JPS6118936A - Ttl photometric instrument of camera - Google Patents

Ttl photometric instrument of camera

Info

Publication number
JPS6118936A
JPS6118936A JP59138810A JP13881084A JPS6118936A JP S6118936 A JPS6118936 A JP S6118936A JP 59138810 A JP59138810 A JP 59138810A JP 13881084 A JP13881084 A JP 13881084A JP S6118936 A JPS6118936 A JP S6118936A
Authority
JP
Japan
Prior art keywords
light
mirror
lens
submirror
micro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59138810A
Other languages
Japanese (ja)
Other versions
JPH063517B2 (en
Inventor
Masaru Muramatsu
勝 村松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Nippon Kogaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp, Nippon Kogaku KK filed Critical Nikon Corp
Priority to JP59138810A priority Critical patent/JPH063517B2/en
Publication of JPS6118936A publication Critical patent/JPS6118936A/en
Publication of JPH063517B2 publication Critical patent/JPH063517B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Exposure Control For Cameras (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

PURPOSE:To perform photometry with low luminance by forming an assembly of micro reflecting mirrors with special reflection characteristics as the reflecting surface of a submirror and reflecting light which reaches the submirror through the translucent part of a main mirror. CONSTITUTION:Light from a photographic lens 1 is reflected by the main mirror 2 and guided to a viewfinder 3, and the light is transmitted through the translucent part as part of the main mirror and reflected by the submirror 41 to be made incident on a photodetector 6 through a lens 5. The surface of the submirror 41 is formed of micro reflecting mirrors 41a and 41b having special reflection characteristics to guide the transmitted light to the photodetector 6 efficiently. Consequently, photometry with low luminance is performed and the viewfinder is held bright.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は一眼レフレックスカメラのTTL測光装置に関
し、特に半透過部を有するファインダー用の主ミラーと
前記半透過部を通過した光を受光系に導くサブミラーと
を備えたTTT、測光装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to a TTL photometry device for a single-lens reflex camera, and in particular to a main mirror for a finder having a semi-transparent section and a light receiving system that transmits light that has passed through the semi-transmissive section. The present invention relates to a TTT and photometry device equipped with a guiding sub-mirror.

(発明の背景) 第3図は、1眼レフレツクスカメラのボディ内の光学系
及び測光装置の配置を示す。 撮影レンズ1を通過して
来る被写体光を測光する従来のTTL測光装置の測光方
法としては、撮影画面の一部分を測光する部分測光、撮
影画面を平均的に測光する平均測光や両面を幾つかの領
域に分割してそれぞれの部分の測光出力より適正露出を
得ようとする多分割測光がある。
(Background of the Invention) FIG. 3 shows the arrangement of an optical system and a photometric device within the body of a single-lens reflex camera. Conventional TTL photometry methods that measure the subject light passing through the photographic lens 1 include partial metering that measures a part of the photographic screen, average metering that measures the average of the photographic screen, and metering that measures both sides of the photographic screen in several ways. There is multi-segment photometry, which divides the image into areas and attempts to obtain appropriate exposure from the photometry output of each area.

第3図において、測光時は撮影レンズ1を通過した光を
主ミラー2により反射してファインダー3に導くと共に
、主ミラー2の一部半透過部を通過した光を主ミラー2
に回動可能に設りられたサブミラー41により反射して
測光用の受光レンズ5及び受光素子6に導いている。こ
の主ミラー2は、l眼しフレックスカメラの跳ね上げミ
ラ−等であり、主ミラー2の半透過部はハーフミクー、
ピンボールミラー等で形成されている。受光レンズ5は
、サブミラー41」二の被写体像を受光素子6上に結像
するようにカメラのミラーポ・、クス内に配置されてい
る。サブミラー41−Lの被写体像は受光レンズ5によ
り受光素子6−1−に111結像され受光される。
In FIG. 3, during photometry, the main mirror 2 reflects the light that has passed through the photographic lens 1 and guides it to the finder 3, and the light that has passed through the partially transmissive part of the main mirror 2 is reflected by the main mirror 2.
The light is reflected by a sub-mirror 41 that is rotatably provided and guided to a light-receiving lens 5 and a light-receiving element 6 for photometry. This main mirror 2 is a flip-up mirror of a single-lens flex camera, etc., and the semi-transparent part of the main mirror 2 is a half-mirror,
It is made of a pinball mirror, etc. The light-receiving lens 5 is arranged in the mirror box of the camera so as to form an image of the subject on the sub-mirror 41'2 onto the light-receiving element 6. The subject image of the sub-mirror 41-L is formed into a 111 image by the light-receiving lens 5 on the light-receiving element 6-1- and is received.

