JPH0637700B2 - Method for producing copper alloy for resistance welding electrode - Google Patents

Method for producing copper alloy for resistance welding electrode

Info

Publication number
JPH0637700B2
JPH0637700B2 JP14747687A JP14747687A JPH0637700B2 JP H0637700 B2 JPH0637700 B2 JP H0637700B2 JP 14747687 A JP14747687 A JP 14747687A JP 14747687 A JP14747687 A JP 14747687A JP H0637700 B2 JPH0637700 B2 JP H0637700B2
Authority
JP
Japan
Prior art keywords
copper alloy
resistance welding
welding electrode
temperature
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14747687A
Other languages
Japanese (ja)
Other versions
JPS63310946A (en
Inventor
義秀 永井
一 乾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP14747687A priority Critical patent/JPH0637700B2/en
Publication of JPS63310946A publication Critical patent/JPS63310946A/en
Publication of JPH0637700B2 publication Critical patent/JPH0637700B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 利用産業分野 この発明は、電気抵抗溶接用電極に使用する銅合金の製
造方法に係り、高導電率並びに高硬度を有し、かつ結晶
粒が小さく、溶接部の外観損傷や溶接強度の低下を防止
した抵抗溶接電極用銅合金の製造方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for producing a copper alloy used for an electrode for electric resistance welding, which has high conductivity and high hardness, has a small crystal grain, and has an appearance of a welded portion. The present invention relates to a method for producing a copper alloy for resistance welding electrodes, which prevents damage and a decrease in welding strength.

背景技術 電気抵抗溶接は、被溶接物、すなわち接合する部材の接
触部を通じて通電し、発生する抵抗熱を利用して加熱
し、圧力を加えて溶接を行なうもので、スポット溶接、
シーム溶接などの重ね抵抗溶接と、バット溶接、バット
シーム溶接等の突合せ抵抗溶接に大別されている。
2. Description of the Related Art Electric resistance welding is a method for conducting welding through an object to be welded, that is, a contact portion of a member to be joined, heating by using resistance heat generated, and applying pressure to perform welding.
Lap resistance welding such as seam welding and butt resistance welding such as butt welding and butt seam welding are roughly classified.

かかる抵抗溶接には、被溶接物に接触して通電を行なう
とともに、圧力を加える作用をする電極が不可欠であ
り、一般に、銅または銅合金材料が使用され、溶接種並
びに用途等に応じて、所要形状に加工された電極が使用
されている。
In such resistance welding, an electrode that acts to apply pressure while in contact with a workpiece is indispensable, generally, copper or copper alloy material is used, depending on the welding species and applications, An electrode processed into a required shape is used.

上述の如く、抵抗溶接用の電極は、通電と加圧の機能を
要求されるため、銅合金材料は、導電率の高いこと、耐
摩耗性がすぐれること、すなわち硬度が高いことが要求
されている。
As described above, the electrodes for resistance welding are required to have the functions of energization and pressurization. Therefore, the copper alloy material is required to have high conductivity and excellent wear resistance, that is, high hardness. ing.

例えば、冷間引抜き銅電極は、廉価で所要硬度を有する
が、使用中軟化し変形が生じ易いため、0.5Cr-Cu合金、
0.2Zr-Cu合金あるいは0.5B-Cu系合金などが用いられて
いる。
For example, cold drawn copper electrodes are inexpensive and have the required hardness, but they tend to soften and deform during use, so a 0.5Cr-Cu alloy,
0.2Zr-Cu alloy or 0.5B-Cu alloy is used.

さらに、電極材料の銅合金には、結晶粒が十分に小さい
ことが要求されている。すなわち、結晶粒が大きいと、
使用中に結晶粒界からひび割れやこれによる結晶粒の欠
落を生じたりするため、溶接後の被溶接物表面の外観を
損い、さらには溶接強度低下の原因となることが知られ
ている。
Furthermore, the copper alloy as the electrode material is required to have sufficiently small crystal grains. That is, if the crystal grains are large,
It is known that during use, cracks are generated from the crystal grain boundaries and the crystal grains are lost due to the cracks, which impairs the appearance of the surface of the workpiece to be welded and further causes a decrease in welding strength.

