JPH063517B2 - Camera TTL metering device - Google Patents

Camera TTL metering device

Info

Publication number
JPH063517B2
JPH063517B2 JP59138810A JP13881084A JPH063517B2 JP H063517 B2 JPH063517 B2 JP H063517B2 JP 59138810 A JP59138810 A JP 59138810A JP 13881084 A JP13881084 A JP 13881084A JP H063517 B2 JPH063517 B2 JP H063517B2
Authority
JP
Japan
Prior art keywords
mirror
light
sub
light receiving
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59138810A
Other languages
Japanese (ja)
Other versions
JPS6118936A (en
Inventor
勝 村松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nippon Kogaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kogaku KK filed Critical Nippon Kogaku KK
Priority to JP59138810A priority Critical patent/JPH063517B2/en
Publication of JPS6118936A publication Critical patent/JPS6118936A/en
Publication of JPH063517B2 publication Critical patent/JPH063517B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は一眼レフレックスカメラのTTL測光装置に関
し、特に半透過部を有するファインダー用の主ミラーの
前記半透過部を通過した光を受光系に導くサブミラーと
を備えたTTL測光装置に関する。
Description: TECHNICAL FIELD The present invention relates to a TTL photometric device for a single-lens reflex camera, and more particularly to a light receiving system for light passing through the semi-transmissive part of a main mirror for a finder having a semi-transmissive part. The present invention relates to a TTL photometric device having a guiding sub-mirror.

(発明の背景) 第3図は、1眼レフレックスカメラのボディ内の光学系
及び測光装置の配置を示す。撮影レンズ1を通過して来
る被写体光を測光する従来のTTL測光装置の測光方法
としては、撮影画面の一部分を測光する部分測光、撮影
画面を平均的に測光する平均測光や画面を幾つかの領域
に分割しそれぞれの部分の測光出力より適正露出を得よ
うとする多分割測光がある。
(Background of the Invention) FIG. 3 shows an arrangement of an optical system and a photometric device in a body of a single-lens reflex camera. The conventional TTL photometry device for photometry of the subject light passing through the taking lens 1 includes a partial photometry for measuring a part of the photographing screen, an average photometry for uniformly measuring the photographing screen, and some There is multi-divisional metering that divides into areas and obtains proper exposure from the metering output of each part.

第3図において、測光時は撮影レンズ1を通過した光を
主ミラー2により反射してフアインダー3に導くと共
に、主ミラー2の一部半透過部を通過した光ミラー2に
回動可能に設けられたサブミラー41により反射して測
光用の受光レンズ5及び受光素子6に導いている。この
主ミラー2は、1眼レフレックスカメラの跳ね上げミラ
ー等であり、主ミラー2の半透過部はハーフミラー、ピ
ンホールミラー等で形成されている。受光レンズ5は、
サブミラー41上の被覆体像を受光素子6上に結像する
ようにカメラのミラーボツクス内に配置されている。サ
ブミラー41上の被写体像は受光レンズ5により受光素
子6上に再結像され受光される。
In FIG. 3, at the time of photometry, the light that has passed through the taking lens 1 is reflected by the main mirror 2 to be guided to the finder 3, and is provided rotatably on the optical mirror 2 that has passed through a semi-transparent portion of the main mirror 2. The reflected light is reflected by the sub-mirror 41 and guided to the light receiving lens 5 and the light receiving element 6 for photometry. The main mirror 2 is a flip-up mirror or the like of a single-lens reflex camera, and the semi-transmissive portion of the main mirror 2 is formed of a half mirror, a pinhole mirror, or the like. The light receiving lens 5 is
It is arranged in the mirror box of the camera so that the image of the covering body on the sub mirror 41 is formed on the light receiving element 6. The subject image on the sub mirror 41 is re-imaged on the light receiving element 6 by the light receiving lens 5 and received.

