JPH0636657A - Contact material for vacuum circuit breaker and manufacture thereof - Google Patents
Contact material for vacuum circuit breaker and manufacture thereofInfo
- Publication number
- JPH0636657A JPH0636657A JP19254192A JP19254192A JPH0636657A JP H0636657 A JPH0636657 A JP H0636657A JP 19254192 A JP19254192 A JP 19254192A JP 19254192 A JP19254192 A JP 19254192A JP H0636657 A JPH0636657 A JP H0636657A
- Authority
- JP
- Japan
- Prior art keywords
- circuit breaker
- vacuum circuit
- alloy
- contact
- capsule
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、さい断電流特性が低
く、電流遮断特性の良好な真空遮断器用の接点材料およ
びその製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a contact material for a vacuum circuit breaker having a low breaking current characteristic and a good current breaking characteristic, and a method for manufacturing the same.
【0002】[0002]
【従来の技術】従来、中電圧(3.6〜36kV)用の
遮断器として、油入しゃ断器が多く使用されてきたが、
小形,軽量,長寿命,不燃性,保守の省力などの点か
ら、現在では真空遮断器を用いるのが主流となってい
る。図3は、真空遮断器を説明するために、その要部構
成を示した模式断面図である。図3において、セラミッ
クスなどからなる絶縁筒1の中に、固定通電棒2と可動
通電棒3が同一中心軸を持つように配置され、これらの
対向面の先端に、それぞれ固定接点4と可動接点5がろ
う付けにより接合されている。さらに絶縁筒1内では、
固定通電棒2側に、電流遮断時に接点から発生する金属
蒸気が絶縁筒1の表面に付着するのを防ぐためのアーク
シールド6を取り付け、可動通電棒3側に、固定接点4
と可動接点5を開閉するためのベローズ7を設けてあ
る。アークシールド6は、絶縁筒1の蓋8の内面に固定
され、同様にベローズ7は、絶縁筒1の蓋9の内面に固
定されている。2. Description of the Related Art Conventionally, an oil-filled circuit breaker has been widely used as a circuit breaker for medium voltage (3.6 to 36 kV).
Currently, vacuum circuit breakers are mainly used because of their small size, light weight, long life, nonflammability, and labor saving in maintenance. FIG. 3 is a schematic cross-sectional view showing a configuration of a main part of the vacuum circuit breaker for explaining the vacuum circuit breaker. In FIG. 3, a fixed current-carrying rod 2 and a movable current-carrying rod 3 are arranged in an insulating cylinder 1 made of ceramics or the like so as to have the same central axis. 5 are joined by brazing. Furthermore, in the insulating cylinder 1,
An arc shield 6 for preventing the metal vapor generated from the contacts from adhering to the surface of the insulating cylinder 1 when the current is cut off is attached to the fixed conducting rod 2 side, and the fixed contact 4 is attached to the movable conducting rod 3 side.
And a bellows 7 for opening and closing the movable contact 5. The arc shield 6 is fixed to the inner surface of the lid 8 of the insulating cylinder 1, and similarly, the bellows 7 is fixed to the inner surface of the lid 9 of the insulating cylinder 1.
【0003】このように構成された真空遮断器は、通
常、真空熱処理炉の中で組み立てられ、絶縁筒1の内部
は常に1×10-4torrの真空度に保持されている。
そして、通電時には接触している固定接点4と可動接点
5は、外部からの信号に応じて、可動通電棒3と一体に
なっているベローズ7の伸縮運動により開離され、電流
を遮断することができる。The vacuum circuit breaker thus constructed is usually assembled in a vacuum heat treatment furnace, and the inside of the insulating cylinder 1 is always maintained at a vacuum degree of 1 × 10 -4 torr.
The fixed contact 4 and the movable contact 5, which are in contact with each other when energized, are separated by the expansion and contraction movement of the bellows 7 integrated with the movable energization rod 3 in response to a signal from the outside to interrupt the current. You can
【0004】ここで用いられる固定接点4と可動接点5
は、真空遮断器に対して以下の特性を具備することが要
求されている。 電流遮断特性に優れること。 耐アーク性および耐溶着性に優れること。 さい断電流値が低いこと。Fixed contact 4 and movable contact 5 used here
Are required to have the following characteristics for a vacuum circuit breaker. Excellent current blocking characteristics. Excellent in arc resistance and welding resistance. The breaking current value is low.