一般に、抵抗溶接電極用Be-Cu-Co-Ni合金は、溶製され
た後、例えば、840℃に加熱する熱間加工して所要径の
棒材に加工され、液体化処理(例えば、950℃×2h水冷
等)のち、時効硬化処理(例えば、425℃×12h炉冷)を
施して製造されている。
Generally, a Be-Cu-Co-Ni alloy for resistance welding electrodes is, after being melted, processed into a rod having a required diameter by hot working, for example, heating to 840 ° C, and liquefaction treatment (for example, 950 It is manufactured by subjecting it to age hardening treatment (for example, 425 ° C x 12h furnace cooling) after ℃ x 2h water cooling).

かかる製造方法により得られた電極材料は、電気的性
質、機械的性質は満足するが、表面付近の結晶粒のみが
非常に粗大化、例えば数mmにも達する程の粗大化現象が
発生することがあった。
The electrode material obtained by such a manufacturing method satisfies the electrical and mechanical properties, but only the crystal grains in the vicinity of the surface become extremely coarse, for example, a coarsening phenomenon that reaches several mm occurs. was there.

このため前記材料は、十分に硬度を上げて使用すること
ができなかったり、歩留りが悪く材料損失の問題があっ
た。
Therefore, the material cannot be used with sufficiently increased hardness, and the yield is poor, and there is a problem of material loss.

従って、従来の製造方法では、表面部の粗大結晶(径1
mm以上)の出現のため、液体化温度をできるだけ下げて
行うか、あるいは粗大結晶の生成した領域を切削除去す
る必要があった。
Therefore, in the conventional manufacturing method, coarse crystals (diameter 1
mm or more), it was necessary to lower the liquefaction temperature as much as possible or to remove the region where coarse crystals were generated by cutting.

この電極材料表面の結晶粒粗大化の原因は、熱間加工時
に加わった歪が加工中の温度低下により、解放されない
まま残存し、液体化処理の際に結晶粒粗大化の駆動力と
なるためだと推定できる。
The cause of crystal grain coarsening on the surface of the electrode material is that the strain applied during hot working remains unreleased due to the temperature drop during working, and becomes the driving force for crystal grain coarsening during liquefaction processing. It can be estimated that

特に、電極材料の表面温度は、工具との接触によって温
度が低下し易いため、この現象が生じやすいと考えられ
る。
Particularly, the surface temperature of the electrode material is likely to decrease due to the contact with the tool, and this phenomenon is considered to occur easily.

発明の目的 この発明は、抵抗溶接に用いられる電極材料表面の結晶
粒粗大化を防止し、高導電率並びに高硬度を有し、かつ
結晶粒が小さく、溶接部の外観損傷や溶接強度の低下の
ない抵抗溶接電極用銅合金を得る製造方法を目的として
いる。
OBJECT OF THE INVENTION The present invention prevents crystal grain coarsening on the surface of an electrode material used for resistance welding, has high conductivity and high hardness, and has a small crystal grain, which damages the appearance of the welded portion and reduces the welding strength. An object of the present invention is to provide a manufacturing method for obtaining a copper alloy for a resistance-welding electrode that does not have any defects.

発明の概要 この発明は、電極材料表面の結晶粒粗大化を防止できる
製造方法を目的に種々検討した結果、溶製、熱間加工
後、溶体化処理前に所要の冷間加工を施し製造すること
により、結晶粒の粗大化を防止きることを知見しこの発
明を完成した。
SUMMARY OF THE INVENTION The present invention is produced by performing various studies for the purpose of a production method capable of preventing crystal grain coarsening on the surface of an electrode material, and performing required cold working after melting and hot working and before solution treatment. As a result, it was found that the coarsening of crystal grains can be prevented, and the present invention was completed.