サブミラー41上の被写体像を受光素子6に再結像させ
るには、例えばサブミラー41に拡散面の反射ミラーを
用いる方法がある。第9図は従来のサブミラー4に拡散
面の反射ミラーを用いた例を示す。以後、説明を簡単に
するために光の進行方向は受光系の方から撮影レンズ1
の射出瞳を向かう方向に取る。領域10は、受光レンズ
5からの光束9がサブミラー4の拡散面で拡散されたと
きの拡散特性を示し、また光束9がサブミラー4に入射
する点Pからの反射光の強度分布を示す。この拡散した
領域10内の光束10′は撮影レンズ1の射出瞳に向か
うが、光束10′以外の斜線部で示した光束は受光素子
6には到達せずに無駄な光束となる。従って、このこと
は、撮影レンズ1から入射して来た入射光がサブミラー
4で拡散されて低下し、受光素子6の取り込む光が低下
することを表している。そのため、受光系の受光出力を
少しでも上げるために主ミラー2の半透過部の透過率を
増加させなくてはならず、フアインダーも暗くなると言
う欠点があった。
In order to re-image the subject image on the sub mirror 41 on the light receiving element 6, for example, there is a method of using a reflecting mirror having a diffusion surface as the sub mirror 41. FIG. 9 shows an example in which a reflecting mirror having a diffusing surface is used as the conventional sub mirror 4. Hereinafter, in order to simplify the explanation, the direction of light travels from the light receiving system toward the taking lens 1
Take in the direction of the exit pupil of. A region 10 shows a diffusion characteristic when the light beam 9 from the light receiving lens 5 is diffused on the diffusion surface of the sub mirror 4, and also shows an intensity distribution of the reflected light from the point P where the light beam 9 enters the sub mirror 4. The light flux 10 ′ in the diffused region 10 is directed to the exit pupil of the taking lens 1, but the light flux indicated by the shaded area other than the light flux 10 ′ does not reach the light receiving element 6 and becomes a useless light flux. Therefore, this means that the incident light coming from the taking lens 1 is diffused by the sub-mirror 4 and is reduced, and the light taken in by the light receiving element 6 is reduced. Therefore, in order to raise the light receiving output of the light receiving system as much as possible, the transmissivity of the semi-transmissive portion of the main mirror 2 must be increased, and the finder becomes dark.

(発明の目的) 本発明はこの欠点を解決し、受光出力が大きく取り、且
つファインダーも明るい測光装置を提供することを目的
とする。
(Object of the Invention) It is an object of the present invention to solve this drawback and to provide a photometric device having a large received light output and a bright finder.

(発明の概要) 本発明は、TTL測光装置において主ミラーの半透過部
を通過してサブミラーに反射されて来る光を効率良く受
光できるように、サブミラーの反射面を特殊な反射特性
を示す微小反射鏡の集合体で形成して受光系に撮影レン
ズからの被写体光を集光させることを技術的要点として
いる。
(Summary of the Invention) In the present invention, in the TTL photometric device, the reflecting surface of the sub-mirror has a special reflection characteristic so that the light reflected by the sub-mirror passing through the semi-transmissive portion of the main mirror can be efficiently received. The technical point is to form an assembly of reflecting mirrors to collect the subject light from the taking lens in the light receiving system.