【0005】 耐圧特性に優れること。 材料成分の蒸気圧が低いこと。 製造方法が簡単で切削加工性に優れること。 安価であること。 これに対して、上記の項目は特性上相反する関係となる
ものが含まれているので、これら全ての特性を満足させ
るのは非常に困難であるが、これまで、真空遮断器の接
点として用いられてきた材料として、Cu−Bi系,C
u−Te系,Cu−Cr系,およびAg−WC−Co系
などの各種合金がある。Excellent withstand voltage characteristics. The vapor pressure of the material components is low. Easy manufacturing method and excellent machinability. Be inexpensive. On the other hand, it is very difficult to satisfy all these characteristics because the above items include characteristics that are contradictory to each other, but until now, it has been used as a contact of a vacuum circuit breaker. As the materials that have been used, Cu-Bi system, C
There are various alloys such as u-Te series, Cu-Cr series, and Ag-WC-Co series.
【0006】[0006]
【発明が解決しようとする課題】これら合金系のうち、
Cu−Bi合金,Cu−Te合金は、合金中の低融点成
分の含有量を多くすると耐溶着性が向上し、さい断電流
値も低下するという特性を持つが、一方で低融点成分が
多くなると、電流遮断特性が悪化してしまう。Cu−C
r合金は、電流遮断特性と耐溶着性については、いずれ
も比較的優れているが、さい断電流値が高いという欠点
がある。Ag−WC−Co合金は、さい断電流値は他の
合金系に比べて低いという利点を有するものの、電流遮
断特性が不十分であり、また加工性が劣るという問題が
ある。Of these alloy systems,
The Cu-Bi alloy and the Cu-Te alloy have the characteristics that when the content of the low melting point component in the alloy is increased, the welding resistance is improved and the breaking current value is lowered, but on the other hand, the low melting point component is large. If this happens, the current cutoff characteristics will deteriorate. Cu-C
The r-alloy is relatively excellent in both current blocking characteristics and welding resistance, but has the drawback of high breaking current value. Although the Ag-WC-Co alloy has an advantage that the breaking current value is lower than that of other alloy systems, it has a problem that the current breaking characteristic is insufficient and the workability is poor.
【0007】本発明は上述の点に鑑みてなされたもので
あり、その目的は、さい断電流値が低く、電流遮断特性
と耐溶着性もバランスよく保持することができる真空遮
断器用の接点材料およびその製造方法を提供することに
ある。The present invention has been made in view of the above points, and an object thereof is a contact material for a vacuum circuit breaker which has a low breaking current value and can maintain a good balance between current breaking characteristics and welding resistance. And to provide a manufacturing method thereof.
【0008】[0008]
【課題を解決するための手段】上記の課題を解決するた
めに、本発明の真空遮断器用接点材料は、重量比で30
〜50%のAgを含有し、残部がCrからなるAg−C
r合金とする。この接点材料はAgとCrの粉末を熱間
静水圧プレスにより焼結果して作製するものである。In order to solve the above-mentioned problems, the contact material for a vacuum circuit breaker of the present invention has a weight ratio of 30.
Ag-C containing ~ 50% Ag, balance Cr
r alloy. This contact material is produced by baking Ag and Cr powders by hot isostatic pressing.
【0009】[0009]
【作用】重量比で30〜50%のAgを含有し、残部が
Crからなる本発明のAg−Cr合金の接点材料は、蒸
気圧と電気電導度が高く良好な電流遮断特性を有するA
gと、蒸気圧が低く良好な耐溶着性とゲッター作用を有
するCrとを組み合わせ、AgとCrの混合粉末を熱間
静水圧プレスにより最適な条件を設定して作製している
ので、完全に緻密化された焼結体として得ることがで
き、この材料からなる接点を組み込んだ真空遮断器は、
低さい断電流値と良好な電流遮断特性の双方を付与させ
ることができる。The contact material of Ag-Cr alloy of the present invention containing 30 to 50% by weight of Ag and the balance of Cr has high vapor pressure and electric conductivity, and has good current interruption characteristics.
g and Cr, which has a low vapor pressure and good welding resistance and a getter action, are combined, and a mixed powder of Ag and Cr is produced by hot isostatic pressing under optimum conditions. A vacuum circuit breaker that can be obtained as a densified sintered body and that incorporates contacts made of this material is
Both a low breaking current value and a good current interruption characteristic can be given.