すなわち、この発明は、 Be0.2wt%〜0.8wt%、Co0.5wt%〜1.5wt%、 Ni0.5wt%〜1.5wt%、Mg0.0005wt%〜0.1wt% 残部Cu及び不可避的不純物を含んだ合金を、 600℃〜1000℃で熱間加工を行い、 次いで、減面率5%〜50%の冷間加工を行い、 さらに、900℃〜1000℃で30分〜5時間の溶体化処理を
行なった後、 370℃〜480℃で30分〜20時間の時効処理を施し、ロック
ウエルC硬さが20以上、 導電率が40%以上でかつ結晶粒の小さな銅合金を得るこ
とを特徴とする抵抗溶接用電極用銅合金の製造方法であ
る。
That is, the present invention contains Be0.2wt% to 0.8wt%, Co0.5wt% to 1.5wt%, Ni0.5wt% to 1.5wt%, Mg0.0005wt% to 0.1wt% balance Cu and unavoidable impurities. The alloy is hot-worked at 600 ℃ -1000 ℃, then cold-worked at a surface reduction rate of 5% -50%, and solution heat-treated at 900 ℃ -1000 ℃ for 30 minutes-5 hours. After that, an aging treatment is performed at 370 ° C to 480 ° C for 30 minutes to 20 hours to obtain a copper alloy having a Rockwell C hardness of 20 or more, an electrical conductivity of 40% or more, and small crystal grains. It is a manufacturing method of a copper alloy for electrodes for resistance welding.

発明の構成 この発明において、成分限定した理由は以下のとおりで
ある。
Structure of the Invention In the present invention, the reasons for limiting the components are as follows.

Beは、時効析出性をもたせるために添加するが、0.2wt
%未満では、材料の強度が低下し、また、0.8wt%を越
えると、導電性を低下させるため、0.2wt%〜0.8wt%の
添加とする。
Be is added to have aging precipitation property, but 0.2 wt
If it is less than 0.1%, the strength of the material will be reduced, and if it exceeds 0.8% by weight, the electrical conductivity will be reduced, so 0.2 wt% to 0.8 wt% is added.

CoとNiは、Beの固溶限を下げて析出能を増加させる目的
で添加するが、いずれも0.5wt%未満では、材料の強度
が低下し、また、1.5wt%を越えると、導電性を低下さ
せるため、Co又はNiは、それぞれ0.5wt%〜1.5wt%の添
加とする。
Co and Ni are added for the purpose of lowering the solid solubility limit of Be and increasing the precipitation ability, but if both are less than 0.5 wt%, the strength of the material will decrease, and if it exceeds 1.5 wt%, the conductivity will increase. Co or Ni is added in an amount of 0.5 wt.

Mgは、過時効を防止するため添加するが、0.0005wt%未
満では、過時効効防止効果なく、また、0.1wt%を越え
る添加では、熱間加工性を損なうため、0.0005wt%〜0.
1wt%の添加とする。
Mg is added to prevent overaging, but if it is less than 0.0005 wt%, there is no overaging prevention effect, and if it exceeds 0.1 wt%, it deteriorates hot workability, so 0.0005 wt% to 0.
1wt% is added.

Cuは、本系電極材料用合金の基体をなし、前記添加元素
の残余とする。
Cu forms the base of the alloy for this system electrode material, and is the balance of the additional elements.

この発明において、製造条件並びに限定理由は以下のと
おりである。
In the present invention, the manufacturing conditions and the reasons for limitation are as follows.

溶製方法及び条件は特に限定しない。The melting method and conditions are not particularly limited.

熱間加工工程において、溶製した鋳塊より所要寸法,形
状の素材に製造するが、鍛造等の加工における温度が60
0℃未満では、所要形状となすことができず、また、100
0℃を越えると、加工時に発生する熱により素材中に局
所的過熱を生じ、結晶粒界部が溶融して熱間加工が不可
能となるため、600℃〜1000℃の温度範囲で行なう必要
がある。
In the hot working process, the molten ingot is manufactured into a material with the required size and shape, but the temperature during processing such as forging is 60
If the temperature is below 0 ° C, the desired shape cannot be obtained, and 100
If the temperature exceeds 0 ° C, the heat generated during processing causes local overheating in the material, and the grain boundary part melts, making hot working impossible. Therefore, it is necessary to perform in the temperature range of 600 ° C to 1000 ° C. There is.

