JPH0635869U - Gas engine heat pump - Google Patents

Gas engine heat pump

Info

Publication number
JPH0635869U
JPH0635869U JP079314U JP7931492U JPH0635869U JP H0635869 U JPH0635869 U JP H0635869U JP 079314 U JP079314 U JP 079314U JP 7931492 U JP7931492 U JP 7931492U JP H0635869 U JPH0635869 U JP H0635869U
Authority
JP
Japan
Prior art keywords
exhaust gas
engine
cooling water
water
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP079314U
Other languages
Japanese (ja)
Inventor
昇 松本
善隆 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP079314U priority Critical patent/JPH0635869U/en
Publication of JPH0635869U publication Critical patent/JPH0635869U/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine

Landscapes

  • Exhaust Silencers (AREA)

Abstract

(57)【要約】 【目的】 排ガスの熱でエンジン冷却水を予熱する方式
のガスエンジンヒートポンプにおいて、排ガス熱交換器
からのドレン水を機外へ排出しない構造を提供する。 【構成】 圧縮機に入る冷媒をエンジン冷却水で予熱す
る排熱回収器と、エンジン冷却水をエンジンの排ガスで
予熱する排ガス熱交換器を備えたガスエンジンヒートポ
ンプにおいて、排ガスダクト又は冷却水配管に、切替弁
を介して、上記排ガス熱交換器をバイパスするダクト又
は配管を接続すると共に、エンジン始動初期に排ガス又
は冷却水をバイパス側に切り替える手段を設けた。 【効果】 始動初期から定常運転に至るまでの凝縮水が
発生し易い期間は、排ガスと冷却水が熱交換を行わない
ようにしたので、ドレン排水を廃するために排ガスの温
度をあまり高くする必要がなく、従って排ガス温度を高
温に設定した場合に生じる種々の不具合を回避しなが
ら、酸性水によるコンクリートや雨樋等の侵食を防止す
ることができた。
(57) [Summary] [Purpose] To provide a structure for a gas engine heat pump in which engine cooling water is preheated by the heat of exhaust gas and does not discharge drain water from an exhaust gas heat exchanger to the outside of the machine. [Composition] In a gas engine heat pump equipped with an exhaust heat recovery device for preheating refrigerant entering the compressor with engine cooling water and an exhaust gas heat exchanger for preheating engine cooling water with engine exhaust gas, in an exhaust gas duct or cooling water pipe. A means for switching the exhaust gas or the cooling water to the bypass side is provided at the initial stage of engine startup, while connecting the duct or the pipe bypassing the exhaust gas heat exchanger via the switching valve. [Effect] Since the exhaust gas and cooling water do not exchange heat during the period during which condensed water is likely to be generated from the initial stage of operation to steady operation, the temperature of the exhaust gas is raised too high to eliminate drainage water. Therefore, it was possible to prevent erosion of concrete, rain gutter, etc. by acidic water while avoiding various problems that occur when the exhaust gas temperature is set to a high temperature.

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】[Industrial applications]

本考案はエンジンの排ガスでエンジン冷却水を予熱する方式のガスエンジンヒ ートポンプに関するものである。 The present invention relates to a gas engine heat pump that preheats engine cooling water with engine exhaust gas.

【0002】[0002]

【従来の技術】[Prior art]

図1は従来行われているこの種のガスエンジンヒートポンプの暖房運転時の状 態を示す概略系統図であるが、太線で示した冷却水回路を循環するエンジン冷却 水は、エンジン3内で奪った熱を二重管式の排熱回収器2で放熱して冷媒を予熱 したのち、循環ポンプ12によりエンジン3に供給されるが、エンジン3の排ガ スが持つ熱をも有効に利用するために、排ガスでエンジン冷却水を予熱する排ガ ス熱交換器4を設けている。 FIG. 1 is a schematic system diagram showing the state of the heating operation of this type of gas engine heat pump that has been conventionally performed. The engine cooling water circulating in the cooling water circuit shown by the thick line is taken away in the engine 3. The heat is radiated by the double-pipe type exhaust heat recovery unit 2 to preheat the refrigerant and then supplied to the engine 3 by the circulation pump 12, but the heat of the exhaust gas of the engine 3 is also effectively used. Therefore, an exhaust gas heat exchanger 4 for preheating engine cooling water with exhaust gas is provided.