サブミラー41上の被写体像を受光素子6に再結像させ
るには、例えばザブミラー41に拡散面の反射ミラーを
用いる方法がある。第9図IJ従未のサブミラー4に拡
散面の反射ミラーを用いた例を示す。以後、説明を簡単
にするために光の進行方向は受光系の方から撮影レンズ
1の射出瞳を向かう方向に取る。領域10は、受光レン
ズ5からの光束9がサブミラー4の拡散面で拡散された
ときの拡散特性を示し、また光束9がサブミラー4に入
射する点Pからの反射光の強度分布を示す。
In order to re-image the subject image on the sub-mirror 41 on the light-receiving element 6, for example, there is a method of using a reflecting mirror with a diffusive surface as the sub-mirror 41. FIG. 9 shows an example in which a reflecting mirror with a diffusive surface is used as the sub-mirror 4 of the IJ conventional system. Hereinafter, in order to simplify the explanation, the traveling direction of light will be assumed to be from the light receiving system toward the exit pupil of the photographing lens 1. Region 10 shows the diffusion characteristics when the light beam 9 from the light-receiving lens 5 is diffused by the diffusion surface of the sub-mirror 4, and also shows the intensity distribution of reflected light from the point P where the light beam 9 enters the sub-mirror 4.

この拡散した領域10内の光束10′は撮影レンズ1の
射出瞳に向うが、光束10′以外の斜線部で示した光束
は受光素子6には到達せずに無駄な光束となる。従って
、このことは、撮影レンズ1から入射して来た入射光が
ザブミラー4で拡散されて低下し、受光素子6のITY
り込む光が低下することを表している。そのため、受光
系の受光出力を少しでも上げるために主ミラー2の半透
過部の透過率を増加さ−Uなくてはならず、ファインダ
ーも暗くなると言う欠点があった。
The light beam 10' within this diffused region 10 heads toward the exit pupil of the photographing lens 1, but the light beams other than the light beam 10' shown in the shaded area do not reach the light receiving element 6 and become wasted light beams. Therefore, this means that the incident light that has entered from the photographing lens 1 is diffused by the submirror 4 and is reduced, causing the ITY of the light receiving element 6 to decrease.
This indicates that the amount of light entering the area is decreasing. Therefore, in order to increase the light-receiving output of the light-receiving system even a little, it is necessary to increase the transmittance of the semi-transparent part of the main mirror 2, which has the disadvantage that the finder also becomes dark.

(発明の目的) 本発明はこの欠点を解決し、受光出力が大きく取れ、且
つファインダーも明るい測光装置を提供することを目的
とする。
(Object of the Invention) An object of the present invention is to solve this drawback and to provide a photometric device that has a large light receiving output and a bright finder.

(発明の概要) 本発明は、TTl、測光装置において主ミラーの半透過
部を通過してザブミラーに反射されて来る光を効率良く
受光できるように、サブミラーの反射面を特殊な反射特
性を示す微小反射鏡の集合体で形成して受光系に撮影レ
ンズからの被写体光を集光させることを技術的要点とし
ている。
(Summary of the Invention) The present invention provides a reflective surface of a sub-mirror with special reflection characteristics in order to efficiently receive light that passes through a semi-transparent part of a main mirror and is reflected by a sub-mirror in a TTl or photometry device. The technical point is to form an assembly of micro-reflecting mirrors to focus the subject light from the photographic lens onto the light-receiving system.