この発明の特徴である熱間加工後、溶体化処理前に施す
冷間加工は、減面率で5%未満では、結晶微細化の硬化
が得られず、また、50%を越える冷間加工を施すには非
常に大きなワーク(被加工材)が必要となり実用上採用
できないため、5%〜50%の冷間加工を行う必要があ
る。さらに、好ましくは、10%〜30%の範囲である。
The cold working performed after the hot working and before the solution heat treatment, which is a feature of the present invention, does not allow hardening of crystal refinement when the area reduction rate is less than 5%, and the cold working exceeding 50%. It requires a very large work (workpiece) and cannot be used in practice, so it is necessary to perform cold working at 5% to 50%. Furthermore, it is preferably in the range of 10% to 30%.

溶体化処理は、900℃未満では、その後時効処理をして
も所要の強度が得られず、1000℃を越える温度は、結晶
粒が粗大化するため好ましくなく、また、溶体化効果を
得るには、前記温度範囲にて少なくとも30分間保持する
必要があるが、5時間を越えると結晶粒が粗大化するた
め好ましくなく、かかる900℃〜1000℃×30分〜5時間
の熱処理後、水冷する。また、好ましい液体化処理温度
は920℃〜980℃である。
If the solution heat treatment is less than 900 ° C, the required strength cannot be obtained even after the aging treatment, and if the temperature exceeds 1000 ° C, the crystal grains are coarsened, which is not preferable. Is required to be kept in the above temperature range for at least 30 minutes, but it is not preferable because the crystal grains become coarser if it exceeds 5 hours. After the heat treatment at 900 ° C. to 1000 ° C. for 30 minutes to 5 hours, it is cooled with water. . Further, the preferable liquefaction treatment temperature is 920 ° C to 980 ° C.

時効硬化処理は、370℃未満では、析出硬化が不十分で
所要の硬度が得られず、480℃を越えると、過時効とな
り所要の高度が得られない。また、前記温度範囲での保
持時間が30分未満であると、析出硬化が不十分であり、
20時間を越えると過時効となるため、370℃〜480℃×30
分〜20時間の処理とする。
In the age hardening treatment, if the temperature is lower than 370 ° C, the precipitation hardening is insufficient and the required hardness cannot be obtained, and if it exceeds 480 ° C, overaging causes the required hardness to be not obtained. Further, if the holding time in the temperature range is less than 30 minutes, the precipitation hardening is insufficient,
370 ℃ -480 ℃ × 30
Processing time is from minutes to 20 hours.

さらに、得られた銅合金のロックウエルC硬さを20以
上、導電率(JIS H 0505)を40%以上に限定したのは、各
下限未満では、抵抗溶接用電極材料として不適となるた
めである。
Further, the Rockwell C hardness of the obtained copper alloy is limited to 20 or more and the electrical conductivity (JIS H 0505) is limited to 40% or more because it is unsuitable as an electrode material for resistance welding below the respective lower limits. .

発明の効果 この発明は、上述の如く、熱間加工後、溶体化処理前に
冷間加工を施すことを特徴としている。
EFFECTS OF THE INVENTION As described above, the present invention is characterized by performing cold working after hot working and before solution treatment.

しかし、一般には、かかる高温処理前に冷間加工を施す
と、その後の熱処理によって結晶粒の成長速度が著しく
増加するとされているが、この発明の条件にて行なう
と、溶体化処理後の結晶粒は極めて微細で均一となる。
However, it is generally said that if cold working is performed before the high temperature treatment, the growth rate of crystal grains is significantly increased by the subsequent heat treatment. The grains are extremely fine and uniform.

