JPH0637766B2 - Ground injection method - Google Patents

Ground injection method

Info

Publication number
JPH0637766B2
JPH0637766B2 JP61093938A JP9393886A JPH0637766B2 JP H0637766 B2 JPH0637766 B2 JP H0637766B2 JP 61093938 A JP61093938 A JP 61093938A JP 9393886 A JP9393886 A JP 9393886A JP H0637766 B2 JPH0637766 B2 JP H0637766B2
Authority
JP
Japan
Prior art keywords
water glass
injection
cement
liquid
grout
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61093938A
Other languages
Japanese (ja)
Other versions
JPS62253815A (en
Inventor
健二 栢原
Original Assignee
強化土エンジニヤリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 強化土エンジニヤリング株式会社 filed Critical 強化土エンジニヤリング株式会社
Priority to JP61093938A priority Critical patent/JPH0637766B2/en
Publication of JPS62253815A publication Critical patent/JPS62253815A/en
Publication of JPH0637766B2 publication Critical patent/JPH0637766B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は非セメント系水ガラスグラウトを用いた地盤注
入工法に係り、特に地盤中で反応剤の不足分を補給して
シリカ分の溶脱を減少せしめ、これによって耐久性の向
上された固結体を得る地盤注入工法に関する。
[Field of Industrial Application] The present invention relates to a ground pouring method using a non-cement type water glass grout, and in particular, a deficiency of a reactant is supplied in the ground to leach silica. The present invention relates to a ground pouring method for obtaining a solidified body having a reduced amount and thereby improved durability.

〔公知技術とその問題点〕[Public technology and its problems]

アルカリ性を呈する非セメント系水ガラスグラウトは浸
透性が良好であって細い土粒子間にまで浸透するため、
地盤注入用固結剤として広く使用されている。
Non-cement-based water glass grout that exhibits alkalinity has good permeability and penetrates even between fine soil particles.
Widely used as a solidifying agent for ground injection.

しかし、この種のグラウトでは浸透性を良好に保持する
ために反応剤の添加量を少なくしなければならず、した
がって未反応水ガラスが多く残存することになり高強度
の固結体が得られないのみならず、シリカ分が長期的に
溶脱して耐久性をも得られない。
However, in this type of grout, the amount of the reactant added must be small in order to maintain good permeability, and therefore a large amount of unreacted water glass remains and a high-strength solidified body can be obtained. Not only that, but also the silica content is leached out for a long period of time and durability cannot be obtained.

また、地盤中にあらかじめ反応剤を注入しておき、その
後この注入領域に中性の水ガラスグラウトを注入する方
法も知られている。しかし、この方法では中性水ガラス
グラウトのゲル化時間が短いためグラウトが土粒子間に
浸透し難く、このため地盤中の細粒土部分で前記グラウ
トと反応剤との反応が起こり難く、細粒土地盤の改良が
不充分である。
A method is also known in which a reactive agent is injected into the ground in advance, and then neutral water glass grout is injected into this injection region. However, in this method, since the gelling time of the neutral water glass grout is short, it is difficult for the grout to permeate between the soil particles, so that the reaction between the grout and the reactive agent does not easily occur in the fine-grained soil portion in the ground, and The improvement of grain ground is insufficient.

さらに、水ガラスの注入に際してストレーナ注入管を打
ち込み、この注入管を通じて塩化カルシウムを注入しな
がら該注入管を引き上げ、地盤中で水ガラスと塩化カル
シウムを反応させる方法もまた、知られている。しか
し、この方法では塩化カルシウムの注入の際に高粘度の
水ガラスが外側に押し出され、注入管まわりの一定範囲
で水ガラスと塩化カルシウムによる固結が不均質になっ
てしまう。
Further, a method is also known in which a strainer injection pipe is driven when water glass is injected, and the injection pipe is pulled up while injecting calcium chloride through the injection pipe to cause the water glass and calcium chloride to react in the ground. However, in this method, high-viscosity water glass is extruded to the outside when calcium chloride is injected, and the solidification by water glass and calcium chloride becomes nonuniform in a certain range around the injection pipe.

〔発明の目的〕[Object of the Invention]

本発明の目的は非セメント系水ガラスグラウトの固結に
際し、地盤中で前記固結用反応剤の不足分を補給してシ
リカ分の溶脱を減少せしめ、これによって耐久性の向上
された固結体を形成し、前述の公知技術に存する欠点を
改良した地盤注入工法を提供することにある。
An object of the present invention is to solidify a non-cement-based water glass grout to replenish a shortage of the solidifying reactant in the ground to reduce the leaching of silica and thereby improve the solidification of durability. It is an object of the present invention to provide a ground pouring method for forming a body and improving the above-mentioned drawbacks existing in the known art.

〔発明の要点〕[Main points of the invention]

前述の目的を達成するため、本発明によれば、上下の異
なる箇所に複数の吐出口を有する多重注入管を地盤中に
挿入し、次いでこの注入管を上方に移向させて注入ステ
ージを変化させながら上部吐出口から非セメント系反応
剤配合液を吐出し、下部吐出口から水ガラスを有効成分
とするPH9以上の配合液を吐出することを特徴とし、
これにより前記反応剤配合液がすでに浸透している領域
に前記水ガラスを有効成分とする配合液を浸透させるこ
とを特徴とする。
In order to achieve the above-mentioned object, according to the present invention, a multiple injection pipe having a plurality of outlets at different upper and lower positions is inserted into the ground, and then this injection pipe is moved upward to change the injection stage. While discharging, a non-cement-based reactive agent mixture liquid is discharged from the upper discharge port, and a mixture liquid of PH9 or more containing water glass as an active ingredient is discharged from the lower discharge port,
As a result, the compounded liquid containing the water glass as an active ingredient is allowed to permeate into the region where the reagent compounded liquid has already permeated.