(実施例) 第1図〜第6図は、本発明の第一実施例であっる。第1
図は、第3図のサブミラー41と撮影レンズ1と受光系
(受光レンズ5、受光素子6)とを説明のため拡大して
示してある。第2図は、第3図の撮影レンズ1と主ミラ
ー2とサブミラー41と受光系とを示し、サブミラー4
1は受光レンズ5からの光束の一部光速17及び18を
撮影レンズ1の射出瞳に導く様子を示している。第4図
は第1図に示す微小円錐面鏡41aで反射された光束が
投影されたときの説明図である。第5図は第1図のサブ
ミラー41の一部を拡大した斜視図であり、サブミラー
41はそれぞれ頂点41bを持った微小円錐面鏡41a
の集合体で構成されている。
(Embodiment) FIGS. 1 to 6 show a first embodiment of the present invention. First
The figure is an enlarged view of the sub-mirror 41, the taking lens 1, and the light receiving system (light receiving lens 5, light receiving element 6) in FIG. 3 for the sake of explanation. FIG. 2 shows the taking lens 1, the main mirror 2, the sub mirror 41, and the light receiving system of FIG.
Reference numeral 1 denotes a state in which partial light velocities 17 and 18 of the light flux from the light receiving lens 5 are guided to the exit pupil of the photographing lens 1. FIG. 4 is an explanatory diagram when the light flux reflected by the micro-conical mirror 41a shown in FIG. 1 is projected. FIG. 5 is an enlarged perspective view of a part of the sub-mirror 41 shown in FIG. 1. The sub-mirror 41 is a minute conical mirror 41a having a vertex 41b.
It is composed of a collection of.

第1図において、このサブミラー41の微小円錐面鏡4
1aは中心に頂点41bを持つように形成され、この各
微小円錐面鏡41aは受光系からのそれぞれの光束を反
射して投影レンズ1の射出瞳に第2図の如く導いてい
る。第1図では、微小円錐面鏡41aが反射する光束を
代表して光束11及び12を用いて表しており、受光系
からの一部の光束11は微小円錐面鏡41aの下方向に
反射して撮影レンズ1の射出瞳の下部に入り、また受光
系からの他の光束12は微小円錐面鏡41aの上方面に
反射して投影レンズ1の射出瞳の上部に入っている。こ
のように、微小円錐面鏡41aの一部で反射される光束
は、第4図に示すごとく光束11、光束12のように撮
影レンズ1の射出瞳に導かれる。すなわち、第4図は第
1図に示す光束を代表して光束11及び12を投影レン
ズ1の射出瞳に投影した様子を示してあるが、実際は受
光系からの無数の光束が一つの微小円錐面鏡41aによ
り反射されて一転鎖線で示すように(斜線部分を射出瞳
の中心を軸として回転させた部分)撮影レンズ1の射出
瞳全面に受光系からの光束を導くことが分かる。
In FIG. 1, the minute conical mirror 4 of this sub-mirror 41 is shown.
1a is formed so as to have a vertex 41b at the center, and each minute conical mirror 41a reflects each light beam from the light receiving system and guides it to the exit pupil of the projection lens 1 as shown in FIG. In FIG. 1, the light beams reflected by the micro-conical mirror 41a are represented by using the light beams 11 and 12, and a part of the light beam 11 from the light receiving system is reflected in the downward direction of the micro-conical mirror 41a. Enters the lower part of the exit pupil of the taking lens 1, and the other light flux 12 from the light receiving system is reflected by the upper surface of the minute conical mirror 41a and enters the upper part of the exit pupil of the projection lens 1. Thus, the light beams reflected by a part of the minute conical mirror 41a are guided to the exit pupil of the taking lens 1 like the light beams 11 and 12 as shown in FIG. That is, FIG. 4 shows a state in which the light fluxes 11 and 12 are projected on the exit pupil of the projection lens 1 as a representative of the light flux shown in FIG. 1, but in reality, an infinite number of light fluxes from the light receiving system are one minute cone. It can be seen that the light flux from the light receiving system is guided to the entire exit pupil of the taking lens 1 as reflected by the surface mirror 41a and indicated by a chain line (a shaded portion is rotated about the center of the exit pupil).