また、冷間加工後、溶体化処理を施すため、冷間加工に
よって加えられた歪等は解放され、さらに時効処理を加
え硬化した後、極めて安定した強度が得られる効果があ
る。
Further, since the solution treatment is performed after the cold working, the strain or the like applied by the cold working is released, and after the aging treatment is performed and the hardening is performed, an extremely stable strength can be obtained.

この発明による製造方法では、全く粗大結晶の発生がな
いため、溶体化温度の制約が大きく緩和される利点があ
る。
Since the production method according to the present invention does not generate coarse crystals at all, there is an advantage that the restriction on the solution temperature is greatly relaxed.

実施例 実施例1 下記組成となるよう大気中で溶製し、250mm角鋳塊を得
た。
Example 1 A 250 mm square ingot was melted in the air so as to have the following composition.

Be0.42wt%、Co1.03%、 Ni0.95%、Mg0.02wt%、残部Cu ついで、600℃〜850℃の熱間鍛造にて、60mm径に加工し
た。
Be0.42wt%, Co1.03%, Ni0.95%, Mg0.02wt%, balance Cu, and then hot forging at 600 ° C to 850 ° C to form a 60 mm diameter.

さらに、減面率で22%の冷間加工を行ない53mm径となし
た。
Furthermore, the surface reduction rate was 22% and cold working was performed to obtain a diameter of 53 mm.

880〜1020℃×2時間、水冷の各種溶体化処理を施した
後、425℃×3時間の時効処理を施した。
After various solution treatments of water cooling at 880 to 1020 ° C for 2 hours, aging treatment at 425 ° C for 3 hours was performed.

得られた各電極材料のロックウエルC硬さ、導電率、材
料表面の粗大粒状況を測定、観察し、溶体化処理温度と
ともに第1表に示す。
The Rockwell C hardness of each of the obtained electrode materials, the electrical conductivity, and the state of coarse particles on the material surface were measured and observed, and the results are shown in Table 1 together with the solution treatment temperature.

第1表から明らかな如く、この発明方法による電極材料
は、溶体化温度の上昇とともに電気抵抗は若干高くな
り、すなわち、導電率は低下するが、硬さが上昇して耐
摩耗性の工場が著しいことが分る。
As is clear from Table 1, the electrode material produced by the method of the present invention has a slightly higher electric resistance with an increase in the solution temperature, that is, the conductivity decreases, but the hardness increases and a wear-resistant factory is used. It turns out to be remarkable.

ちなみに、溶体化処理温度1000℃の電極材料の断面組織
を示すと、第1図に示す如く、冷間加工を施したこの発
明方法による電極材料の表面近傍には、全く粗大結晶粒
はみられないのに対して、第2図に示す如く、従来方法
による電極材料の断面付近には粗大結晶粒(A)が多数生
成していることが明らかである。
By the way, when the sectional structure of the electrode material at the solution treatment temperature of 1000 ° C. is shown, as shown in FIG. 1, no coarse crystal grains are found in the vicinity of the surface of the electrode material according to the present invention which has been cold worked. On the other hand, as shown in FIG. 2, it is apparent that a large number of coarse crystal grains (A) are generated near the cross section of the electrode material by the conventional method.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明方法による電極材料の断面組織図、第
2図は従来方法による電極材料の断面組織図である。 A……粗大結晶粒
FIG. 1 is a sectional structure diagram of an electrode material according to the method of the present invention, and FIG. 2 is a sectional structure diagram of an electrode material according to a conventional method. A: Coarse crystal grains