【0003】[0003]

【考案が解決しようとする課題】[Problems to be solved by the device]

しかし上記の従来構成においては、排ガス中に含まれている水分が凝縮してド レン水として排出されるが、このドレン水はNOx等の成分が溶け込んで酸性化 しているので、これをそのまま排出すると室外機設置場所のコンクリート面や雨 樋等を侵食するという問題があった。そこでドレン水を出さないようにするため に、排ガスから水分が凝縮しない程度まで排ガス温度を上げることが考えられる が、それだけ暖房効率を低下させることになる上に、排気系の温度が上昇するた めにゴム管が使用できなくなり、その対策として金属管を使用すると、エンジン の振動による疲労破壊が発生し易い等の問題がある。本考案はこのような問題点 を解消し、排ガス温度を上げ過ぎることなく、ドレン水を排出しないガスエンジ ンヒートポンプの構造を提供することを目的とするものである。 However, in the above-mentioned conventional configuration, the water contained in the exhaust gas is condensed and discharged as drain water. However, since this drain water is acidified by the NOx and other components being dissolved, it remains as it is. When discharged, there was a problem of eroding the concrete surface of the outdoor unit installation location and the rain gutter. Therefore, in order to prevent the drain water from being discharged, it is possible to raise the temperature of the exhaust gas to such an extent that moisture does not condense from the exhaust gas, but this will decrease the heating efficiency and raise the temperature of the exhaust system. For this reason, rubber pipes cannot be used. If metal pipes are used as a countermeasure, there is a problem that fatigue damage easily occurs due to engine vibration. It is an object of the present invention to solve such problems and to provide a structure of a gas engine heat pump that does not discharge drain water without raising the exhaust gas temperature too much.

【0004】[0004]

【課題を解決するための手段】[Means for Solving the Problems]

本考案によるガスエンジンヒートポンプは、図1〜2の実施例(図1は従来例 と共通)に示すように、圧縮機1に供給される冷媒をエンジン冷却水で予熱する 排熱回収器2と、エンジン冷却水をエンジン3の排ガスで予熱する排ガス熱交換 器4を備えたガスエンジンヒートポンプにおいて、排ガスダクト5又は冷却水配 管6に、切替弁7を介して、上記排ガス熱交換器4をバイパスするバイパスダク ト5a又はバイパス配管6aを接続すると共に、エンジン始動初期に排ガス又は 冷却水をバイパス側に切り替える制御装置8を設けたものである。 The gas engine heat pump according to the present invention includes an exhaust heat recovery unit 2 for preheating the refrigerant supplied to the compressor 1 with engine cooling water, as shown in the embodiment of FIGS. In a gas engine heat pump provided with an exhaust gas heat exchanger 4 for preheating engine cooling water with exhaust gas of the engine 3, the exhaust gas heat exchanger 4 is connected to an exhaust gas duct 5 or a cooling water pipe 6 via a switching valve 7. The bypass duct 5a for bypassing or the bypass pipe 6a is connected, and a control device 8 for switching exhaust gas or cooling water to the bypass side is provided at the initial stage of engine startup.

【0005】[0005]

【作用】[Action]

上記の構成によれば、エンジン始動初期の比較的凝縮水が発生し易い低温時に は、排ガスが排ガス熱交換器4を通らず、排ガスの温度が十分高くなって冷却水 コイルに排ガス中の水分が凝縮しないようになってから、排ガスを排ガス熱交換 器に通して、冷却水を予熱させることができる。従って排ガス熱交換器4の伝熱 面積を丁度定常運転時にドレン水が出ない程度の大きさに設計すればよく、排ガ スの排出温度をあまり上げる必要がないので、それによる排熱利用効率の低下を 最少限にとどめることができる。 According to the above configuration, the exhaust gas does not pass through the exhaust gas heat exchanger 4 at a low temperature in which condensed water is relatively likely to be generated in the initial stage of engine startup, the exhaust gas temperature becomes sufficiently high, and the water in the exhaust gas is collected in the cooling water coil. After the exhaust gas does not condense, the exhaust gas can be passed through the exhaust gas heat exchanger to preheat the cooling water. Therefore, it suffices to design the heat transfer area of the exhaust gas heat exchanger 4 just to a size such that drain water does not come out during steady operation, and it is not necessary to raise the discharge temperature of the exhaust gas so much, so the exhaust heat utilization efficiency Can be reduced to a minimum.

