JPS6285229A - Ttl light measuring device of single-lens reflex camera - Google Patents

Ttl light measuring device of single-lens reflex camera

Info

Publication number
JPS6285229A
JPS6285229A JP60044119A JP4411985A JPS6285229A JP S6285229 A JPS6285229 A JP S6285229A JP 60044119 A JP60044119 A JP 60044119A JP 4411985 A JP4411985 A JP 4411985A JP S6285229 A JPS6285229 A JP S6285229A
Authority
JP
Japan
Prior art keywords
light
mirror
lens
sub
submirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60044119A
Other languages
Japanese (ja)
Inventor
Masaru Muramatsu
勝 村松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nippon Kogaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kogaku KK filed Critical Nippon Kogaku KK
Priority to JP60044119A priority Critical patent/JPS6285229A/en
Publication of JPS6285229A publication Critical patent/JPS6285229A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To measure object light efficiently and to eliminate the difference of a light measurement area even when a lens is interchanged by dividing a submirror by a boundary line which runs on the intersection of the optical axis of a photographic lens and constituting >=2 areas which differ in reflection direction characteristics. CONSTITUTION:Rays of light 11 incident on a point P1 from a photodetecting element 6 are diffuse-reflected within a narrow range by the upper Fresnel mirror 41 of the submirror 4 to form an area 11b and rays of light 12 incident on a point P2 form an area 12b at a lower part 42 similarly. Then, rays of light guided from the photographic lens 1 to the photodetecting element 6 backward through the optical path are divided into four sections on the submirror 4 to become rays of light of the four uniform areas. Therefore, the object light is measured efficiently and even if there is a difference in F value of an interchangeable lens at open aperture or if the lens is stopped down, variation of the light measurement area in a picture plane is eliminated.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は一眼レフレックスカメラのTTL測光装置に関
し、特に半透過部を有するファインダー用の主ミラーと
前記半透過部を通過した光を受光系に導くサブミラーと
を備えたTTL測光装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to a TTL photometry device for a single-lens reflex camera, and in particular to a main mirror for a finder having a semi-transparent section and a light receiving system that transmits light that has passed through the semi-transmissive section. The present invention relates to a TTL photometry device equipped with a guiding sub-mirror.

(発明の背景) この種のTTL測光装置では、撮影レンズより入射した
光は主ミラーによりファインダー系に送られる光と、こ
の主ミラーの半透過部を通過してサブミラーにより反射
され受光系に送られる光とに分割される。この撮影レン
ズより入射した光は、大部分がファインダー系に送られ
るため、受光系に送られる光は僅かなものとなるのが普
通である。
(Background of the Invention) In this type of TTL photometry device, the light incident from the photographing lens is sent to the finder system by the main mirror, and the light passes through the semi-transparent part of this main mirror, is reflected by the sub-mirror, and is sent to the light receiving system. The light is divided into two parts. Most of the light incident from this photographic lens is sent to the finder system, so normally only a small amount of light is sent to the light receiving system.

その為、このような測光装置では、サブミラーが主ミラ
ーの半透過部を通過した光を効率よく受光系に導く必要
がある。また、測光出力の線形性を得るためにはサブミ
ラーは撮影レンズの絞りの開口の大きざに比例した受光
素子の出力が得られるような反射特性を有することが望
ましい。
Therefore, in such a photometry device, it is necessary for the submirror to efficiently guide the light that has passed through the semi-transparent part of the main mirror to the light receiving system. Further, in order to obtain linearity of the photometric output, it is desirable that the sub-mirror has a reflection characteristic such that the output of the light receiving element can be obtained in proportion to the size of the aperture of the aperture of the photographing lens.

ところでこの種の測光装置のサブミラーとじては従来よ
り拡散反射面を用いる方法が提案されている。第9図及
び第10図はそれぞれ異なる拡散特性を有するサブミラ
ー3用いた側光装置の撮影レンズからの光を取り込む様
子を説明したものである。ここでは説明を簡単にするた
めに光の進行方向を受光素子6から撮影レンズ1の射出
瞳に向かう方向に取っである。第9図はサブミラー4に
完全拡散反射面とほぼ等しい拡散特性を有するものを用
いた場合を示したものである。第9図において、受光素
子6から出た一本の光線21はサブミラー4上の点Sで
反射され21aで示すほぼ球状の強での分布で拡散され
る。この拡散された光21aの中で撮影レンズ1の射出
瞳に向かう部分が点線で示した光束21bとなる。この
光線方向を逆にたどると、サブミラー4上の点Sにおい
ては受光素子6は21aで示される分布で受光する能力
を有することになる。このように第9図のように拡散性
の高いザブミラー4では受光素子6は撮影レンズ1の射
出瞳からの光をむらなく一様に受光することができるが
、受光素子6の受光能力のほんの一部しか用いられてお
らず、たいへん効率が悪いという欠点があった。
By the way, a method of using a diffuse reflection surface as a sub-mirror of this type of photometric device has been proposed. FIGS. 9 and 10 illustrate how light from a photographing lens is taken in by a side light device using submirrors 3 having different diffusion characteristics. Here, in order to simplify the explanation, the traveling direction of light is assumed to be from the light receiving element 6 toward the exit pupil of the photographing lens 1. FIG. 9 shows a case where the sub-mirror 4 has a diffusion characteristic almost equal to that of a perfect diffuse reflection surface. In FIG. 9, a single light beam 21 emitted from the light-receiving element 6 is reflected at a point S on the sub-mirror 4 and is diffused in a substantially spherical strong distribution indicated by 21a. A portion of this diffused light 21a that goes toward the exit pupil of the photographic lens 1 becomes a light flux 21b shown by a dotted line. Tracing the direction of this light beam in the opposite direction, at point S on the submirror 4, the light receiving element 6 has the ability to receive light with the distribution shown by 21a. In this way, as shown in FIG. 9, the light receiving element 6 can evenly and uniformly receive the light from the exit pupil of the photographic lens 1 in the highly diffusive Zabu mirror 4 as shown in FIG. The drawback was that it was only partially used and was very inefficient.