〔発明の具体的説明〕[Specific Description of the Invention]

本発明を完成するに至った経緯を説明すると以下のとお
りである。
The background of the completion of the present invention is as follows.

(1)アルカリ領域の非セメント系水ガラスグラウトで
固結したサンドゲルは養生水中に浸漬しておくと水ガラ
スのシリカ分が時間とともに溶脱して強度が経日的に大
幅に低下する。特にゲル化時間を長くするために反応剤
の量を少なくした場合には数十日以内で崩壊してしま
う。ところがこのようなサンドゲルでも非セメント系反
応剤配合液からなる養生水中では強度の低下が見られ
ず、むしろ強度は経日的に増大していく。
(1) When the sand gel solidified with the non-cement-based water glass grout in the alkaline region is immersed in curing water, the silica content of the water glass is leached out with time, and the strength is significantly reduced with time. In particular, when the amount of the reaction agent is reduced to prolong the gelation time, it will disintegrate within several tens of days. However, even with such a sand gel, the strength does not decrease in the curing water containing the non-cement type reaction agent-containing solution, but rather the strength increases with time.

(2)セメント固結物あるいはセメント−水ガラスゲル
化物中に上記サンドルを養生しても強度の改善は得られ
ない。
(2) Even if the sandle is cured in a cement solidified product or a cement-water glass gelled product, improvement in strength cannot be obtained.

(3)砂を填充した水槽中にあらかじめ非セメント系反
応剤配合液を浸透させておき、その後非セメント系中性
水ガラスグラウトおよびPH9以上のアルカリ性非セメ
ント系水ガラスグラウト(これらはいずれも同一水ガラ
ス濃度で同一ゲルタイム)をそれぞれ同一注入圧力で注
入したところ、後者の方が浸透範囲が著しく大きかっ
た。
(3) A non-cement-type reactive agent mixture liquid is preliminarily permeated into a water tank filled with sand, and then a non-cement-type neutral water glass grout and an alkaline non-cement-type water glass grout with a pH of 9 or more (these are all the same. When the same gel time was injected at the same concentration of water glass) at the same injection pressure, the latter had a significantly larger permeation range.

(4)砂を填充した水槽中に非セメント系反応剤配合液
をあらかじめ浸透させておき、その後水ガラス水溶液お
よびPH9以上のアルカリ性非セメント系水ガラスグラ
ウトを前述(3)と同じ条件で注入したところ、後者の
方が均質で充分大きな固結強度の固結強度の固結体を得
た。
(4) A non-cement-based reaction mixture was preliminarily impregnated in a water tank filled with sand, and then a water-glass aqueous solution and an alkaline non-cement-based water glass grout with a pH of 9 or more were injected under the same conditions as in the above (3). However, the latter obtained a solidified body having a solidification strength that was more homogeneous and had a sufficiently large solidification strength.

(5)砂を填充した水槽中に水ガラス水溶液およびPH
9以上の非セメント系水ガラスグラウトをそれぞれ浸透
させ、次いでこれらがゲル化しないうちに反応剤水溶液
を注入したところ、注入領域によっては均質な固結体が
得られず、かつ充分な強度も得られなかった。
(5) Water glass solution and PH in a water tank filled with sand
When 9 or more non-cement-based water glass grouts were each infiltrated, and then the reactant aqueous solution was injected before these gelled, a homogeneous solidified body could not be obtained depending on the injection area, and sufficient strength was also obtained. I couldn't do it.

(6)砂を填充した水槽中に非セメント系反応剤配合液
をあらかじめ浸透させておき、その後PH9以上のアル
カリ性を呈する非セメント系水ガラスグラウトを前述と
同じ条件で注入したところ、均質でかつ経日的強度が著
しく改善された固結体を得た。
(6) When the non-cement-based reactive agent-mixing liquid was preliminarily impregnated into a water tank filled with sand, and then non-cement-based water glass grout exhibiting an alkalinity of PH9 or higher was injected under the same conditions as described above, it was found to be homogeneous and A solidified body with significantly improved daily strength was obtained.

(7)砂を填充した水槽中にあらかじめセメントグラウ
トあるいはセメント−水ガラスグラウトを注入してお
き、その後PH9以上のアルカリ性を呈する非セメント
系水ガラスグラウトを前述と同様な条件で注入したとこ
ろ、固結体の経日的強度改善は達成されなかった。
(7) Cement grout or cement-water glass grout was previously poured into a water tank filled with sand, and then non-cement water glass grout exhibiting an alkalinity of PH9 or higher was injected under the same conditions as described above. No daily strength improvement of the conjunctiva was achieved.

(8)砂を填充した水槽中に非セメント系反応剤水溶液
をあらかじめ浸透させておき、その後セメント系グラウ
トあるいはセメント−水ガラスグラウトを前述と同様な
条件で注入したところ、脈状の固結体しか得られず、サ
ンドゲルはほとんど得られなかった。
(8) A non-cement-based reactant aqueous solution was preliminarily impregnated in a water tank filled with sand, and then cement-based grout or cement-water glass grout was injected under the same conditions as described above. Only sand gel was obtained.