【0006】[0006]

【実施例】【Example】

図1は本考案によるガスエンジンヒートポンプの室外機の概略系統図であり、 実線は暖房運転時の状態を示している。同図において、ヒートポンプを構成する 圧縮機1は水冷式ガスエンジン3によって駆動され、冷媒はこの圧縮機1で高温 に圧縮されたのち、四方弁9の実線の通路を通って室内機Bで放熱し、膨張弁1 0で膨張気化して、室外熱交換器11及び排熱回収器2で気化熱を奪いながら液 化し、圧縮機1に入る。一方エンジン冷却水は、循環ポンプ12により太線の経 路で循環し、エンジン3を冷却したのち、排熱回収器2でエンジン3の排熱を冷 媒に伝えるが、更にエンジン3の排ガスの熱を有効利用するために、排ガス熱交 換器4が設けられており、エンジン冷却水がこの排ガス熱交換器4で予熱される ようになっている。なお15はラジエータで、冷房運転時には温度調節弁16に よって冷却水回路に挿入されるようになっている。ここまでの構成は従来と同じ であり、本考案は次に述べるように、この排ガス熱交換器4の構造に特徴を有す るものである。 FIG. 1 is a schematic system diagram of an outdoor unit of a gas engine heat pump according to the present invention, and a solid line shows a state during heating operation. In the figure, a compressor 1 which constitutes a heat pump is driven by a water-cooled gas engine 3, and the refrigerant is compressed to a high temperature by the compressor 1 and then radiated by an indoor unit B through a solid line passage of a four-way valve 9. Then, it is expanded and vaporized by the expansion valve 10 and liquefied while depriving the heat of vaporization by the outdoor heat exchanger 11 and the exhaust heat recovery device 2, and enters the compressor 1. On the other hand, the engine cooling water is circulated by the circulation pump 12 along the thick line to cool the engine 3, and then the exhaust heat recovery unit 2 transfers the exhaust heat of the engine 3 to the cooling medium. An exhaust gas heat exchanger 4 is provided in order to effectively use the exhaust gas, and the engine cooling water is preheated by the exhaust gas heat exchanger 4. Reference numeral 15 is a radiator, which is inserted into the cooling water circuit by a temperature control valve 16 during cooling operation. The structure up to this point is the same as the conventional one, and the present invention is characterized by the structure of the exhaust gas heat exchanger 4, as described below.

【0007】 図2の実施例は、排ガスダクト5に切替弁7を介して、排ガス熱交換器4をバ イパスするバイパスダクト5aを接続すると共に、エンジン始動初期に排ガスバ イパス側に切り替える制御装置8を設けたものである。17は冷却水配管6のエ ンジン出口付近に設けられた水温センサであり、この水温センサ17の検出温度 が規定値を超えると、制御装置8が切替弁7を排ガス熱交換器4側に切り替える ようになっている。この構成によれば、エンジン始動初期で排ガスの温度が比較 的低く排ガスから水分が凝縮し易い間は、排ガスと冷却水との熱交換は行わず、 排ガス温度が十分上昇した後に熱交換を行わせることができるので、凝縮水が発 生することはなく、機外にドレン水を排出する必要がない。また排ガスの排出温 度は定常運転時に凝縮水が発生しない程度に設定すればよく、排ガス温度をあま り高くしなくてもドレン水をなくすことができるので、暖房効率もあまり低下さ せずに済む。In the embodiment shown in FIG. 2, the exhaust gas duct 5 is connected to a bypass duct 5a that bypasses the exhaust gas heat exchanger 4 via a switching valve 7, and the control device switches to the exhaust gas bypass side at the initial stage of engine startup. 8 is provided. Reference numeral 17 denotes a water temperature sensor provided near the engine outlet of the cooling water pipe 6. When the temperature detected by the water temperature sensor 17 exceeds a specified value, the control device 8 switches the switching valve 7 to the exhaust gas heat exchanger 4 side. It is like this. According to this configuration, heat exchange between the exhaust gas and the cooling water is not performed while the temperature of the exhaust gas is relatively low at the initial stage of engine startup and water is likely to condense from the exhaust gas, but heat is exchanged after the exhaust gas temperature rises sufficiently. Since it can be done, condensed water is not generated and it is not necessary to discharge drain water outside the machine. In addition, the exhaust gas discharge temperature can be set so that condensed water does not generate during steady operation, and drain water can be eliminated without raising the exhaust gas temperature too much, so heating efficiency does not decrease significantly. I'm done.