一部サブミラー4の拡散性を下げて効率を高めた測光系
を示したのが第10図である。なお、拡散性を下げると
指向性が増す。そこで撮影レンズ1からの光を正しく受
光系の方向に反射させるためサブミラー4はフレネルミ
ラーとなっており、加えて拡散性をもたせたものとなっ
ている。第10図において、受光素子6から出た一本の
光線22はサブミラー4上の点tで反射ぎれ22aで示
す強ぎの分布で拡散だれる。この光線方向を逆にたどる
と、サブミラー4上の点tにおいては受光素子6は22
aで示だれる分布で受光する能力を有することになる。
FIG. 10 shows a photometric system in which the diffusivity of some of the submirrors 4 is lowered to improve efficiency. Note that when the diffusivity is lowered, the directivity increases. Therefore, in order to correctly reflect the light from the photographic lens 1 in the direction of the light receiving system, the sub-mirror 4 is a Fresnel mirror, and is additionally provided with diffusing properties. In FIG. 10, a single light beam 22 emitted from the light-receiving element 6 is diffused at a point t on the sub-mirror 4 with a distribution of intensity shown by a reflection gap 22a. Tracing the direction of this light beam in the opposite direction, at point t on the submirror 4, the light receiving element 6 is 22
It has the ability to receive light with the distribution shown by a.

そして撮影レンズ1からの光をむらなく一様に受光する
部分は点線で示した範囲22bとなり、ざらに狭い範囲
となる。こうして、第10図のようにサブミラー4の拡
散性を低くすると受光素子6の受光能力はほぼ撮影レン
ズ1からの光を取り込むことに用いられるため効率は高
いが、むらなく−喋に受光する範囲は狭くなるため、撮
影レンズ1の絞りがその一様に受光する範囲より小さく
なるまでは受光出力の変化が少ない、つまり絞りに対す
る測光出力の線形性が悪いという欠点があった。
The area that evenly and uniformly receives the light from the photographic lens 1 is a range 22b indicated by a dotted line, which is a roughly narrow range. In this way, when the diffusivity of the sub-mirror 4 is lowered as shown in FIG. 10, the light-receiving ability of the light-receiving element 6 is mostly used to take in the light from the photographing lens 1, so the efficiency is high, but the range in which light is evenly and clearly received is high. Since the aperture of the photographing lens 1 becomes narrower than the uniform light receiving range, there is a drawback that there is little change in the light reception output, that is, the linearity of the photometric output with respect to the aperture is poor.

また、第9図のような拡散反射面をサブミラーに用いた
場合の画面における測光領域が決まるしくみを示したの
が第11図である。第11図において1a及び1 a 
JはF値の小ざな撮影レンズの射出瞳を示し、1b及び
lb’はF値の大きな撮影レンズの射出瞳を示す。前述
のようにサブミラー4は撮影レンズ1の射出瞳からの光
をむらなく受光素子に導くため、フィルム面7の最も下
側で測光される光は撮影レンズlの射出瞳の上端1a及
び1bからの光となり、同様にフィルム面7の最も上側
で測光される光は撮影レンズ1の下端1a′及びlb’
からの光となる。従って画面における測光領域はF値の
小ぎな撮影レンズでは7aで示す領域となりF値の大き
な撮影レンズでは7bで示す領域となる。このことはレ
ンズ交換方式のカメラでは\レンズがltが異なると測
光領域が異なり、また撮影レンズを絞り込んで測光する
と測光領域が変化するという欠点となる。特に、部分測
光及びスゴット測光と呼ばれている画面の小ざな領域を
測光する方式では測光領域が特定できず問題となる。
Further, FIG. 11 shows a mechanism for determining the photometry area on the screen when a diffuse reflection surface as shown in FIG. 9 is used as a sub-mirror. In Figure 11, 1a and 1a
J indicates the exit pupil of a photographic lens with a small F number, and 1b and lb' indicate the exit pupil of a photographic lens with a large F number. As mentioned above, since the sub-mirror 4 evenly guides the light from the exit pupil of the photographic lens 1 to the light receiving element, the light measured at the lowest side of the film surface 7 comes from the upper ends 1a and 1b of the exit pupil of the photographic lens l. Similarly, the light measured at the uppermost side of the film surface 7 is the lower end 1a' and lb' of the photographic lens 1.
It becomes light from. Therefore, the photometric area on the screen is the area indicated by 7a for a taking lens with a small F number, and the area shown by 7b for a taking lens with a large F number. This has the disadvantage that in a camera with interchangeable lenses, the photometry area will differ if the lens has a different lt, and the photometry area will change if the photographic lens is stopped down and photometered. Particularly, methods called partial photometry and spot photometry that measure light on a small area of the screen pose a problem because the photometry area cannot be specified.