上述(1)乃至(8)の経緯により本発明にかかる前述
の目的は、 (イ)あらかじめ一次注入として非セメント系反応剤配
合液を地盤中に注入しておき、 (ロ)次いでこの配合液の注入領域に反応剤の配合され
たPH9以上のアルカリ性を呈する非セメント系水ガラ
スグラウトを二次注入として重ね合わせて注入する、 という(イ)および(ロ)工程からなる地盤注入を、上
下の異なる箇所に複数の吐出口を有する多重注入管を用
いて行うことにより達成される。
The above-mentioned objects of the present invention are based on the background of (1) to (8) above. (A) A non-cement-based reactive agent compounding liquid has been previously injected into the ground as a primary injection, and (b) this compounding liquid is then injected. The non-cement-based water glass grout exhibiting an alkalinity of PH9 or more, which is mixed with the reactive agent, is superposed and injected as the secondary injection in the injection area of (2) and (2). This is achieved by using a multiple injection tube having a plurality of discharge ports at different locations.

すなわち、前述の目的は前記多重注入管を地盤中に挿入
し、次いでこの注入管を上方に移向させて注入ステージ
を変化させながら上部吐出口から前記(イ)の一次注入
を行うとともに下部吐出口から二次注入を重ね合わせて
行うことにより達成される。
That is, for the purpose described above, the multiple injection pipe is inserted into the ground, and then the injection pipe is moved upward to change the injection stage while performing the primary injection (a) from the upper discharge port and the lower discharge. This is achieved by overlapping secondary injections from the outlet.

上述の本発明では、一次注入材と二次注入材を直接混合
した場合瞬結状態になり、土粒子間浸透が期待し得ない
にもかかわらず、一次注入材は二次注入材の注入圧によ
って外周部に押しやられて二次注入材によって置き換わ
り、二次注入材でおおわれた状態となる。これは二次注
入材がゲル化した時点でさながら反応材配合液中に二次
注入材の固結物が浸漬された状態と同様である。そして
時間の経過とともに二次注入材の固結体中に反応剤が浸
透して固結体中の未反応水ガラスと反応剤が反応し、こ
の結果、固結体中の全水ガラスが完全に反応し、かつシ
リカ分の重合が経日的に進行して固結体の強度が増強さ
れる。
In the above-mentioned present invention, when the primary injection material and the secondary injection material are directly mixed, a momentary setting state occurs, and although the inter-soil particle infiltration cannot be expected, the primary injection material is the injection pressure of the secondary injection material. It is pushed to the outer peripheral part by and is replaced by the secondary injection material and becomes covered with the secondary injection material. This is the same as the state where the solidified material of the secondary injection material is immersed in the reaction material mixture liquid at the time when the secondary injection material gels. Then, with the passage of time, the reactive agent penetrates into the solidified body of the secondary injection material and the unreacted water glass in the solidified body reacts with the reactive agent, and as a result, all the water glass in the solidified body is completely removed. And the polymerization of the silica component progresses over time, and the strength of the solidified body is enhanced.

したがって、本発明における一次注入材としては非セメ
ント系反応剤配合液であり、また二次注入材としてはP
H9以上のアルカリ性を呈する非セメント系水ガラスグ
ラウトであることが土粒子間での反応を起こさせるため
に必要であり、これによって細粒土層での一次注入材お
よび二次注入材の反応が可能となる。
Therefore, the primary injection material in the present invention is a non-cement-based reactive compounding liquid, and the secondary injection material is P.
A non-cement-based water glass grout exhibiting an alkalinity of H9 or higher is necessary for causing a reaction between soil particles, which allows the reaction of the primary injection material and the secondary injection material in the fine-grained soil layer. It will be possible.

本発明工法は具体的には第1図および第2図に示される
注入管を用いて施工される。
The method of the present invention is specifically carried out using the injection pipe shown in FIGS. 1 and 2.

まず、第1図(a)に示されるように内管2の下部吐出
口4よりボーリング水を送って所定深度まで地盤を削孔
する。
First, as shown in FIG. 1 (a), boring water is sent from the lower discharge port 4 of the inner pipe 2 to drill the ground to a predetermined depth.

次いで、第1図(b)に示されるように外管1より一次
注入材を送液して上部吐出口3より地盤中に注入し、一
方、二次注入材を内管2を通して送液して下部吐出口4
より地盤中に注入しながら注入ステージを下から上に移
向することにより一次注入材を注入した領域に二次注入
材を重ねて注入する。5はメタルクラウンである。
Then, as shown in FIG. 1 (b), the primary injection material is sent from the outer pipe 1 and injected into the ground through the upper discharge port 3, while the secondary injection material is sent through the inner pipe 2. Lower discharge port 4
While further pouring into the ground, the pouring stage is moved from the bottom to the top to superimpose the secondary pouring material on the region where the primary pouring material has been injected. 5 is a metal crown.

第2図は他の注入管の例であって、まず、第2図(a)
に示されるように内管2から反応剤配合液を、外管1か
ら水を送液すると、バルブ7が内管2の流圧により下方
に変位して上部吐出口3を開口すると同時に下部吐出口
4を閉塞し、上部吐出口3から反応剤配合液が地盤中に
注入される。次いで、第2図(b)に示されるように内
管2からの反応剤配合液の送液を中止し、かつ外管1か
らPH9以上の非セメント系水ガラスグラウト(二次注
入材)を送液すると、バルブ7はバネ4の弾発力によっ
て上方に移動し、このとき上部吐出口3はバルブ7によ
って閉塞されるとともに下部吐出口4が開口され、二次
注入材が下部吐出口4から地盤に注入される。次いで、
注入ステージを下から上に移動することにより一次注入
材の注入された領域に二次注入材が重ねて注入される。
6は逆止弁である。
FIG. 2 is an example of another injection pipe. First, FIG. 2 (a)
As shown in FIG. 3, when the reagent mixture liquid is sent from the inner pipe 2 and the water is sent from the outer pipe 1, the valve 7 is displaced downward by the flow pressure of the inner pipe 2 to open the upper discharge port 3 and at the same time discharge the lower portion. The outlet 4 is closed, and the reactant mixture is injected into the ground through the upper outlet 3. Then, as shown in FIG. 2 (b), the feeding of the reaction mixture solution from the inner pipe 2 is stopped, and the non-cement-based water glass grout (secondary injection material) of PH9 or more is fed from the outer pipe 1. When the liquid is sent, the valve 7 moves upward by the elastic force of the spring 4, and at this time, the upper discharge port 3 is closed by the valve 7 and the lower discharge port 4 is opened, so that the secondary injection material is injected into the lower discharge port 4. Is injected into the ground. Then
By moving the injection stage from the bottom to the top, the secondary injection material is overlapped and injected into the area where the primary injection material is injected.
6 is a check valve.

