ないし第3
項のいずれかに記載のマイクロレンズ。
(4) Claims 1 to 3, characterized in that the refractive index of the intermediate layer monotonically decreases downward.
The microlens described in any of paragraphs.
JP60132707A 1985-06-18 1985-06-18 Micro lens Expired - Lifetime JPH0640161B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60132707A JPH0640161B2 (en) 1985-06-18 1985-06-18 Micro lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60132707A JPH0640161B2 (en) 1985-06-18 1985-06-18 Micro lens

Publications (2)

Publication Number Publication Date
JPS61290403A true JPS61290403A (en) 1986-12-20
JPH0640161B2 JPH0640161B2 (en) 1994-05-25

Family

ID=15087680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60132707A Expired - Lifetime JPH0640161B2 (en) 1985-06-18 1985-06-18 Micro lens

Country Status (1)

Country Link
JP (1) JPH0640161B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5293267A (en) * 1991-07-15 1994-03-08 Sharp Kabushiki Kaisha Solid-state imaging device
WO1995008192A1 (en) * 1993-09-17 1995-03-23 Polaroid Corporation Forming microlenses on solid state imager

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58214101A (en) * 1982-06-07 1983-12-13 Sanyo Haujingu:Kk Lens plate and heat medium warming method using said lens plate
JPS5992568A (en) * 1982-11-18 1984-05-28 Mitsubishi Electric Corp Photo receptor such as solid-state image pickup element and manufacture thereof
JPS6026902A (en) * 1983-07-26 1985-02-09 Kiyoshi Hajikano Plural micro-diameter lens group

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58214101A (en) * 1982-06-07 1983-12-13 Sanyo Haujingu:Kk Lens plate and heat medium warming method using said lens plate
JPS5992568A (en) * 1982-11-18 1984-05-28 Mitsubishi Electric Corp Photo receptor such as solid-state image pickup element and manufacture thereof
JPS6026902A (en) * 1983-07-26 1985-02-09 Kiyoshi Hajikano Plural micro-diameter lens group

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5293267A (en) * 1991-07-15 1994-03-08 Sharp Kabushiki Kaisha Solid-state imaging device
WO1995008192A1 (en) * 1993-09-17 1995-03-23 Polaroid Corporation Forming microlenses on solid state imager
US5670384A (en) * 1993-09-17 1997-09-23 Polaroid Corporation Process for forming solid state imager with microlenses

Also Published As

Publication number Publication date
JPH0640161B2 (en) 1994-05-25

Similar Documents

Publication Publication Date Title
KR960000223B1 (en) Solid state image device and method of manufacturing the same
KR100590124B1 (en) Solid state imaging device
KR0184687B1 (en) Solid state imaging device having high sensitivity and exhibiting high degree of light utilization and method of manufacturing the same
JP3178629B2 (en) Solid-state imaging device and method of manufacturing the same
KR100791842B1 (en) Image sensor having no shift of microlens and method thereof
JP3044734B2 (en) Solid-state imaging device
JPS61290403A (en) Microlens
JPH061824B2 (en) Method of manufacturing solid-state imaging device
JPH02103962A (en) Solid-state image sensing device and manufacture thereof
JPS5990466A (en) Solid-state image pickup element
JP2956132B2 (en) Solid-state imaging device
JP3240752B2 (en) Solid-state imaging device
JP2723686B2 (en) Solid-state imaging device and method of manufacturing the same
JPS61154283A (en) Solid image pick-up element
JP2876838B2 (en) Solid-state imaging device
JP2003174155A (en) Imaging device
JP2563962Y2 (en) Solar radiation sensor
JP2005259824A5 (en)
JPS63291466A (en) Solid-state image sensing device
JP3049856B2 (en) Solid-state imaging device
JPS6212154A (en) Solid-state image pickup device
JPS6213067A (en) Solid-state image pickup device with lens region
JPS61196683A (en) Solid-state image pickup element
JPS6047472A (en) Solid-state image-pickup element
JPS58114684A (en) Solid-state image pickup element

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term