(発明の目的) 本発明はこれらの欠点を解決し、測光出力の線形性が良
好でかつ被写体光を効率よく測光することができ、ざら
に交換レンズ方式のカメラにおいてはレンズを交換して
も、測光領域に差の生じない優れたTTL測光装@を提
供することを目的とする。
(Objective of the Invention) The present invention solves these drawbacks, has good linearity of photometric output, and can efficiently measure subject light. The purpose of the present invention is to provide an excellent TTL photometry device with no difference in photometry area.

(発明の概要) 本発明のサブミラーは、撮影し・ンズの光軸と交わる点
を通る境界線で分割され互いに反射方向特性の異なる2
個以上の領域で構成され、該分割された各領域は該各領
域の前記光軸に対する位置関係と同じ位置関係にある撮
影レンズの射出瞳の中心から外周に掛る所定の領域を通
過する光を前記受光手段に導くことを技術的要点として
いる。
(Summary of the Invention) The sub-mirror of the present invention is divided by a boundary line passing through a point that intersects with the optical axis of a photographing lens, and has two mirrors having different reflection direction characteristics.
Each divided region is configured to transmit light passing through a predetermined region extending from the center to the outer periphery of the exit pupil of the photographic lens, which is in the same positional relationship as the respective region with respect to the optical axis. The technical point is to guide the light to the light receiving means.

(実施例) 第1〜第8図は本発明の一実施例である。第4図のTT
L測光装置の光路図において、撮影レンズ1を通過した
光は主ミラー2によりファインダー系3に導かれる光と
、サブミラーにより受光系(受光レンズ5.受光素子6
)に導かれる光とに分割される。この撮影レンズ1を通
過した光の大部分はファインダー系3に導かれ、残りは
主ミラー2の半透過部を通過し、そしてサブミラー4に
反射されて受光レンズ5を通して受光素子6に導かれる
(Example) FIGS. 1 to 8 show an example of the present invention. TT in Figure 4
In the optical path diagram of the L photometer, the light that has passed through the photographing lens 1 is guided to the finder system 3 by the main mirror 2, and the light is guided to the light receiving system (light receiving lens 5, light receiving element 6) by the submirror.
) and the light guided by it. Most of the light that has passed through the photographic lens 1 is guided to the finder system 3, and the rest passes through the semi-transparent part of the main mirror 2, is reflected by the sub-mirror 4, and is guided to the light-receiving element 6 through the light-receiving lens 5.

第1図は第4図のサブミラー4の拡大図を示し、それぞ
れ中心の異なる4個の微小な凹凸な有するフレネルミラ
ー41〜44から構成されていて、そしてこの微小な凹
凸部分は比較的指向性の鋭い拡散性をもたらす。このサ
ブミラー4を用いた測光装置の測光原理を説明したのが
第2図及び第3図である。
FIG. 1 shows an enlarged view of the sub-mirror 4 shown in FIG. 4, which is composed of four Fresnel mirrors 41 to 44 each having minute irregularities at different centers, and these minute irregularities have relatively directivity. brings about sharp diffusivity. FIGS. 2 and 3 explain the photometric principle of a photometric device using this sub-mirror 4. FIG.