【0010】[0010]
【実施例】以下、本発明を実施例に基づき説明する。本
発明は、真空遮断器に用いて低さい断電流特性と、良好
な電流遮断特性とを有する接点合金として、高い蒸気圧
を持ち高電気伝導度により電流遮断特性に優れるAg
と、低蒸気圧を持ち耐溶着性に優れるとともにゲッター
作用を兼備するCrとからなる合金が、目的に適うもの
であるとの本発明者らの着想から行なわれたものであ
る。EXAMPLES The present invention will be described below based on examples. INDUSTRIAL APPLICABILITY The present invention is used as a contact alloy having a low breaking current characteristic and a good current breaking characteristic for use in a vacuum circuit breaker, and has a high vapor pressure and a high electric conductivity.
And an alloy consisting of Cr, which has a low vapor pressure and is excellent in welding resistance and also has a getter action, was made based on the idea of the present inventors that it is suitable for the purpose.
【0011】AgとCrの合金を作製するに当たって、
AgとCrは相互に溶解度を持たないので、通常の溶解
法では、所望の組成を持つ合金を得ることはできない。
したがって、本発明者らは、当初粉末冶金法を用いて合
金の製作を試みた。即ち、1000メッシュ以下の粒度
を持つAgとCrの粉末を、ボールミルでよく混合した
後、金型を用いて成形体を得、これを真空中で焼結し
た。しかし、AgとCrは互いに濡れ性が悪いために、
これらの混合割合および焼結条件を如何に変化させて
も、真密度の合金体を得ることが不可能であった。焼結
後の合金中には空孔が存在しており、これでは真空遮断
器の接点として用いたとしても、良好な電流遮断特性と
低さい断電流特性は得られないことがわかった。In making an alloy of Ag and Cr,
Since Ag and Cr have no mutual solubility, an alloy having a desired composition cannot be obtained by a usual melting method.
Therefore, the present inventors initially tried to manufacture an alloy by using the powder metallurgy method. That is, powders of Ag and Cr having a grain size of 1000 mesh or less were well mixed in a ball mill, a molded body was obtained using a mold, and this was sintered in vacuum. However, Ag and Cr have poor wettability with each other,
It was impossible to obtain a true density alloy body, no matter how the mixing ratio and sintering conditions were changed. It was found that voids existed in the alloy after sintering, and this could not provide good current breaking characteristics and low breaking current characteristics even when used as contacts of a vacuum circuit breaker.
【0012】そこで、本発明者らは、所望の組成を有す
るAg−Cr合金を、空孔のない完全に緻密な状態とし
て作製するには、高温と高圧の相乗効果を期待すること
ができる熱間静水圧プレス[以下、HIP(Hot I
sostatic Pressing)と略称する]を
利用するのが、本発明を達成させるために最も有力であ
るという発想を持つに到った。[0012] Therefore, the present inventors can expect a synergistic effect of high temperature and high pressure to produce an Ag-Cr alloy having a desired composition in a completely dense state without pores. Isostatic press [HIP (Hot I
abbreviated as “somatic Pressing”] is the most effective way to achieve the present invention.
【0013】HIPは知られた技術であるが、ここでそ
の装置の概要を簡単に述べる。図1はこの装置構成を示
す模式断面図である。図1において、この装置の基本は
高圧容器10とその中の断熱構造体11およびヒータ1
2にあり、全体が外側構造体13に収められており、被
処理体14を高圧容器10の蓋15上に置かれた台の上
に載せ、これを高温高圧のガス雰囲気下で加圧加熱する
ものである。その加圧方法は、圧力媒体として通常Ar
またはN2 などの不活性ガス16を用い、ガス圧縮機1
7により高圧容器10内を1000Kgf/cm2 以上
に加圧し、同時に高圧容器10内のヒータ12の加熱に
より、内部に充填されたガスの膨張でさらに圧力を上昇
させることができる。HIP is a known technology, but a brief overview of the device is given here. FIG. 1 is a schematic sectional view showing the structure of this device. In FIG. 1, the basics of this apparatus are a high-pressure vessel 10, a heat insulating structure 11 and a heater 1 therein.