従って、ただ一つの微小円錐面鏡41aを取ってみて
も、そこから反射される光束は撮影レンズ1の射出瞳全
面に導かれていることが分かる。上述した如くサブミラ
ー41のそれぞれの微小円錐面鏡41aは、受光レンズ
5の入射瞳の撮影像が撮影レンズ1の射出瞳を包含する
よう反射する反射特性を有するように形成されており、
サブミラー41の全面に形成された微小円錐面鏡41a
全てが上述した特性を有している。
Therefore, even if only one minute conical mirror 41a is taken, it is understood that the light flux reflected from it is guided to the entire exit pupil of the taking lens 1. As described above, each of the minute conical mirrors 41a of the sub mirror 41 is formed so as to have a reflection characteristic of reflecting the photographed image of the entrance pupil of the light receiving lens 5 so as to include the exit pupil of the photographing lens 1,
A minute conical mirror 41a formed on the entire surface of the sub mirror 41
All have the characteristics described above.

第2図において、光束13(又は光束14)は前述した
ように微小円錐面鏡41aで反射された光束11,12
等の集りである。この光束14がサブミラー41の上部
点Qで反射される場合を考えても、サブミラー41の微
小円錐面鏡41aは受光レンズ5からの光束14の主光
線14iを撮影レンズ1の射出瞳の中心点Rを通過する
ように反射面が形成されている。つまりサブミラー41
上の全ての微小円錐面鏡41aに入射する受光系からの
光束の主光線は、撮影レンズ1の射出瞳の中心点Rに通
過することになる。
In FIG. 2, the luminous flux 13 (or the luminous flux 14) is the luminous fluxes 11 and 12 reflected by the minute conical mirror 41a as described above.
Etc. Considering the case where this light flux 14 is reflected at the upper point Q of the sub-mirror 41, the micro-conical mirror 41a of the sub-mirror 41 transmits the principal ray 14i of the light flux 14 from the light receiving lens 5 to the center point of the exit pupil of the taking lens 1. A reflecting surface is formed so as to pass through R. That is, the sub mirror 41
The principal ray of the light flux from the light receiving system which is incident on all the minute conical mirrors 41a above passes through the center point R of the exit pupil of the taking lens 1.

このように、微小円錐面鏡41aの反射特性は、サブミ
ラー41のどの点を取っても実現されている。サブミラ
ー41全体としては前記射出瞳の光束を受光系の受光素
子6に集光するような集光特性を有するように構成され
ている。
In this way, the reflection characteristic of the minute conical mirror 41a is realized at any point of the sub mirror 41. The sub-mirror 41 as a whole is configured to have a condensing characteristic such that the luminous flux of the exit pupil is condensed on the light receiving element 6 of the light receiving system.

従って、第5図に示す如くサブミラー41の表面を微小
円錐面鏡41aの集合体で形成すれば、撮影レンズ1の
射出瞳からサブミラー41に入射してくる被写体光を各
々の微小円錐面鏡41aが受光系に効率良く反射するの
で、サブミラー41の集光能力が非常に向上する。その
結果、ファインダー3を明るくするため主ミラー2の半
透過部の透過率を従来の透過率より低くしたとしても、
受光素子6へ入射する被写体光はサブミラー41により
充分に集光されるので測光可能となる。
Therefore, if the surface of the sub-mirror 41 is made up of an assembly of micro-conical mirrors 41a as shown in FIG. 5, the subject light incident on the sub-mirror 41 from the exit pupil of the taking lens 1 will be reflected by each micro-conical mirror 41a. Is efficiently reflected by the light receiving system, so that the light collecting ability of the sub mirror 41 is greatly improved. As a result, even if the transmissivity of the semi-transmissive part of the main mirror 2 is made lower than the conventional transmissivity in order to make the finder 3 brighter,
The subject light incident on the light receiving element 6 is sufficiently condensed by the sub-mirror 41, so that photometry can be performed.