第2図は第1図のサブミラー4の上部41及び下部42
における反射方向特性を示したものである。図示してい
ないが、同様な反射特性をサブミラー4の左部43及び
右部44は有している、なお、説明を簡単にするため、
光の進行方向は受光素子6側から撮影1−ンズ1の射出
瞳に向かう方向に取っている。第2図において、第1図
のサブミラー4の上部41では、受光素子6からサブミ
ラー4上の点P1に入射する光線11はllaで示す強
度分布で狭い範囲に拡散反射する。この拡散反射した光
11aの中で比較的強度の差が少ない範囲を点線で示し
たのが領域11bである。次に、第1図のサブミラー4
の下部42でも同様に、受光素子6からサブミラー4上
の点P2に入射する光[12は12aで示す分布で拡散
反射するが、その12aの中で比較的強度の差が少ない
範囲を12bで示した。ここでサブミラー4のフレネル
ミラーの形状は、受光素子6側からの光をサブミラー4
の上部41上ではすべて撮影レンズ1の射出瞳の外側に
寄った点Q1に向かわせるように、またサブミラー4の
下部42ではすべてQ2に向かわせるような反射方向特
性を有する形状に形成されている。第2図において光線
を逆にたどると、受光素子6はサブミラー4上の点P1
では領域11bの範囲の光をほぼ一様に受光する能力を
有することを示し、同様にサブミラー4上の点P2では
12bの範囲の光をほぼ一様に受光する能力を有するこ
とを示している。このようにサブミラー4は分割された
4つの部分ごとに撮影レンズ1から入射する光の異なる
領域の光を受光素子に導くように構成されている。この
サブミラー4の各部分41〜44のそれぞれが撮影レン
ズ1の射出瞳上で受光素子6に一様に光を導く領域を示
したのが第3図である。
Figure 2 shows the upper part 41 and lower part 42 of the sub-mirror 4 in Figure 1.
This figure shows the reflection direction characteristics at . Although not shown, the left part 43 and right part 44 of the sub-mirror 4 have similar reflection characteristics.
The traveling direction of the light is from the light receiving element 6 side toward the exit pupil of the photographing lens 1. In FIG. 2, at the upper part 41 of the submirror 4 shown in FIG. 1, the light ray 11 incident on the point P1 on the submirror 4 from the light receiving element 6 is diffusely reflected in a narrow range with an intensity distribution indicated by lla. A region 11b is indicated by a dotted line in which the difference in intensity is relatively small in the diffusely reflected light 11a. Next, the submirror 4 in FIG.
Similarly, at the lower part 42 of the light-receiving element 6, the light [12 that enters the point P2 on the sub-mirror 4] is diffusely reflected in the distribution shown by 12a. Indicated. Here, the shape of the Fresnel mirror of the sub-mirror 4 is such that light from the light-receiving element 6 side is transmitted to the sub-mirror 4.
The upper part 41 of the sub-mirror 4 is shaped to have a reflection direction characteristic such that it is directed toward a point Q1 located outside the exit pupil of the photographic lens 1, and the lower part 42 of the sub-mirror 4 is all directed toward a point Q2. . If the light beam is traced in the reverse direction in FIG.
This shows that the point P2 on the sub-mirror 4 has the ability to almost uniformly receive the light in the area 11b, and similarly, the point P2 on the submirror 4 shows that it has the ability to almost uniformly receive the light in the area 12b. . In this way, the sub-mirror 4 is configured to guide different areas of light incident from the photographing lens 1 to the light-receiving element for each of the four divided parts. FIG. 3 shows a region where each of the parts 41 to 44 of the sub-mirror 4 uniformly guides light to the light receiving element 6 on the exit pupil of the photographing lens 1.

第3図において点線で示した領域11b、12b、13
b、14bはそれぞれサブミラー4の各部分41,42
,43.44により受光素子6に光を導かれる領域とな
る。第3図のように、例えば、サブミラー4の上部41
が有効に受光素子に光を導く領域はllbで示すごとく
撮影レンズ1の射出瞳よりも小ぎな領域となるが、サブ
ミラ−4全体ではほぼ撮影レンズ1の射出瞳を包含して
いる。そして、それぞれの領域11b〜14bは、それ
ぞれ射出瞳の中心から外周に掛けて覆うように形成され
ているので、撮影レンズ1の開放絞りから直ちに絞りの
開口の大きざに応じた測光出力を得ることができる。
Areas 11b, 12b, 13 indicated by dotted lines in FIG.
b, 14b are respective parts 41, 42 of the submirror 4
, 43 and 44 form a region where light is guided to the light receiving element 6. As shown in FIG. 3, for example, the upper part 41 of the sub-mirror 4
The area where the submirror 4 effectively guides light to the light receiving element is smaller than the exit pupil of the photographic lens 1, as shown by llb, but the submirror 4 as a whole almost covers the exit pupil of the photographic lens 1. Since each region 11b to 14b is formed to cover the exit pupil from the center to the outer periphery, a photometric output corresponding to the size of the aperture of the aperture can be obtained immediately from the maximum aperture of the photographic lens 1. be able to.