前述の注入管において、上下部吐出口3、4の間隔は10
cm以上、好ましくは30cm以上、4m以内、好ましくは3
m以内である。この間隔が10cm以下になると上下部吐出
部3、4から注入材を同時に注入する場合、常に合流さ
れる状態となって、好ましくなく、また、4m以下では
後述の第3図(a)に示されるような初期の注入段階に
おいて上下部吐出口3、4からの注入材が注入管まわり
の間隔を通して連絡され難くなる。
In the injection pipe described above, the space between the upper and lower discharge ports 3 and 4 is
cm or more, preferably 30 cm or more, 4 m or less, preferably 3
It is within m. If the distance is 10 cm or less, it is not preferable because the injection material is always merged when the injection materials are simultaneously injected from the upper and lower discharge parts 3 and 4, and if the distance is 4 m or less, it is shown in FIG. In the initial injection stage as described above, it becomes difficult for the injection material from the upper and lower discharge ports 3 and 4 to communicate with each other through the space around the injection pipe.

さらに本発明工法を第3図(a)、(b)および(c)
を用いて具体的に説明する。Aは多重注入管であって、
地盤中に挿入される。第3図(a)に示されるように上
部吐出口3からは一次注入材が、下部吐出口4からは二
次注入材が注入されると、初期の段階では下部吐出口4
からの二次注入材が間隙9を通って上部吐出口3付近ま
で流動し、両者は混合、反応して急結性グラウトを形成
する。そして、第3図(b)に示されるように上部吐出
口3を中心として前記グラウトは注入管まわりの間隙9
や地盤の粗い部分、弱い部分に浸透し、ゲル化してゲル
化物Bによって地盤を拘束する。その後、前述の浸透が
低下したら一次注入材および二次注入材はそれぞれ独立
した浸透し、上方地盤には反応材(一次注入材)の浸透
領域Cが形成され、かつ下方地盤には水ガラス配合液
(二次注入材)の浸透領域Dが形成される。
Further, the method of the present invention is applied to FIGS. 3 (a), (b) and (c).
Will be specifically described. A is a multiple injection tube,
It is inserted into the ground. As shown in FIG. 3A, when the primary injection material is injected from the upper ejection port 3 and the secondary injection material is injected from the lower ejection port 4, the lower ejection port 4 is initially filled.
The secondary injection material from the above flows into the vicinity of the upper discharge port 3 through the gap 9, and both are mixed and reacted to form a quick-setting grout. Then, as shown in FIG. 3B, the grout has a gap 9 around the injection tube with the upper discharge port 3 as the center.
And permeates into the rough and weak parts of the ground, gels, and the ground is restrained by the gelled material B. After that, when the above-mentioned infiltration decreases, the primary injecting material and the secondary injecting material respectively infiltrate independently, the infiltration region C of the reaction material (primary injecting material) is formed in the upper ground, and the water glass mixture in the lower ground. A liquid (secondary injection material) permeation region D is formed.

すなわち、この段階では上部吐出口3の付近はすでに注
入管まわりの間隙9や地盤の粗い部分が急結性のグラウ
トのゲル化物Bで填充されているので、一次注入材はそ
れ自体粘性が低く固結性がないにもかかわらず逸脱する
ことなく粗粒土部分に浸透して土粒子間の空隙を填充
し、反応剤の浸透領域Cを形成する。一方、下部吐出口
4から吐出される二次注入材は上方の空隙がすでに急結
性グラウトのゲル化物Bで填充されているので、上方に
逸脱することなく下部吐出口4のまわりの土粒子間に浸
透し、水ガラス配合液の浸透領域Dを形成する。
That is, at this stage, in the vicinity of the upper discharge port 3, the gap 9 around the injection pipe and the rough portion of the ground have already been filled with the gelled substance B of the quick-setting grout, so that the primary injection material itself has a low viscosity. It penetrates into the coarse-grained soil portion without deviating to fill the voids between the soil particles without forming a solidifying agent, and forms a permeation region C of the reactant. On the other hand, in the secondary injection material discharged from the lower discharge port 4, since the voids above it are already filled with the gelled substance B of the quick-setting grout, the soil particles around the lower discharge port 4 do not deviate upward. It permeates between them to form a permeation region D of the water glass formulation liquid.