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】Be0.2wt%〜0.8wt%、Co0.5wt%〜1.5wt
%、 Ni0.5wt%〜1.5wt%、Mg0.0005wt%〜0.1wt% 残部Cu及び不可避的不純物を含んだ合金を、 600℃〜1000℃で熱間加工を行い、 次いで、減面率5%〜50%の冷間加工を行い、 さらに、900℃〜1000℃で30分〜5時間の溶体化処理を
行なった後、 370℃〜480℃で30分〜20時間の時効処理を施し、ロック
ウエルC硬さが20以上、 導電率が40%以上でかつ結晶粒の小さな銅合金を得るこ
とを特徴とする抵抗溶接電極用銅合金の製造方法。
1. Be 0.2 wt% to 0.8 wt%, Co 0.5 wt% to 1.5 wt
%, Ni 0.5 wt% to 1.5 wt%, Mg 0.0005 wt% to 0.1 wt% Alloy containing residual Cu and unavoidable impurities is hot-worked at 600 ℃ ~ 1000 ℃, then 5% reduction in area ~ 50% cold working, further solution heat treatment at 900 ℃ ~ 1000 ℃ for 30 minutes ~ 5 hours, then aging at 370 ℃ ~ 480 ℃ for 30 minutes ~ 20 hours, Rockwell A method for producing a copper alloy for a resistance welding electrode, which comprises obtaining a copper alloy having a C hardness of 20 or more, an electrical conductivity of 40% or more, and a small crystal grain.
JP14747687A 1987-06-12 1987-06-12 Method for producing copper alloy for resistance welding electrode Expired - Lifetime JPH0637700B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14747687A JPH0637700B2 (en) 1987-06-12 1987-06-12 Method for producing copper alloy for resistance welding electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14747687A JPH0637700B2 (en) 1987-06-12 1987-06-12 Method for producing copper alloy for resistance welding electrode

Publications (2)

Publication Number Publication Date
JPS63310946A JPS63310946A (en) 1988-12-19
JPH0637700B2 true JPH0637700B2 (en) 1994-05-18

Family

ID=15431251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14747687A Expired - Lifetime JPH0637700B2 (en) 1987-06-12 1987-06-12 Method for producing copper alloy for resistance welding electrode

Country Status (1)

Country Link
JP (1) JPH0637700B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6307173B1 (en) * 2000-12-21 2001-10-23 Brush Wellman, Inc. Weld gun arm casting
US8220697B2 (en) 2005-01-18 2012-07-17 Siemens Energy, Inc. Weldability of alloys with directionally-solidified grain structure

Also Published As

Publication number Publication date
JPS63310946A (en) 1988-12-19

Similar Documents

Publication Publication Date Title
CN101151119B (en) Method of manufacturing a consumable filler metal for use in a welding operation
US4844746A (en) Method of producing a tantalum stock material of high ductility
JPH059619A (en) Production of high-strength copper alloy
JP2965841B2 (en) Method of manufacturing forged Ni-base superalloy product
JP5555154B2 (en) Copper alloy for electrical and electronic parts and method for producing the same
KR101953043B1 (en) Titanium slab for hot rolling, and production method therefor
JP3909406B2 (en) Method for producing Ni-based alloy material
JPS6132386B2 (en)
JPH0637700B2 (en) Method for producing copper alloy for resistance welding electrode
JP5052796B2 (en) Method for producing Ni-based alloy wire or bar
US6465755B2 (en) Manufacture of repair material and articles repaired with the material
JPH0819890A (en) Electrode material for welding and its production
JP4068486B2 (en) Electrode material for resistance welding and manufacturing method thereof
JPH06279894A (en) Copper alloy excellent in strength and electrical conductivity
KR960015217B1 (en) Making method of cu-cr-zr-mg-ce-la-nd-pd alloy
JP7078070B2 (en) Copper alloys, copper alloy plastic processed materials, parts for electronic and electrical equipment, terminals, bus bars, lead frames
JP2005288519A (en) Electrode material and its production method
JP2568032B2 (en) Welding electrode material and manufacturing method thereof
JP3049567B2 (en) Manufacturing method of Ni-base heat-resistant alloy material
JP2844688B2 (en) Method for producing Co-based alloy
JP2757203B2 (en) Method for producing large grains or single crystals of chromium
JP5026214B2 (en) Method for manufacturing electrode tip for spark plug
JP2007167880A (en) Brazing filler metal and its production method
JPH06100967A (en) Cu-fe alloy for welding electrode and soldering iron chip excellent in molten metal erosion resistance and high temperature strength and its production
JP2010106332A (en) Copper alloy material for structural member of resistance welding machine