第5図は、本実施例によるサブミラーを用いた測光装置
において画面の上下方向の測光領域が決まる仕組みを示
したものである。第5図においてサブミラー4の上部4
1では撮影レンズ1の射出瞳上で測光される領域は前述
のとうりllbとなる。サブミラーの上部41で測光さ
れる光のうちフィルム面7の最も下側に到達する光は、
撮影レンズ1の射出瞳の上端1aを通りサブミラー4の
上部41の下端4Cを通る光となる。またフレネルミラ
ー41で測光ビれる光のうちフィルム面7の最も上側に
到達する光は、撮影レンズ1の射出瞳の中心ICを通り
サブミラー4の上部41の上端4aを通る光となる。同
様に、サブミラー4の下部42で測光される光のうちフ
ィルム面7の最も下側に到達する光は、撮影レンズ1の
射出瞳の中心I CE通りサブミラー4の下部42の下
端4bを通る光となる。また、サブミラー4の下部42
で測光される光のうちフィルム面7の最も上側に到達す
る光は、撮影レンズ1の射出瞳の下端1 a rを通り
サブミラー4の下部42の上54cを通る光となる。従
って、サブミラー4の土部41により反射された光が図
示してな(・徳光素子6で測光される領域は図に示すフ
ィルム面7上の71aの領域となり、サブミラー4の下
部42により反射された光が図示してない受光素子6で
側光される領域は図に示すフィルム面7上の71bの領
域となり、サブミラー4の各領域41及び42の両方で
はフィルム面7上の71で示す領域となる。この71で
示す領域は、図で示すように撮影レンズ1の中心ICを
通りサブミラー4の上下端4a、4bを通る光によって
決められている。これはサブミラー4の左右方向につい
ても同様である。このように、領域11b及び12b等
が撮影レンズ1の射出瞳のほぼ中心から外周に掛けて覆
うように、且つこれら撮影レンズ1の射出瞳の光を取り
込む領域とサブミラー4の各領域とが光軸に対する位置
関係が同じでしかも対向するように、サブミラー4の各
領域と光を取り込む領域とが構成されているので、画面
における測光領域71は常に撮影レンズ1の射出瞳の中
心ICを通る光によって決まる。従って、実施例による
サブミラー4号用いた測光装置では、撮影レンズの射出
瞳の大きざによらず、つまり交換レンズの開放F値によ
らず両面内で一定の測光領域71を得ることができる。
FIG. 5 shows a mechanism for determining the photometry area in the vertical direction of the screen in the photometry device using the sub-mirror according to this embodiment. In FIG. 5, the upper part 4 of the sub-mirror 4
1, the area to be photometered on the exit pupil of the photographic lens 1 is 1lb, as described above. Of the light measured by the upper part 41 of the sub-mirror, the light that reaches the lowest part of the film surface 7 is:
The light passes through the upper end 1a of the exit pupil of the photographic lens 1 and passes through the lower end 4C of the upper part 41 of the sub-mirror 4. Among the light measured by the Fresnel mirror 41, the light that reaches the uppermost side of the film surface 7 passes through the center IC of the exit pupil of the photographic lens 1 and passes through the upper end 4a of the upper part 41 of the sub-mirror 4. Similarly, out of the light measured by the lower part 42 of the sub-mirror 4, the light that reaches the lowest part of the film surface 7 is the light that passes through the lower end 4b of the lower part 42 of the sub-mirror 4, at the center of the exit pupil of the photographing lens 1. becomes. In addition, the lower part 42 of the sub mirror 4
Of the light measured in , the light that reaches the uppermost side of the film surface 7 passes through the lower end 1 ar of the exit pupil of the photographing lens 1 and passes through the upper part 54 c of the lower part 42 of the sub-mirror 4 . Therefore, the light reflected by the soil portion 41 of the sub-mirror 4 is not shown in the figure (the area photometered by the Tokumitsu element 6 is the area 71a on the film surface 7 shown in the figure, and the light is reflected by the lower part 42 of the sub-mirror 4). The area where the light is side-lighted by the light receiving element 6 (not shown) is the area 71b on the film surface 7 shown in the figure, and the area 71 on the film surface 7 for both the areas 41 and 42 of the sub-mirror 4 is the area 71b on the film surface 7 shown in the figure. As shown in the figure, this area 71 is determined by the light that passes through the center IC of the photographing lens 1 and passes through the upper and lower ends 4a and 4b of the sub-mirror 4.The same applies to the left and right directions of the sub-mirror 4. In this way, the areas 11b, 12b, etc. cover the exit pupil of the photographic lens 1 from approximately the center to the outer periphery, and the areas that take in the light from the exit pupil of the photographic lens 1 and each area of the sub-mirror 4. Since each area of the sub-mirror 4 and the area for taking in light are configured so that they have the same positional relationship with respect to the optical axis and face each other, the photometry area 71 on the screen is always located at the center IC of the exit pupil of the photographing lens 1. Therefore, in the photometry device using submirror No. 4 according to the embodiment, the photometry area 71 is constant on both sides, regardless of the size of the exit pupil of the photographing lens, that is, regardless of the aperture F value of the interchangeable lens. can be obtained.