次いで、多重注入管Aを上方に移向して注入ステージを
変化させながら、上部吐出口3から一次注入材、下部吐
出口4から二次注入材をそれぞれ注入すると、第3図
(C)に示されるように、一次注入材が先行して浸透さ
れている反応剤の浸透領域Cに二次注入材である水ガラ
ス配合液が下部吐出口4から吐出され、浸透領域Eを形
成する。この場合、二次注入材である水ガラス配合液は
土粒子間隙中の一次注入材(反応剤配合液)を注入圧力
で外側に押し出しながら浸透するため、一部では水ガラ
ス配合液と反応剤配合液の接触によるゲル化物が生じる
ものの、次々と送り出される水ガラス配合液によって土
粒子間の空隙の多くは水ガラス配合液によって置き換え
られる。
Next, while the multiple injection pipe A is moved upward and the injection stage is changed, the primary injection material is injected from the upper discharge port 3 and the secondary injection material is injected from the lower discharge port 4, respectively, as shown in FIG. 3 (C). As shown, the water-glass compounded liquid that is the secondary injection material is discharged from the lower discharge port 4 to the permeation area C of the reactant that has been previously permeated with the primary injection material, and the penetration area E is formed. In this case, the water-glass compounding liquid, which is the secondary injecting agent, penetrates the primary injecting agent (reactant compounding liquid) in the pores of the soil particles while pushing it out by the injection pressure. Although a gelled product is produced by the contact of the mixed solution, most of the voids between the soil particles are replaced by the water glass mixed solution by the water glass mixed solution which is sent out one after another.

この結果、注入管Aのまわりには水ガラス配合液によっ
て填充された円柱状の浸透領域Eが形成され、その周面
は反応剤との反応によるゲル化が起こり、その外側には
反応剤配合液によって満たされている浸透領域Fが生じ
る。ところが、反応剤配合液は水ガラス配合液に比べて
粘性が低いため、その後長期にわたって水ガラス配合液
の浸透領域E中に外部から浸透して水ガラス配合液中の
未反応シリカ分と反応して最終的には全シリカ分が完全
にゲル化する。本発明工法は注入管まわりの水ガラス配
合液による浸透領域Eと、その外側に存在する反応剤配
合液Fとの固化反応が最終段階である。この最終段階の
現象は耐久性の向上の点からも極めて重要なものであ
る。
As a result, a cylindrical permeation region E filled with the water glass compounding liquid is formed around the injection pipe A, gelling occurs on the peripheral surface thereof by the reaction with the reaction agent, and the outer side thereof is mixed with the reaction agent. A penetrating region F is created which is filled with liquid. However, the viscosity of the reaction mixture liquid is lower than that of the water glass mixture liquid, so that it penetrates into the permeation region E of the water glass mixture liquid from the outside for a long period of time to react with the unreacted silica content in the water glass mixture liquid. Eventually, all silica is completely gelled. In the method of the present invention, the final stage is the solidification reaction between the permeation region E around the injection pipe with the water glass compounding liquid and the reactant compounding liquid F existing outside thereof. This phenomenon at the final stage is extremely important from the viewpoint of improving durability.

以下、本発明を実験例により詳述する。Hereinafter, the present invention will be described in detail with reference to experimental examples.

実験1 3号水ガラスと反応剤の混合液のPHとゲル化時間を測
定し、結果を表−1に示した。
Experiment 1 PH and gelation time of a mixed solution of water glass No. 3 and a reactant were measured, and the results are shown in Table 1.

実験2 表−1中の配合No.6、10、13、16および23の試料を用
いて標準砂を固結し、得られた供試体(直径5cm、長さ
10cm)を水道水中で養生して養生水中のSiO2含有量を測
定し、これにより固結薬液中のSiO2総量に対する溶脱Si
O2量の累計を測定し、溶脱率の経日的変化を調べた。
(表−2)表−2中の数字は溶脱率(%)/一軸圧縮強
度(kg/cm2)である。また表−2中、「−」は崩壊を
表す。
Experiment 2 Test specimens (diameter 5 cm, length 5 cm, length) obtained by consolidating standard sand using the samples of formulation Nos. 6, 10, 13, 16 and 23 in Table-1.
The 10 cm) was measured SiO 2 content of curing water and cured in tap water, thereby leaching for SiO 2 the total amount of the consolidation chemical Si
The cumulative amount of O 2 was measured to examine the daily change in the leaching rate.
(Table-2) The numbers in Table-2 are the leaching rate (%) / uniaxial compressive strength (kg / cm 2 ). Moreover, in Table 2, "-" represents collapse.

実験3 実験2における養生水として塩化アルミニウムの20重量
%液を用いて同様の実験を行い、結果を表−3に示し
た。
Experiment 3 A similar experiment was conducted using a 20 wt% aluminum chloride solution as the curing water in Experiment 2, and the results are shown in Table 3.

実験4 実験2と同様な方法で配合No.10を用いて固結したサン
ドゲル(固結標準砂)を種々の反応剤の20重量%液で養
生して、28日後のSiO2の溶脱率と強度を測定し、結果を
表−4に示した。
Experiment 4 In the same manner as in Experiment 2, sand gel (consolidated standard sand), which was consolidated using formulation No. 10 was cured with 20 wt% solutions of various reactants, and the leaching rate of SiO 2 after 28 days was measured. The strength was measured and the results are shown in Table 4.

実験5 実験2と同様な方法で養生水中にポルトランドセメント
100gを混入してのち配合No.10のサンドゲルを養生し、
28日後の一軸圧縮強度を測定したところ1.6 kg/cm2
を示した。このことから耐久性に関する改良効果は得ら
れないことがわかる。
Experiment 5 Portland cement in curing water was treated in the same manner as Experiment 2.
After mixing 100g, cure the formulation No. 10 sand gel,
Uniaxial compressive strength measured 28 days later was 1.6 kg / cm 2
showed that. From this, it is understood that the improvement effect on durability cannot be obtained.