【0008】 図3の実施例は、冷却水配管6に、切替用の比例弁7a,7bを介して、排ガ ス熱交換器4をバイパスするバイパス配管6bを接続し、水温センサ17及び制 御装置8によって、エンジン始動初期に冷却水をバイパス側に切り替えるように したものである。同図の構成において、エンジン始動後の数秒間は、排ガス熱交 換器4側の比例弁7aは閉じておき、バイパス側の比例弁7bは開放しておく。 次に弁7aを少し開き、以後は水温センサ17の検出温度が規定値以上に維持さ れるように、両弁7a,7bの開度を制御する。勿論このように比例的に切り替 える代わりに、図2のように1個の切替弁7を用いて、検出温度が一定値に達し た時に一度に切り替えるようにしてもよい。In the embodiment shown in FIG. 3, the cooling water pipe 6 is connected with a bypass pipe 6b that bypasses the exhaust gas heat exchanger 4 via switching proportional valves 7a and 7b, and a water temperature sensor 17 and a control valve are connected. The control device 8 switches the cooling water to the bypass side at the initial stage of engine startup. In the configuration shown in the figure, the proportional valve 7a on the exhaust gas heat exchanger 4 side is closed and the proportional valve 7b on the bypass side is opened for several seconds after the engine is started. Next, the valve 7a is slightly opened, and thereafter, the opening degrees of both valves 7a and 7b are controlled so that the temperature detected by the water temperature sensor 17 is maintained at a specified value or higher. Of course, instead of switching proportionally as described above, one switching valve 7 may be used as shown in FIG. 2 to switch at once when the detected temperature reaches a constant value.

【0009】 図4は他の実施例を示したもので、図1の二重管式熱交換器よりなる排熱回収 器2の代わりに、冷却水回路のラジエータ15と冷媒回路の室外熱交換器11の 各コイルを共通のフィンに巻装して排熱回収器2を構成し、コストダウンを図っ たものであるが、このような構造のガスエンジンヒートポンプにも、図2〜3に 示すように本考案を実施することができることは言うまでもない。FIG. 4 shows another embodiment, in which the radiator 15 of the cooling water circuit and the outdoor heat exchange of the refrigerant circuit are replaced with the exhaust heat recovery device 2 comprising the double-tube heat exchanger of FIG. The exhaust heat recovery unit 2 is constructed by winding each coil of the device 11 around a common fin to reduce the cost. A gas engine heat pump having such a structure is also shown in Figs. It goes without saying that the present invention can be implemented as described above.

【0010】[0010]

【考案の効果】[Effect of device]

本考案は上述のように、始動初期から定常運転に至るまでの凝縮水が発生し易 い期間は、排ガス又はエンジン冷却水が排ガス熱交換器をバイパスするようにし たので、排ガス温度が十分高くなる定常運転時にのみ凝縮水が発生しない程度に 排ガス熱交換器の伝熱面積を設計すればよく、伝熱面積をあまり小さくする必要 がないので、排ガス温度を高温に設定した場合に生じる種々の不具合を回避しな がら、酸性水によるコンクリートや雨樋等の侵食を防止することができるという 利点がある。 As described above, in the present invention, exhaust gas or engine cooling water bypasses the exhaust gas heat exchanger during the period when condensed water is easily generated from the initial stage of operation to steady operation, so the exhaust gas temperature is sufficiently high. It is sufficient to design the heat transfer area of the exhaust gas heat exchanger so that condensed water is not generated only during steady operation, and it is not necessary to make the heat transfer area too small. While avoiding problems, it has the advantage that it can prevent erosion of concrete and gutters by acid water.

【図面の簡単な説明】[Brief description of drawings]

【図1】本考案が対象とするガスエンジンヒートポンプ
の一例を示す全体系統図。
FIG. 1 is an overall system diagram showing an example of a gas engine heat pump targeted by the present invention.