なお、実際は交換レンズの焦点距離によって射出瞳の位
置は異なるが、一般の一眼し7レツクスカメラの交換レ
ンズの射出瞳の位置は、広角レンズではバックフォーカ
スを長くとるため、また望遠し〉・ズではレンズ全長を
短かくするために、焦点距離の違い程、射出瞳の位置の
違いは大きくなく、実施例の如く測光系で仮想する射出
瞳の位置を適切にとれば、その射出瞳の中心を通る光は
ほとんどの交換レンズの射出瞳を通るようにすることが
可能となり、焦点距離の違いによる画面の測光領域の違
いは無視できる。
In reality, the position of the exit pupil differs depending on the focal length of the interchangeable lens, but the position of the exit pupil of the interchangeable lens of a general single-lens 7-lens camera is different for wide-angle lenses because the back focus is long, and for telephoto lenses. In order to shorten the total length of the lens, the difference in the position of the exit pupil is not as large as the difference in focal length, and if the position of the virtual exit pupil is set appropriately using the photometry system as in the example, the center of the exit pupil can be The light that passes through can be made to pass through the exit pupil of most interchangeable lenses, and differences in the photometric area of the screen due to differences in focal length can be ignored.

第6図及び第7図はサブミラー4の各部分の7レネルミ
ラーの形状の設定方法を説明したものである。
FIGS. 6 and 7 illustrate a method of setting the shape of the 7-Renel mirror in each part of the sub-mirror 4. FIG.

第6図はサブミラー4の上部41の場合であり、サブミ
ラー4を含む平面を境にして受光レンズ5と対称な位置
に受光レンズ5′とその入射瞳の中心点R′とを想定す
る。そして撮影レンズ1の射出瞳上の上部の点Q1から
出た光を前記R′に集光ぎせる作用をもつレンズ41′
をサブミラー4の位置に想定する。このレンズ41′と
等価なフレネルミラーをサブミラー4の位置に置けば、
撮影レンズ1の射出瞳の右上部の点Q1を出た光は受光
レンズ5の入射瞳の中心点Rに集光することになる。こ
のレンズ41′と等価なフレネルミラーは、前記Q1と
前記R′とを結ぶ直線とナブミラーを含む平面との交点
T1を中心とした輪帯状の反射面から構成される。
FIG. 6 shows the case of the upper part 41 of the sub-mirror 4, where a light-receiving lens 5' and the center point R' of its entrance pupil are assumed to be located symmetrically with the light-receiving lens 5 with the plane containing the sub-mirror 4 as a boundary. A lens 41' has the function of focusing the light emitted from the upper point Q1 on the exit pupil of the photographic lens 1 onto the R'.
is assumed to be the position of the submirror 4. If a Fresnel mirror equivalent to this lens 41' is placed at the submirror 4,
The light exiting from the point Q1 at the upper right of the exit pupil of the photographic lens 1 is condensed at the center point R of the entrance pupil of the light receiving lens 5. A Fresnel mirror equivalent to this lens 41' is composed of an annular reflecting surface centered at the intersection T1 of the straight line connecting Q1 and R' and the plane including the nub mirror.

第7図はサブミラー4の下部42の場合であり、撮影レ
ンズ1の射出瞳の下部の点Q2がら出た光を受光レンズ
5の入射瞳の中心点Rに集光させる作用をもつ7レネル
ミラーが第6図同様に決定される。そしてこのフレネル
ミラーは前記Q2.!:前記R′とを結ぶ直線とサブミ
ラー4を含む平面との交点T2を中心とした輪帯状の反
射面から構成される。また、サブミラー4の左側43.
右側44についても同様に、それぞれ撮影レンズ1の射
出瞳の左部の点Q3.右邪の点Q4からの光を受光レン
ズ5の入射瞳の中心点Rに集光する作用’IKモつフレ
ネルミラーと成っている。
FIG. 7 shows the case of the lower part 42 of the sub-mirror 4, in which there is a 7-Renel mirror that has the function of condensing the light emitted from the point Q2 at the lower part of the exit pupil of the photographing lens 1 to the center point R of the entrance pupil of the light-receiving lens 5. It is determined in the same manner as in FIG. And this Fresnel mirror is the above-mentioned Q2. ! : It is composed of an annular reflecting surface centered on the intersection T2 of the straight line connecting R' and the plane including the sub-mirror 4. Also, the left side 43 of the sub-mirror 4.
Similarly, for the right side 44, the points Q3. It functions as a Fresnel mirror that focuses the light from the right point Q4 onto the center point R of the entrance pupil of the light receiving lens 5.

第8図は本発明の実施例におけるサブミラー4の断面を
拡大したものである。第7図においてサブミラー4はフ
レネルミラーの表面に微小な凹凸を設けて、必要とする
拡散特性を実現している。
FIG. 8 is an enlarged cross-section of the sub-mirror 4 in the embodiment of the present invention. In FIG. 7, the sub-mirror 4 is a Fresnel mirror with minute irregularities provided on its surface to achieve the required diffusion characteristics.