実験6 実験5と同じ方法を用いて配合No.11のゲル化物00cm3
砕いて養生水中に混入した。また、セメント−水ガラス
ゲル化物 100cm3を砕いて養生水中に混入した。セメン
ト−水ガラスのゲル化物 100cm3当たりの配合は、 3号水ガラス 25 cc セメント 50 g 水 残り である。
Experiment 6 Using the same method as in Experiment 5, 00 cm 3 of the gelled product of formulation No. 11 was crushed and mixed in the curing water. In addition, 100 cm 3 of cement-water glass gel was crushed and mixed in curing water. Cement-water glass gelling composition per 100 cm 3 of water glass No. 3 25 cc cement 50 g water balance.

これらについて28日後の一軸圧縮強度を測定したとこ
ろ、配合No.11は1.5 kg/cm2を示し、セメント−水ガラ
スのゲル化物は1.6 kg/cm2を示した。これらはいずれ
も耐久性に関する改良効果を奏し得なかった。
When the uniaxial compressive strength of these materials was measured after 28 days, the compound No. 11 showed 1.5 kg / cm 2 , and the cement-water glass gelation product showed 1.6 kg / cm 2 . None of these could achieve the effect of improving durability.

実験7 水槽の砂を20%塩化カルシウム溶液で飽和させてから配
合No.15、16のグラウトを30cmの水頭差で浸透しなくな
るまで注入し、1週間後に固結体の大きさを調べたとこ
ろ、配合No.15では直径約20cm、配合No.16では直径約45
cmの固結径が得られ、配合No.16の方が著しい浸透効果
を示している。
Experiment 7 After saturating the sand in the water tank with 20% calcium chloride solution, injecting grout of the compound No. 15 and 16 until the water no longer penetrates with a head difference of 30 cm, and one week later, the size of the solid was examined. , Compound No. 15 has a diameter of about 20 cm, and compound No. 16 has a diameter of about 45 cm.
A consolidation diameter of cm was obtained, and Compound No. 16 shows a remarkable penetration effect.

同様な実験を配合No.19、20を用いて行ったところ、配
合No.19の直径は約15cm、配合No.20の直径は約23cmであ
った。
When the same experiment was conducted using the compound Nos. 19 and 20, the diameter of the compound No. 19 was about 15 cm, and the diameter of the compound No. 20 was about 23 cm.

以上より、同一条件でありながら、PHが中性では浸透
範囲が狭いのに対し、PHが9以上のアルカリ性では浸
透範囲が極めて広くなることがわかった。これは注入液
がゲル化用反応剤の含まれた水ガラス配合液でかつPH
がアルカリ性である場合には注入液中のアルカリの存在
のために地盤中の反応剤と注入液との反応がゆるやかに
なるためと思われる。
From the above, it was found that, under the same conditions, the permeation range was narrow when the pH was neutral, whereas the permeation range was extremely wide when the pH was 9 or higher. This is because the injection liquid is a water glass compounded liquid containing a gelling reaction agent and
When is alkaline, it is considered that the reaction between the reaction agent in the ground and the injecting liquid becomes slow due to the presence of the alkali in the injecting liquid.

実験8 実験7と同様にして、20容量%の3号水ガラス水溶液
と、配合No.21のグラウトを注入した。前者では直径10
〜25cmの不均質な固結体が得られたのに対し、後者では
直径30cmのほぼ球状の固結体が得られた。また、前者の
一軸圧縮強度は5kg/cm2であったのに対し、後者のそ
れは9.5kg/cm2であった。
Experiment 8 In the same manner as in Experiment 7, 20% by volume aqueous solution of No. 3 water glass and grout of formulation No. 21 were injected. Diameter 10 in the former
Inhomogeneous aggregates of ~ 25 cm were obtained, whereas the latter produced almost spherical aggregates with a diameter of 30 cm. The former uniaxial compressive strength was 5 kg / cm 2 , whereas the latter one was 9.5 kg / cm 2 .

以上より、注入液はPHが9以上でかつゲル化用反応剤
の含まれた配合液であることが均質でかつ強固に固結す
るために必要であることがわかる。
From the above, it can be seen that the injected liquid is a mixed liquid having a pH of 9 or more and containing a gelling reaction agent in order to uniformly and firmly solidify.

実験9 水槽中の砂を20容量%の3号水ガラス水溶液で飽和して
30cmの水頭差で20%塩化カルシウム溶液を注入しての
ち、一週間後の注入孔まわりの固結体強度を測定したと
ころ、2kg/cm2の一軸圧縮強度を示した。また、同様
にして水槽中の砂を配合No.21の配合液で飽和しての
ち、配合液がゲル化しないうちに20%塩化カルシウム溶
液を注入し、一週間後の注入孔まわりの固結体強度を測
定したところ、2.6kg/cm2の一軸圧縮強度を示した。
Experiment 9 Saturate the sand in the water tank with 20% by volume aqueous solution of No. 3 water glass
After injecting a 20% calcium chloride solution with a water head difference of 30 cm, the strength of the solidified body around the injection hole was measured one week later, and it showed a uniaxial compressive strength of 2 kg / cm 2 . Similarly, after saturating the sand in the water tank with the formulation liquid of formulation No. 21, inject 20% calcium chloride solution before the formulation liquid gels and solidify around the injection hole one week later. When the body strength was measured, it showed a uniaxial compressive strength of 2.6 kg / cm 2 .

これより水ガラス配合液を注入しておいてから反応剤を
注入すると、反応剤によって水ガラス配合液が外側に押
し出されて注入管まわりの水ガラス濃度がうすくなり強
度が低くなるのに対し、実験8のように逆の場合は注入
管まわりの水ガラス配合液による固結体の内部に周辺部
に位置する反応剤が経日的に徐々に浸透して反応が進行
することがわかる。
When the reactant is injected after injecting the water glass mixture from this, the water glass mixture is extruded by the reactant to the outside, and the water glass concentration around the injection pipe becomes thin and the strength becomes low. In the opposite case as in Experiment 8, it can be seen that the reaction agent located in the peripheral portion gradually permeates the inside of the solidified body of the water glass compounded liquid around the injection pipe and the reaction proceeds.