【図2】同上の要部系統図。FIG. 2 is a system diagram of a main part of the above.

【図3】本考案の他の実施例の要部系統図。FIG. 3 is a main part system diagram of another embodiment of the present invention.

【図4】本考案の更に他の実施例を示す全体系統図。FIG. 4 is an overall system diagram showing still another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 排熱回収器 3 ガスエンジン 4 排ガス熱交換器 5 排ガスダクト 5a バイパスダクト 6 冷却水配管 6a バイパス配管 7 切替弁 7a,7b 切替用比例弁 8 制御装置 A 室外機 B 室内機 1 Compressor 2 Exhaust Heat Recovery Device 3 Gas Engine 4 Exhaust Gas Heat Exchanger 5 Exhaust Gas Duct 5a Bypass Duct 6 Cooling Water Piping 6a Bypass Piping 7 Switching Valves 7a, 7b Switching Proportional Valve 8 Controller A Outdoor Unit B Indoor Unit

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 圧縮機に供給される冷媒をエンジン冷却
水で予熱する排熱回収器と、エンジン冷却水をエンジン
の排ガスで予熱する排ガス熱交換器を備えたガスエンジ
ンヒートポンプにおいて、排ガスダクト又は冷却水配管
に、切替弁を介して、上記排ガス熱交換器をバイパスす
るダクト又は配管を接続すると共に、エンジン始動初期
に排ガス又は冷却水をバイパス側に切り替える手段を設
けて成るガスエンジンヒートポンプ。
1. A gas engine heat pump comprising an exhaust heat recovery device for preheating refrigerant supplied to a compressor with engine cooling water and an exhaust gas heat exchanger for preheating engine cooling water with engine exhaust gas, in an exhaust gas duct or A gas engine heat pump comprising a cooling water pipe connected to a duct or a pipe bypassing the exhaust gas heat exchanger via a switching valve, and provided with means for switching exhaust gas or cooling water to the bypass side at the initial stage of engine startup.
JP079314U 1992-10-20 1992-10-20 Gas engine heat pump Pending JPH0635869U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP079314U JPH0635869U (en) 1992-10-20 1992-10-20 Gas engine heat pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP079314U JPH0635869U (en) 1992-10-20 1992-10-20 Gas engine heat pump

Publications (1)

Publication Number Publication Date
JPH0635869U true JPH0635869U (en) 1994-05-13

Family

ID=13686407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP079314U Pending JPH0635869U (en) 1992-10-20 1992-10-20 Gas engine heat pump

Country Status (1)

Country Link
JP (1) JPH0635869U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150000449A (en) * 2012-03-30 2015-01-02 미우라고교 가부시키카이샤 Feed water heating system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150000449A (en) * 2012-03-30 2015-01-02 미우라고교 가부시키카이샤 Feed water heating system

Similar Documents

Publication Publication Date Title
JP2010065543A (en) Vehicular cooling system
JPH0849943A (en) Engine driven heat pump equipment
JP3762007B2 (en) Air conditioner for vehicles
JP3370016B2 (en) Heating equipment
JPH0635869U (en) Gas engine heat pump
JPS6310349B2 (en)
JPH0635870U (en) Gas engine heat pump
JP3637106B2 (en) Gas engine driven air conditioner
US6606874B1 (en) Ventilation arrangement for buildings
JPH075020B2 (en) Heat pump type air conditioner
JPH074777A (en) Engine waste heat recovery device
JP3828957B2 (en) Refrigerant circulation type heat transfer device
JP3572124B2 (en) Operating method of engine driven air conditioner
JPH063174Y2 (en) Exhaust heat recovery device for engine
JPH05240528A (en) Heat pump and air conditioner
JP2969801B2 (en) Engine-driven air conditioner
JPH0996471A (en) Engine driven air conditioner
JPS6036843Y2 (en) heat pump equipment
JP3638648B2 (en) Air conditioner
JP3776489B2 (en) Engine driven air conditioner
JP3546102B2 (en) Engine driven air conditioner
JPH09217965A (en) Engine-driven air conditioner
JPH10325640A (en) Driven by engine
JPS6142026Y2 (en)
JP3600332B2 (en) Engine driven air conditioner