第6図は多分割測光用の受光素子6の一例を示し、受光
素子6は5つのセグメント61〜65に分割されてい
る。この受光素子6は撮影画面に対応がとれており、受
光素子6のセグメント61〜65は撮影画面を多分割測
光することになる。サブミラー41の各微小円錐面鏡4
1aは、撮影レンズ1からの入射光を受光素子6に均一
に集光するように形成されているので、特に第6図に示
す多分割素子を用いる多分割測光では分割された撮影画
面のそれぞれの測光出力が適正に得られる。
FIG. 6 shows an example of the light receiving element 6 for multi-division photometry, and the light receiving element 6 is divided into five segments 61 to 65. The light-receiving element 6 corresponds to the shooting screen, and the segments 61 to 65 of the light-receiving element 6 perform multi-division photometry on the shooting screen. Each minute conical mirror 4 of the sub mirror 41
1a is formed so as to uniformly collect the incident light from the taking lens 1 on the light receiving element 6, so that in the multi-division photometry using the multi-division element shown in FIG. The photometric output of is properly obtained.

尚、第5図に示した微小円錐面鏡41aの形状は円錐面
であるが、凹又は凸の角錐面や球面等でもよく、その形
状は撮影レンズ1と受光レンズ5の構成により最適な形
状に決めればよい。
The shape of the minute conical mirror 41a shown in FIG. 5 is a conical surface, but it may be a concave or convex pyramidal surface, a spherical surface, or the like, and its shape depends on the configuration of the taking lens 1 and the light receiving lens 5. You can decide to.

第7図及び第8図は本発明の第2実施例を示し、第7図
及び第8図は第1実施例のサブミラー41の改良を示
す。第1実施例の如くサブミラー41を構成すれば、最
も効率良く測光できるが、第1実施例では微小円錐面鏡
41aの向きは1つ1つについて全て異なるためサブミ
ラーの製作が非常に困難となる。その為、サブミラーの
製作を容易にするため以下述べるごとく構成すれば良
い。
7 and 8 show a second embodiment of the present invention, and FIGS. 7 and 8 show an improvement of the sub mirror 41 of the first embodiment. If the sub-mirror 41 is configured as in the first embodiment, photometry can be performed most efficiently. However, in the first embodiment, the directions of the micro-conical mirrors 41a are all different from one another, and it is very difficult to manufacture the sub-mirrors. . Therefore, in order to facilitate the production of the sub mirror, the sub mirror may be constructed as described below.

第7図及び第8図に示すようにサブミラー42を数ブロ
ックに分割して、この各ブロックの微小円錐面鏡41a
を各ブロックごとに同一向き、つまり同一の反射特性を
有するような同一形状に形成する。第7図においてサブ
ミラー42は全面を15のブロックに分割して各ブロッ
クごとに微小円錐面鏡41aの向きが決められている。
この微小円錐面鏡41aは、第1実施例と同様な性能を
有するように構成されているものとする。各ブロックご
とに微小円錐面鏡41aの向きが決められているので、
この各ブロックごとの向きは第2図のように撮影レンズ
1の射出瞳からの光束が受光系に最も効率良く集光する
ように決められている。
As shown in FIG. 7 and FIG. 8, the sub mirror 42 is divided into several blocks, and the minute conical mirror 41a of each block is divided.
Are formed in the same direction for each block, that is, in the same shape having the same reflection characteristics. In FIG. 7, the entire surface of the sub-mirror 42 is divided into 15 blocks, and the direction of the minute conical mirror 41a is determined for each block.
It is assumed that the minute conical mirror 41a is configured to have the same performance as that of the first embodiment. Since the direction of the minute conical mirror 41a is determined for each block,
The orientation of each block is determined so that the light flux from the exit pupil of the taking lens 1 is most efficiently condensed in the light receiving system as shown in FIG.