尚、撮影レンズ1の射出瞳上に想定した4つの点Q、、
、Q2.Q3.Q4は中心1cがら等距qの点とするの
が望ましいが、その適切な距離は必要とされる測光特性
に応じて決めれば良い。また、本発明は上述した実施例
に限られるものではなく、例えば画面における測光領域
が−に下または左右等、一方向のみ一定であればよいの
なら、サブミラー4は上下または左右方向の2ケ所の領
域に分割Tるだけでよい。更に、このサブミラー4の分
割された領域の数は必要とぎれる測光特性に応じて決め
ればよい。
In addition, four points Q assumed on the exit pupil of the photographic lens 1,
, Q2. Q3. It is desirable that Q4 be a point equidistant q from the center 1c, but the appropriate distance may be determined depending on the required photometric characteristics. Furthermore, the present invention is not limited to the above-mentioned embodiments. For example, if the photometric area on the screen only needs to be constant in one direction, such as below or left and right, the sub mirror 4 can be placed at two locations, up and down or left and right. It is only necessary to divide the area into regions T. Further, the number of divided regions of the sub-mirror 4 may be determined depending on the required photometric characteristics.

(発明の効果) 以上のように本発明によれば、交換レンズによる開放F
値の違いがあってもあるいは絞り込み時にも画面内の測
光領域は変化することのない優れた測光装置を提供でき
る。更に、絞り込んだときの測光出力の線形性及び効率
も優れている。特に、部分測光及びスポット測光のよう
に測光領域の小ざな測光方式では、例えば交換レンズを
換えた時や絞り込み時に測光領域が変化してしまっては
測光出力値がその都度変化してしまい一定した写真が得
られない欠点があったが、本発明の測光装置を使用すれ
ば上記欠点を解決できる。
(Effects of the Invention) As described above, according to the present invention, the open F
It is possible to provide an excellent photometry device in which the photometry area within the screen does not change even when there are differences in values or when narrowing down. Furthermore, the linearity and efficiency of the photometric output when stopped down are also excellent. In particular, in photometry methods with small photometry areas such as partial and spot metering, if the photometry area changes when changing an interchangeable lens or when stopping down, the photometry output value will change each time and will not remain constant. Although there was a drawback that a photograph could not be obtained, the above drawback can be solved by using the photometric device of the present invention.

尚、本発明を実施例の如く構成すれば、サブミラーは比
較的指向性をもつ拡散作用を有し、異なる反射方向をも
たせた2個所以上の領域からなる微小な凹凸を有するフ
レネルミラーの組み合せで構成されているので、簡単な
構成で絞りに対する測光出力の線形性が良好な測光特性
が得られ、また効率よく被写体の光を取り込み、低輝度
の被写体に対しても有効な測光装置を提供することが可
能となる。
Incidentally, if the present invention is configured as in the embodiment, the sub-mirror is a combination of Fresnel mirrors having a relatively directional diffusing effect and having minute irregularities consisting of two or more areas with different reflection directions. Because of this structure, it is possible to obtain a photometric characteristic with good linearity of photometric output with respect to the aperture with a simple configuration, and to provide a photometric device that efficiently captures the light of the subject and is effective even for subjects with low brightness. becomes possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第9図は本発明の実施例であり、第1図はサブ
ミラーの正面図、第2図は前記サブミラーの反射特性を
示す説明図、第3図は前記サブミラーによる撮影レンズ
の射出瞳から光を取り込む様子を示す説明図、第4図は
一眼レフレックスカメラのボディ内の光学系及び測光用
の受光系の配置図、第5図は本発明の実施例による画面
の測光領域の決まるようすを示す図、第6図及び第7図
はサブミラーの形状の設定方法の説明図、第8図はサブ
ミラーの断面の拡大図である。 第9図及び第10図は従来の拡散面を有するサブミラー
の反射特性を示した説明図であり、第11図は従来のサ
ブミラーを用いた測光系の画面状の測光領域を示す図で
ある。 (主要部分の符号の説明) 1・・・撮影レンズ 2・・・主ミラー 4・・・サブミラー 5・・・受光レンズ 6・・・受光素子
1 to 9 show examples of the present invention, in which FIG. 1 is a front view of the submirror, FIG. 2 is an explanatory diagram showing the reflection characteristics of the submirror, and FIG. 3 is the injection of the photographing lens by the submirror. An explanatory diagram showing how light is taken in from the pupil, Fig. 4 is a layout diagram of the optical system and light receiving system for photometry in the body of a single-lens reflex camera, and Fig. 5 is an illustration of the photometry area of the screen according to an embodiment of the present invention. FIGS. 6 and 7 are diagrams illustrating how the shape of the sub-mirror is determined, and FIG. 8 is an enlarged cross-sectional view of the sub-mirror. FIGS. 9 and 10 are explanatory diagrams showing the reflection characteristics of a conventional submirror having a diffusing surface, and FIG. 11 is a diagram showing a screen-like photometry area of a photometry system using a conventional submirror. (Explanation of symbols of main parts) 1...Photographing lens 2...Main mirror 4...Sub mirror 5...Light receiving lens 6...Light receiving element