2, the whole is housed in the outer structure 13, and the object to be processed 14 is placed on a table placed on the lid 15 of the high-pressure container 10 and heated under pressure in a gas atmosphere of high temperature and high pressure. To do. The pressurizing method is usually Ar as a pressure medium.
Alternatively, an inert gas 16 such as N 2 is used, and the gas compressor 1
The pressure in the high-pressure container 10 can be increased to 1000 Kgf / cm 2 or more by means of 7, and at the same time, the heater 12 in the high-pressure container 10 can be heated to further increase the pressure by expanding the gas filled therein.
【0014】このようなHIP処理の特徴は、ガス圧を
用いるので任意の形状の被処理体14に、等方的な圧力
を加えられることである。したがって、粉末またはこれ
を成形した被処理体14を金属カプセルなどの中に真空
封入して、HIP処理を行なうことにより、微粒子で理
論密度を有する高密度の焼結体を得ることができる。ま
た、HIP処理は、通常の焼結法では不可能な合金粉末
の焼結を行なうことも可能である。A characteristic of such HIP processing is that gas pressure is used, so that isotropic pressure can be applied to the object to be processed 14 having an arbitrary shape. Therefore, the powder or the object to be processed 14 obtained by molding the powder is vacuum-enclosed in a metal capsule or the like and subjected to the HIP process, whereby a high-density sintered body having fine particles and a theoretical density can be obtained. Further, the HIP process can also sinter the alloy powder, which is not possible by a normal sintering method.
【0015】さて、図2(a),(b),(c)は、本
発明のAg−Cr合金をHIP処理するときの過程を示
す模式図である。まず、軟鋼,ステンレス鋼あるいは銅
などからなる金属カプセル18に、所定の割合に混合し
たAg−Cr粉末19を充填する。ここでは、Ag−C
r合金の適切な組成を確かめるために、Cr含有量を4
0〜80重量%の範囲となるように変化させたものにつ
いて行なったが、これについては後に述べる。その後、
金属カプセル18の上部に、金属製パイプ20を取り付
けた蓋21を接合する[図2(a)]。2 (a), 2 (b) and 2 (c) are schematic diagrams showing the process of HIPing the Ag--Cr alloy of the present invention. First, a metal capsule 18 made of mild steel, stainless steel, copper or the like is filled with Ag—Cr powder 19 mixed at a predetermined ratio. Here, Ag-C
In order to confirm the proper composition of r alloy, the Cr content should be 4
The experiment was carried out with the content changed in the range of 0 to 80% by weight, which will be described later. afterwards,
A lid 21 to which a metal pipe 20 is attached is joined to the upper portion of the metal capsule 18 [Fig. 2 (a)].
【0016】次いで、蓋21を接合した金属カプセル1
8を、図示してない電気炉中に装入し100℃前後に加
熱しながら、図示してない排気装置により金属製パイプ
20を通して真空脱気を行ない、金属製パイプ20の一
部で密封する[図2(b)]。このとき、あらかじめA
gとCrの混合粉末を金型で成形しておき、この成形体
を金属カプセル18に密封するという方法を採ってもよ
い。Next, the metal capsule 1 with the lid 21 joined thereto
8 is charged into an electric furnace (not shown) and heated to about 100 ° C., vacuum deaeration is performed through the metal pipe 20 by an exhaust device (not shown), and sealed with a part of the metal pipe 20. [FIG.2 (b)]. At this time, A
It is also possible to adopt a method in which a mixed powder of g and Cr is molded in a mold and the molded body is sealed in the metal capsule 18.