第8図(a)〜(d)は各ブロックの形状を表してお
り、(a),(b)はそれぞれ三角形、六角形のブロッ
クに構成され、また(c)は撮影画面の中央の測光制度
が特に必要とされる場合で中央部と周辺部とではブロッ
クの大きさを変えており、さらに(d)は各ブロックを
放射状に配置した例を示している。このように、各ブロ
ックの形状を変えることにより、測光装置の測光モード
に対応させたり、また測光装置の測光制度があまり要求
されないものについてはブロックの分割数を少なくした
りもできる。
FIGS. 8A to 8D show the shapes of the blocks. FIGS. 8A and 8B are triangular and hexagonal blocks, respectively, and FIG. 8C is the photometry at the center of the photographing screen. When the system is especially required, the sizes of the blocks are changed between the central part and the peripheral part, and (d) shows an example in which the blocks are radially arranged. In this way, by changing the shape of each block, it is possible to correspond to the photometric mode of the photometric device, and to reduce the number of block divisions for those that do not require a photometric accuracy of the photometric device.

従つて、第7図及び第8図の如く微小円錐面鏡41aを
各ブロックごとに向きを一定にして構成すれば、サブミ
ラー42の製作は簡単になり、さらに第8図に示す如く
測光装置に必要とされる使用に応じて各ブロックの形状
を決定できる。
Therefore, if the micro-conical mirror 41a is constructed with a fixed direction for each block as shown in FIGS. 7 and 8, the sub-mirror 42 can be easily manufactured, and as shown in FIG. The shape of each block can be determined according to the required use.

(発明の効果) 以上のように本発明によれば、微小反射鏡の集合体は撮
影レンズからの被写体光を効率良く受光手段に導くこと
ができるので、受光手段の受光出力が大きくなり、低輝
度の被写体まで測光可能となる。また、微小反射鏡の集
合体は被写体光を効率良く集光できるので、主ミラーの
半透過部の透過率を下げてファインダーを明るくでき
る。
(Effects of the Invention) As described above, according to the present invention, since the assembly of the micro-reflecting mirrors can efficiently guide the subject light from the photographing lens to the light receiving means, the light receiving output of the light receiving means becomes large and low. It is possible to measure the brightness of a subject. Further, since the assembly of the micro-reflecting mirrors can efficiently collect the subject light, the transmissivity of the semi-transmissive portion of the main mirror can be lowered to make the finder bright.

【図面の簡単な説明】[Brief description of drawings]

第1図〜第6図は本発明の第一実施例であり、第1図は
サブミラーの一部の微小円錐面鏡の拡大図、第2図はT
TL測光装置の配置図、第3図は1眼レフレックスカメ
ラのボディ内の光学系及び測光装置の配置図、第4図は
第1図に示す微小円錐面鏡で反射された光束が投影され
たときの説明図、第5図は第1図のサブミラーの一部を
拡大した斜視図、第6図は多分割測光素子の一例を示す
図である。 第7図及び第8図は本発明の第2実施例であり、第7図
及び第8図は第1実施例のサブミラーの改良を示す改良
図である。 第9図は従来のTTL測光装置の配置図を示す。 (主要部分の符号の説明) 1・・・撮影レンズ 2・・・主ミラー 4;41;42・・・サブミラー 4a・・・微小円錐面鏡
FIGS. 1 to 6 show a first embodiment of the present invention. FIG. 1 is an enlarged view of a micro conical mirror which is a part of a sub mirror, and FIG.
Fig. 3 is a layout of the TL photometer, Fig. 3 is a layout of the optical system and the photometer in the body of the single-lens reflex camera, and Fig. 4 is the projection of the light beam reflected by the micro-conical mirror shown in Fig. 1. FIG. 5 is an enlarged perspective view of a part of the sub-mirror of FIG. 1, and FIG. 6 is a diagram showing an example of a multi-division photometric device. 7 and 8 show a second embodiment of the present invention, and FIGS. 7 and 8 are improved views showing improvements of the sub-mirror of the first embodiment. FIG. 9 shows a layout of a conventional TTL photometric device. (Explanation of Signs of Main Parts) 1 ... Shooting lens 2 ... Main mirror 4; 41; 42 ... Sub mirror 4a ... Micro-conical mirror