Claims (1)

【特許請求の範囲】[Claims] (1)撮影レンズを通過して来た被写体光をファインダ
ー系に反射すると共に該被写体光が通過可能な半透過部
を備えた主ミラーと、前記半透過部を通過した被写体光
をミラーボックス内の受光手段に反射するサブミラーと
を有する一眼レフレックスカメラのTTL測光装置にお
いて、前記サブミラーは、撮影レンズの光軸と交わる点
を通る境界線で分割され互いに反射方向特性の異なる2
個以上の領域で構成され、該分割された各領域は該各領
域の前記光軸に対する位置関係と同じ位置関係にある撮
影レンズの射出瞳の中心から外周に掛る所定の領域を通
過する光を前記受光手段に導くことを特徴とする一眼レ
フレックスカメラの測光装置。
(1) A main mirror that reflects the subject light that has passed through the photographic lens to the finder system and has a semi-transparent section through which the subject light can pass, and a mirror box that directs the subject light that has passed through the semi-transmissive section. In a TTL photometry device for a single-lens reflex camera, the submirror is divided by a boundary line passing through a point that intersects with the optical axis of the photographic lens, and the submirror is divided into two parts having different reflection direction characteristics.
Each divided region is configured to transmit light passing through a predetermined region extending from the center to the outer periphery of the exit pupil of the photographic lens, which is in the same positional relationship as the respective region with respect to the optical axis. A photometric device for a single-lens reflex camera, characterized in that the light is guided to the light receiving means.
JP60044119A 1985-03-06 1985-03-06 Ttl light measuring device of single-lens reflex camera Pending JPS6285229A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60044119A JPS6285229A (en) 1985-03-06 1985-03-06 Ttl light measuring device of single-lens reflex camera

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60044119A JPS6285229A (en) 1985-03-06 1985-03-06 Ttl light measuring device of single-lens reflex camera

Publications (1)

Publication Number Publication Date
JPS6285229A true JPS6285229A (en) 1987-04-18

Family

ID=12682716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60044119A Pending JPS6285229A (en) 1985-03-06 1985-03-06 Ttl light measuring device of single-lens reflex camera

Country Status (1)

Country Link
JP (1) JPS6285229A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995025288A1 (en) * 1994-03-17 1995-09-21 Bifocon Optics Forschungs- Und Entwicklungsgmbh Zoned lens
US7287852B2 (en) 2003-06-30 2007-10-30 Fiala Werner J Intra-ocular lens or contact lens exhibiting large depth of focus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5337221A (en) * 1976-09-17 1978-04-06 Hitachi Ltd Seal fin device of turbine wheel and diaphragm

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5337221A (en) * 1976-09-17 1978-04-06 Hitachi Ltd Seal fin device of turbine wheel and diaphragm

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995025288A1 (en) * 1994-03-17 1995-09-21 Bifocon Optics Forschungs- Und Entwicklungsgmbh Zoned lens
US5982543A (en) * 1994-03-17 1999-11-09 Bifocon Optics Forschungs-Und Entwicklungsgmbh Zoned lens
US7287852B2 (en) 2003-06-30 2007-10-30 Fiala Werner J Intra-ocular lens or contact lens exhibiting large depth of focus

Similar Documents

Publication Publication Date Title
US4081807A (en) Reflex mirror for single lens reflex camera
JP2643326B2 (en) Single-lens reflex camera with focus detection device
JPH0498236A (en) Camera
JPS6285229A (en) Ttl light measuring device of single-lens reflex camera
US5668919A (en) Camera
US4455065A (en) Optical device
JP3586365B2 (en) Photometric device
JPS6255769B2 (en)
US4563068A (en) Light measuring device for a single lens reflex camera
JPS6332508A (en) Projecting system for automatic focus detection
US4322615A (en) Focus detecting device with shielding
JP2503439B2 (en) Photometric device
JPS609773Y2 (en) Photometering device for single-lens reflex camera
US4122468A (en) Mirror device in a single lens reflex camera or the TTL metering type
JPS5839449Y2 (en) Ichigan Reflex Camerano Sotsukousouchi
JPH0448506Y2 (en)
JP2610236B2 (en) Auxiliary light device in focus detection device
JPH063517B2 (en) Camera TTL metering device
JPS6142621A (en) Ttl photometric device of single-lens reflex camera
JPS61129609A (en) Optical system for automatic focus detection
JPH01232314A (en) Automatic focus detecting device for camera
JPH0451127A (en) Single lens reflex camera
JPS59214828A (en) Photometer for camera
JPH04309934A (en) Finder optical system with photometry means
JPH07218814A (en) Focus detecting and photometric device