【0017】金属カプセル18の密封後に、これをHI
P処理装置の高圧容器22に装填し、Ar雰囲気で温度
500〜800℃,圧力700〜2000Kgf/cm
2 の範囲とし、15〜60分間の処理を行なう。温度を
500〜800℃としたのは、温度が500℃以下で
は、金属カプセル18が軟化せず加圧不可能であり、8
00℃以上になると、金属カプセル18が内容物である
Ag−Cr混合粉末19と反応してしまうからであり、
このときの圧力と保持時間は、温度との関係で上記の範
囲であれば、AgとCrが如何なる割合であっても、空
孔を発生することなく緻密な合金が得られることを別途
実験により確認している。矢印は圧力が等方的に作用す
ることを示すものである。[図2(c)]。After the metal capsule 18 is sealed, it is sealed with HI.
It is loaded in the high-pressure container 22 of the P treatment apparatus, and the temperature is 500 to 800 ° C. and the pressure is 700 to 2000 Kgf / cm in an Ar atmosphere.
The range is set to 2 and the treatment is performed for 15 to 60 minutes. The temperature is set to 500 to 800 ° C., because at a temperature of 500 ° C. or lower, the metal capsule 18 is not softened and cannot be pressed.
This is because the metal capsule 18 reacts with the Ag-Cr mixed powder 19 that is the content at a temperature of 00 ° C or higher,
As to the pressure and the holding time at this time, if the ratio is within the above range in relation to the temperature, it will be separately tested that a dense alloy can be obtained without generating voids regardless of the ratio of Ag and Cr. I'm confirming. The arrow indicates that the pressure acts isotropically. [FIG.2 (c)].
【0018】このようにして得られたAg−Cr合金
を、直径25mm,厚さ4mmの大きさの接点に機械加
工し、これを用いて図3に示す真空遮断器を作製し、
7.2KV/12.5KAの条件における遮断試験と、
10Aを通電したときのさい断電流値の測定を行なっ
た。その結果を表1に示す。表1には前記したように、
AgとCr粉末の混合割合を変えて作製した各合金と、
比較のために、同様の条件で試験を行なったCr−Cu
系,Cr−Cu−Bi系の接点合金についても併記して
ある。表1に示した合金組成は全て重量%を表わすもの
であり、○はその特性が良好であることを示し、×は不
良であることを示している。The Ag--Cr alloy thus obtained was machined into a contact having a diameter of 25 mm and a thickness of 4 mm, and a vacuum circuit breaker shown in FIG.
Interruption test under conditions of 7.2KV / 12.5KA,
When the current was applied to 10 A, the breaking current value was measured. The results are shown in Table 1. As mentioned above in Table 1,
Each alloy produced by changing the mixing ratio of Ag and Cr powder,
For comparison, Cr-Cu tested under similar conditions
The system alloys and Cr-Cu-Bi system contact alloys are also shown. The alloy compositions shown in Table 1 all represent% by weight, ◯ indicates that the characteristics are good, and x indicates that the characteristics are poor.
【0019】[0019]
【表1】 表1の結果から、以下のことが明らかになる。即ち、本
発明に係わるAg−Cr合金は、ばらつきはあるもの
の、Ag含有量の増加に伴い、さい断電流値は低下する
傾向にある。通常、7.2KV/12.5KAクラスの
真空遮断器は、2A以下のさい断電流値が要求されてい
るので、さい断電流値については、Agを30%含むこ
とにより満足される。しかし、Agが30%以下になる
と遮断性能が低下し、また、Agが60%以上になる
と、耐溶着性が悪化してしまう。したがって、Agの含
有量は30〜50%とするのが最も有効であり、合金組
成をこの範囲に決めることができる。Ag含有量が30
〜50%、残部Crからなる本発明のAg−Cr合金
は、従来の真空遮断器用接点であるCr−50%Cu合
金より低いさい断電流値を持ち、Cr−55%Cu−2
0%Bi合金に比べてさい断電流値は高くなるが、遮断
性能の面で優れているという利点を有する。[Table 1] From the results shown in Table 1, the following will become clear. That is, although the Ag-Cr alloy according to the present invention has variations, the breaking current value tends to decrease as the Ag content increases. Usually, a vacuum circuit breaker of 7.2 KV / 12.5 KA class is required to have a breaking current value of 2 A or less. Therefore, the breaking current value is satisfied by including 30% of Ag. However, when Ag is 30% or less, the barrier performance is deteriorated, and when Ag is 60% or more, the welding resistance is deteriorated. Therefore, it is most effective to set the Ag content to 30 to 50%, and the alloy composition can be determined within this range. Ag content is 30
The Ag-Cr alloy of the present invention consisting of -50% and the balance Cr has a lower breaking current value than the Cr-50% Cu alloy which is the conventional contact for vacuum circuit breaker, and Cr-55% Cu-2.