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】ファインダー系に被写体光を反射すると共
に、該被写体光が通過可能な半透過部を備えた主ミラー
と、前記半透過部を通過した前記被写体光をミラーボッ
クス内の受光手段に反射し、前記主ミラーに回動可能に
設けられたサブミラーとを有するカメラのTTL測光装
置において、 前記サブミラーを微小反射鏡の集合体で形成し、前記受
光手段の受光レンズの入射瞳を前記微小反射鏡で反射し
て撮影レンズの射出瞳に投影したとき、前記微小反射鏡
の各々はいずれも前記受光レンズの入射瞳の投影像が撮
影レンズの射出瞳をほぼ包含するような反射特性を有す
ることを特徴とするカメラのTTL測光装置。
1. A main mirror having a semi-transmissive portion that reflects subject light to a finder system and allows the subject light to pass through, and the subject light that has passed through the semi-transmissive portion to a light receiving means in a mirror box. In a TTL photometric device for a camera having a sub-mirror that reflects and is rotatably provided on the main mirror, the sub-mirror is formed by an assembly of micro-reflecting mirrors, and an entrance pupil of a light-receiving lens of the light-receiving means is formed by the micro-mirror. When reflected by a reflecting mirror and projected onto the exit pupil of the taking lens, each of the micro-reflecting mirrors has such a reflection characteristic that the projected image of the entrance pupil of the light receiving lens substantially includes the exit pupil of the taking lens. A TTL photometric device for a camera characterized in that
JP59138810A 1984-07-04 1984-07-04 Camera TTL metering device Expired - Lifetime JPH063517B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59138810A JPH063517B2 (en) 1984-07-04 1984-07-04 Camera TTL metering device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59138810A JPH063517B2 (en) 1984-07-04 1984-07-04 Camera TTL metering device

Publications (2)

Publication Number Publication Date
JPS6118936A JPS6118936A (en) 1986-01-27
JPH063517B2 true JPH063517B2 (en) 1994-01-12

Family

ID=15230767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59138810A Expired - Lifetime JPH063517B2 (en) 1984-07-04 1984-07-04 Camera TTL metering device

Country Status (1)

Country Link
JP (1) JPH063517B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6385529A (en) * 1986-09-29 1988-04-16 Fuji Photo Film Co Ltd Photometer for electronic camera

Also Published As

Publication number Publication date
JPS6118936A (en) 1986-01-27

Similar Documents

Publication Publication Date Title
US4309093A (en) Camera having a diffusing plate with rotationally asymmetric light diffusion property
US4071292A (en) Focussing plate
US7548688B2 (en) Optical apparatus
JPH063517B2 (en) Camera TTL metering device
US4181412A (en) Optical exposure measuring system for photographic cameras
US3464339A (en) Photographic camera
US4437741A (en) Light measuring device for a single lens reflex camera
US5119124A (en) Camera with finder of clear display
JPS6255769B2 (en)
JPS6158023B2 (en)
JPS6285229A (en) Ttl light measuring device of single-lens reflex camera
JPH0274936A (en) Single-lens reflex camera body for executing display in finder
JPS6142621A (en) Ttl photometric device of single-lens reflex camera
JPS6258487B2 (en)
JPS5839449Y2 (en) Ichigan Reflex Camerano Sotsukousouchi
JPS59214828A (en) Photometer for camera
US4171154A (en) TTL Metering device in a single lens reflex camera
JP3437262B2 (en) Projection system for automatic focus detection
JPH0694979A (en) Camera provided with device for detecting
JPS6042900B2 (en) Photometric device
JPS6331044Y2 (en)
JP2610236B2 (en) Auxiliary light device in focus detection device
JP2000088642A (en) Optical system for measuring light of single lens reflex camera
JPH08171049A (en) Projection system for automatic focus detection
JPH04309934A (en) Finder optical system with photometry means