実験10 砂を填充した水槽中にセメントグラウト(100cc当たり
セメント50g、残り水)あるいはセメント−水ガラスグ
ラウト(実験6と同じ}を 500cc注入してのち、同一個
所に配合No.10のグラウトを1注入し、その後一週間
後に掘削し、注入してから28日後の一軸圧縮強度を測定
し、結果を表−5に示した。
Experiment 10 After injecting 500 gr of cement grout (50 g of cement per 100 cc, remaining water) or cement-water glass grout (same as in Experiment 6) into a water tank filled with sand, 1 grout of compound No. 10 was placed in the same place. After the injection, one week after the drilling, the uniaxial compressive strength was measured 28 days after the injection, and the results are shown in Table-5.

表−5からセメントグラウトやセメント−水ガラスグラ
ウトを一次注入材として用いても二次注入材の経日強度
の改良はなされないことがわかる。
From Table-5, it can be seen that even if cement grout or cement-water glass grout is used as the primary injection material, the daily strength of the secondary injection material is not improved.

実験11 水槽中の砂を20%塩化カルシウム溶液で飽和させてから
実験10のセメントグラウトならびにセメント−水ガラ
スグラウトを 500cc注入し、一週間後に掘削したが、脈
状に固結しているだけで土粒子間浸透による全体的な固
結体は得られなかった。すなわち、このような方法では
土粒子間浸透による固結効果の改善はなされないことが
わかった。
Experiment 11 After saturating the sand in the water tank with a 20% calcium chloride solution, 500 cc of cement grout and cement-water glass grout of Experiment 10 were injected and excavated one week later. No solids were obtained due to infiltration between soil particles. That is, it was found that such a method does not improve the consolidation effect due to the infiltration of soil particles.

本発明にかかるPHが9以上の非セメント系水ガラス配
合液は水ガラスのモル比が1〜5までの任意の液状水ガ
ラスであり、さらに酸、塩、有機反応剤等、任意の反応
剤が含有されたものであり、あるいはアルカリや酸によ
り反応時間やPHの調整されたものである。
The non-cement-based water glass compounded liquid having a pH of 9 or more according to the present invention is an arbitrary liquid water glass having a water glass molar ratio of 1 to 5, and further, an optional reaction agent such as an acid, a salt or an organic reaction agent. Is contained, or the reaction time and pH are adjusted by alkali or acid.

また、非セメント系反応剤配合液は酸、酸性塩、有機反
応剤、アルカリ性を呈する塩(重炭酸ソーダ等)、石灰
等であるが、特に多値金属塩が好ましい。これらは具体
的にはCaCl、MgCl、炭酸カルシウム、炭酸
マグネシウム、ケイ酸カルシウム、ケイ酸マグネシウ
ム、硫酸カルシウム、リン酸カルシウム等のアルカリ土
金属塩、塩化アルミニウム、ポリ塩化アルミニウム等の
アルミニウム塩、その他鉄塩等である。
Further, the non-cement-based reaction mixture is an acid, an acid salt, an organic reaction agent, a salt exhibiting alkalinity (sodium bicarbonate, etc.), lime, etc., but a multi-valued metal salt is particularly preferable. Specific examples thereof include alkaline earth metal salts such as CaCl 2 , MgCl 2 , calcium carbonate, magnesium carbonate, calcium silicate, magnesium silicate, calcium sulfate and calcium phosphate, aluminum salts such as aluminum chloride and polyaluminum chloride, and other iron. For example, salt.

実施例 東京都内の細乃至粗砂地盤で、第1図の注入管を用い
て、一次注入材として20%濃度の塩化カルシウム配合液
を上部吐出口3から、また二次注入材として表−1の配
合No.10の配合液を下部吐出口4から、それぞれ同時
に、かつ毎分10の注入速度で注入し、かつ注入管Aを
毎分10cmの速度で引き上げながら下方から上方に注入ス
テージを移向した。上下部吐出口3、4の間隔は1mと
した。注入深度はGL−15〜0mまでとし、注入10日後
のGL−10〜−5m区間の浸透固結状況を調査した。
Example In a fine or coarse sand ground in Tokyo, using the injection pipe of FIG. 1, a calcium chloride compounded liquid of 20% concentration as the primary injection material is supplied from the upper discharge port 3 and as the secondary injection material. The compounding solution of compounding No. 10 is simultaneously injected from the lower discharge port 4 at an injection rate of 10 minutes per minute, and the injection stage is moved upward from below while pulling up the injection tube A at a rate of 10 cm per minute. Turned. The interval between the upper and lower discharge ports 3 and 4 was 1 m. The injection depth was set to GL-15 to 0 m, and the infiltration consolidation state of the GL-10 to -5 m section was investigated 10 days after the injection.

この結果、粗い部分は瞬結グラウトが脈状に填充され、
全体的にほぼ円形断面の固結体が得られ、断面積は約3
2であった。また、GL−7m付近の固結体の一軸圧
縮強度は6〜7kg/m2であった。また、固結体の透水
試験は3.5×10-5〜4.2×10-6/cm2であった。これよ
り、本発明工法では均質で強固な固結体が一定の大きさ
で得られたことがわかる。
As a result, the rough part is filled with the instantaneous setting grout in a pulse shape,
A solid body with a substantially circular cross section is obtained, and the cross-sectional area is about 3
It was m 2 . The uniaxial compressive strength of the solidified body near GL-7m was 6 to 7 kg / m 2 . The water permeability test of the solid was 3.5 × 10 −5 to 4.2 × 10 −6 / cm 2 . From this, it is understood that the method of the present invention produced a uniform and strong solid body with a certain size.