Although the breaking current value is higher than that of the 0% Bi alloy, it has an advantage in that it has an excellent breaking performance.
【0020】[0020]
【発明の効果】従来の真空遮断器用接点は、さい断電流
値と電流遮断特性が相反関係にあり、この両者を満足す
るものが得られなかったが、本発明のAg30〜50%
を含むAg−Cr合金の接点は、実施例で述べた如く、
AgとCrのそれぞれの持つ接点材料としての長所を活
かして、AgとCrの組成割合を最適範囲に定めたもの
であり、その作製に当たっては、AgとCrの混合粉末
を熱間静水圧プレスにより焼結して作製し、しかも熱間
静水圧プレスの条件を、最適となるように設定してある
ので、完全に緻密な焼結体として得られ、空孔が存在す
ることなく、その結果、この接点を組み込んだ真空遮断
器は、さい断電流値と電流遮断特性の双方ともに、良好
な特性を発揮することができる。The conventional vacuum circuit breaker contact has a reciprocal relation between the breaking current value and the current breaking characteristic, and it was not possible to obtain one satisfying both of them, but the Ag of the present invention is 30 to 50%.
The contact of Ag-Cr alloy containing is as described in the embodiment.
By utilizing the advantages of Ag and Cr as contact materials, the composition ratio of Ag and Cr is set to the optimum range. In making it, a mixed powder of Ag and Cr is pressed by hot isostatic pressing. Since it was produced by sintering and the hot isostatic pressing conditions were set to be optimal, it was obtained as a completely dense sintered body, and as a result, there were no pores, and as a result, A vacuum circuit breaker incorporating this contact can exhibit good characteristics in both the breaking current value and the current breaking characteristic.
【図面の簡単な説明】[Brief description of drawings]
【図1】熱間静水圧プレス装置の要部構成を示す模式断
面図FIG. 1 is a schematic cross-sectional view showing the main configuration of a hot isostatic pressing apparatus.
【図2】本発明のAg−Cr合金の作製に用いる熱間静
水圧プレスの手順を示し、(a)は粉末をカプセルに充
填する状態,(b)はこれを真空に密封する状態,
(c)は高圧容器に収納して高温高圧処理する状態をそ
れぞれ表わす模式図FIG. 2 shows a procedure of hot isostatic pressing used for producing an Ag—Cr alloy of the present invention, (a) shows a state in which a powder is filled in a capsule, (b) shows a state in which it is sealed in a vacuum,
(C) is a schematic diagram showing the state of storing in a high-pressure container and performing high-temperature high-pressure processing
【図3】真空遮断器の要部構成を示す模式断面図FIG. 3 is a schematic cross-sectional view showing the configuration of the main part of a vacuum circuit breaker.
1 絶縁筒 2 固定通電棒 3 可動通電棒 4 固定接点 5 可動接点 6 アークシールド 7 ベローズ 8 蓋 9 蓋 10 高圧容器 11 断熱構造体 12 ヒータ 13 外側構造体 14 被処理体 15 蓋 16 不活性ガス 17 ガス圧縮機 18 金属カプセル 19 Ag−Cr混合粉末 20 金属製パイプ 21 蓋 22 高圧容器 DESCRIPTION OF SYMBOLS 1 Insulation cylinder 2 Fixed energizing rod 3 Movable energizing rod 4 Fixed contact 5 Moving contact 6 Arc shield 7 Bellows 8 Lid 9 Lid 10 High pressure container 11 Heat insulation structure 12 Heater 13 Outer structure 14 Object to be treated 15 Lid 16 Inert gas 17 Gas compressor 18 Metal capsule 19 Ag-Cr mixed powder 20 Metal pipe 21 Lid 22 High pressure container
Claims (3)
部がCrからなるAg−Cr合金とすることを特徴とす
る真空遮断器用の接点材料。1. A contact material for a vacuum circuit breaker, which is an Ag--Cr alloy containing 30 to 50% by weight of Ag and the balance being Cr.
り焼結することを特徴とする請求項1記載の真空遮断器
用の接点材料の製造方法。2. The method for producing a contact material for a vacuum circuit breaker according to claim 1, wherein the powder of Ag and Cr is sintered by hot isostatic pressing.
℃,圧力700〜2000kgf/cm2 で15〜60
分間保持して行なうことを特徴とする請求項2記載の真
空遮断器用の接点材料の製造方法。3. The hot isostatic press has a temperature of 500 to 800.
15 to 60 at ℃ and pressure of 700 to 2000 kgf / cm 2 .
The method for producing a contact material for a vacuum circuit breaker according to claim 2, wherein the method is performed by holding for a minute.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19254192A JPH0636657A (en) | 1992-07-21 | 1992-07-21 | Contact material for vacuum circuit breaker and manufacture thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19254192A JPH0636657A (en) | 1992-07-21 | 1992-07-21 | Contact material for vacuum circuit breaker and manufacture thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0636657A true JPH0636657A (en) | 1994-02-10 |
Family
ID=16292997
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19254192A Pending JPH0636657A (en) | 1992-07-21 | 1992-07-21 | Contact material for vacuum circuit breaker and manufacture thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0636657A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0675514A1 (en) * | 1994-03-30 | 1995-10-04 | Eaton Corporation | Electrical contact compositions and novel manufacturing method |
-
1992
- 1992-07-21 JP JP19254192A patent/JPH0636657A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0675514A1 (en) * | 1994-03-30 | 1995-10-04 | Eaton Corporation | Electrical contact compositions and novel manufacturing method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4836978A (en) | Method for making vacuum circuit breaker electrodes | |
KR20020044751A (en) | Methods of microstructure control for cu-cr contact materials for vacuum interrupters and contact materials manufactured thereby | |
US3828428A (en) | Matrix-type electrodes having braze-penetration barrier | |
JP3428416B2 (en) | Vacuum circuit breaker, vacuum valve and electric contact used therefor, and manufacturing method | |
US4546222A (en) | Vacuum switch and method of manufacturing the same | |
GB2251127A (en) | Vacuum circuit interrupter contacts and sheilds | |
JPH0636657A (en) | Contact material for vacuum circuit breaker and manufacture thereof | |
JPH0554208B2 (en) | ||
JP3251779B2 (en) | Manufacturing method of contact material for vacuum valve | |
JP2006032036A (en) | Contact material for vacuum valve | |
JP2002208335A (en) | Vacuum bulb contact point and its manufacturing method | |
JPH0510782B2 (en) | ||
JP2004211173A (en) | Manufacturing method of contact material for vacuum valve | |
JP3382000B2 (en) | Contact material for vacuum valve | |
JP2511043B2 (en) | Manufacturing method of contact alloy for vacuum valve | |
JPH01258330A (en) | Manufacture of contact material for vacuum bulb | |
KR910006114B1 (en) | Contact material of vacuum interrupter and manufacturing process therefor | |
JP2653467B2 (en) | Manufacturing method of contact alloy for vacuum valve | |
JP2004192992A (en) | Contact material for vacuum valve | |
JP2001307602A (en) | Contact material for vacuum valve and manufacturing method of the same | |
JPH06103858A (en) | Manufacture of contact material for vacuum valve | |
JP3443516B2 (en) | Manufacturing method of contact material for vacuum valve | |
JP2853308B2 (en) | Manufacturing method of electrode material | |
JPS603822A (en) | Electrode material of vacuum interrupter and method of producing same | |
JP2555409B2 (en) | Contact for vacuum circuit breaker, manufacturing method thereof, and vacuum circuit breaker |