〔発明の効果〕〔The invention's effect〕

上述の本発明は次の効果を奏し得る。 The present invention described above can achieve the following effects.

(1)ゲル化時間の長いアルカリ領域の水ガラスグラウ
トの経日的強度が大幅に改善され、固結体の耐久性が向
上する。
(1) The daily strength of water glass grout in the alkaline region where the gelation time is long is significantly improved, and the durability of the solidified body is improved.

(2)施工が極めて簡単である。(2) Construction is extremely easy.

(3)二次注入材の注入範囲外への逸脱を防止し、所定
範囲で均質な固結体を得る。
(3) The secondary injection material is prevented from deviating outside the injection range, and a homogeneous solidified body is obtained within a predetermined range.

【図面の簡単な説明】[Brief description of drawings]

第1図(a)、(b)および第2図(a)、(b)はい
ずれも本発明工法を実施するための注入管の一具体例な
らびに注入状況を示す。第3図(a)、(b)、(c)
は本発明工法の浸透固結状況の説明図を示す。 1……外管、2……内管、3……上部吐出口、4……下
部吐出口、7……バルブ、8……バネ、9……間隙、A
……注入管、B……急結性グラウトのゲル化物、C……
反応剤の浸透領域、D……水ガラス配合液の浸透領域、
E……円柱状の浸透領域、F……反応剤配合液
1 (a) and 1 (b) and FIGS. 2 (a) and 2 (b) each show a specific example of an injection tube and an injection state for carrying out the method of the present invention. 3 (a), (b), (c)
Shows an explanatory view of the permeation and consolidation state of the method of the present invention. 1 ... Outer pipe, 2 ... Inner pipe, 3 ... Upper discharge port, 4 ... Lower discharge port, 7 ... Valve, 8 ... Spring, 9 ... Gap, A
…… Injection tube, B ・ ・ ・ Gelted substance of quick-setting grout, C ……
Penetration area of reactant, D ... Penetration area of water glass compounded liquid,
E: Cylindrical permeation area, F: Reagent mixture

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】上下の異なる箇所に複数の吐出口を有する
多重注入管を地盤中に挿入し、次いでこの注入管を上方
に移向させて注入ステージを変化させながら上部吐出口
から非セメント系反応剤配合液を吐出し、かつ下部吐出
口から水ガラスを有効成分とするPH9以上の配合液を
吐出することを特徴とし、これにより前記反応剤配合液
がすでに浸透している領域に前記水ガラスを有効成分と
する配合液を浸透させることを特徴とする地盤注入工
法。
1. A multi-injection pipe having a plurality of outlets at different upper and lower positions is inserted into the ground, and then the inlet pipes are moved upward to change the injecting stage and the non-cement system from the upper outlet. It is characterized in that the reagent mixture liquid is discharged and a mixture liquid of PH9 or more containing water glass as an active ingredient is discharged from the lower discharge port, whereby the water mixture is introduced into an area where the reagent mixture liquid has already permeated. A ground injection method characterized by infiltrating a compounded liquid containing glass as an active ingredient.
JP61093938A 1986-04-23 1986-04-23 Ground injection method Expired - Lifetime JPH0637766B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61093938A JPH0637766B2 (en) 1986-04-23 1986-04-23 Ground injection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61093938A JPH0637766B2 (en) 1986-04-23 1986-04-23 Ground injection method

Publications (2)

Publication Number Publication Date
JPS62253815A JPS62253815A (en) 1987-11-05
JPH0637766B2 true JPH0637766B2 (en) 1994-05-18

Family

ID=14096374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61093938A Expired - Lifetime JPH0637766B2 (en) 1986-04-23 1986-04-23 Ground injection method

Country Status (1)

Country Link
JP (1) JPH0637766B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0649835A (en) * 1992-06-13 1994-02-22 Kyokado Eng Co Ltd Filling pipe for grouting

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5966484A (en) * 1982-10-07 1984-04-14 Kyokado Eng Co Ltd Grouting method

Also Published As

Publication number Publication date
JPS62253815A (en) 1987-11-05

Similar Documents

Publication Publication Date Title
KR102367111B1 (en) Manufacturing method of grout using low-concentration acidic substance impregnated with co2 gas and grouting method using the same
JP2006226014A (en) Grouting construction method
JPH0637766B2 (en) Ground injection method
JPH0860153A (en) Method for grouting
JPH02397B2 (en)
JP4212315B2 (en) Soil consolidation method and concrete frame processing method
JPS62172088A (en) Ground grouting process
JPS6118593B2 (en)
US3626699A (en) Grouting of soils
JP4437481B2 (en) Ground improvement method
JP3166960B2 (en) Ground injection method
JP4341884B2 (en) Foundation pile forming composition, manufacturing method thereof, and foundation pile forming method
JP3403303B2 (en) Ground injection method
JPS5993787A (en) Solidification of ground
JPH0471956B2 (en)
JPS59152986A (en) Impregnation method for ground
JPS61162623A (en) Ground impregnation method
JP3007940B2 (en) Lightweight ground to be cast on soft ground and construction method thereof
JP3188110B2 (en) Ground injection method
JPH0567730B2 (en)
JPH07259073A (en) Ground injecting material
JPH0525272B2 (en)
JPH0232307B2 (en)
JPS6338390B2 (en)
JPS60188517A (en) Ground grouting work

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term