(実施例) 第1図〜第6図は、本発明の第一実施例であっる。第1
図は、第3図のサブミラー41と撮影レンズ1と測光系
(受光レンズ5.受光素子6)とを説明のため拡大して
示しである。第2図G11、第3図の撮影レンズ1と主
ミラー2とサブミラー41と受光系とを示し、サブミラ
ー41は受光レンズ5からの光束の一部光束17及び1
8を撮影レンズ1の射出瞳に導く様子を示している。第
4図は第1図に示す微小円錐面鏡41aで反射された光
束が投影されたときの説明図である。第5図は第1図の
ザブミラー41の一部を拡大した斜視図であり、サブミ
ラー41はそれぞれ頂点41bを持った微小円錐面鏡4
1aの集合体で構成されている。
(Example) FIGS. 1 to 6 show a first example of the present invention. 1st
The figure shows the sub-mirror 41, photographing lens 1, and photometry system (light-receiving lens 5, light-receiving element 6) of FIG. 3 enlarged for explanation. FIG. 2 G11 shows the photographing lens 1, main mirror 2, sub-mirror 41, and light-receiving system in FIG.
8 is shown to be guided to the exit pupil of the photographic lens 1. FIG. 4 is an explanatory diagram when the light beam reflected by the micro conical mirror 41a shown in FIG. 1 is projected. FIG. 5 is an enlarged perspective view of a part of the submirror 41 shown in FIG.
It is composed of an aggregate of 1a.

第1図において、このサブミラー41の微小円錐面鏡4
1aは中心に頂点41bを持つように形成され、この各
微小円錐面鏡41aは受光系からのそれぞれの光束を反
射して撮影レンズ1の射出瞳に第2図の如く導いている
。第1図では、微小円錐面鏡41aが反射する光束を代
表して光束11及び12を用いて表しており、受光系か
らの一部の光束11は微小円錐面鏡41aの下方面に反
射して撮影レンズ1の射出瞳の下部に入り、また受光系
からの他の光束12番才微小円錐面鏡41aの上方面に
反射して撮影レンズ1の射出瞳の上部に入っている。こ
のように、微小円錐面鏡41aの一部で反射される光束
は、第4図に示すごとく光束11、光束12のように撮
影レンズ1の射出瞳に導かれる。すなわち、第4図は第
1図に示す光束を代表して光束11及び12を撮影レン
ズlの射出瞳に投影した様子を示しであるが、実際は受
光系からの無数の光束が一つの微小円錐面鏡41aによ
り反射されて一点鎖線で示すように(斜線部分を射出瞳
の中心を軸として回転させた部分)撮影レンズ1の射出
瞳全面に受光系からの光束を導くことが分かる。
In FIG. 1, the micro conical mirror 4 of this submirror 41 is
1a is formed to have an apex 41b at the center, and each of the micro conical mirrors 41a reflects the respective light beams from the light receiving system and guides them to the exit pupil of the photographic lens 1 as shown in FIG. In FIG. 1, the light beams 11 and 12 are used to represent the light beams reflected by the small conical mirror 41a, and part of the light beam 11 from the light receiving system is reflected to the lower surface of the small conical mirror 41a. The light enters the lower part of the exit pupil of the photographic lens 1, and another light beam from the light receiving system is reflected onto the upper surface of the 12th minute conical mirror 41a and enters the upper part of the exit pupil of the photographic lens 1. In this way, the light beam reflected by a portion of the micro conical mirror 41a is guided to the exit pupil of the photographing lens 1 as a light beam 11 and a light beam 12, as shown in FIG. That is, although FIG. 4 shows the projection of light beams 11 and 12 onto the exit pupil of the photographing lens l, representing the light beams shown in FIG. It can be seen that the light beam from the light receiving system is reflected by the surface mirror 41a and guided to the entire exit pupil of the photographing lens 1, as shown by the dashed line (the hatched part rotated around the center of the exit pupil).

従って、ただ一つの微小円錐面鏡41aを取ってみても
、そこから反射さる光束は撮影レンズ1の射出瞳全面に
導かれていることが分かる。上述した如くザブミラー4
1のそれぞれの微小円錐面鏡41aは、受光レンズ5の
入射瞳の投影像が撮影レンズ1の射出瞳を包含するよう
反射する反射特性を有するように形成されており、ザブ
ミラー41の全面に形成された微小円錐面鏡41a全て
が上述した特性を有している。
Therefore, even if we take only one microconical mirror 41a, it can be seen that the light beam reflected from it is guided to the entire exit pupil of the photographic lens 1. As mentioned above, Zabmirror 4
Each of the micro conical mirrors 41a of 1 is formed to have a reflection characteristic of reflecting a projected image of the entrance pupil of the light receiving lens 5 so as to include the exit pupil of the photographing lens 1, and is formed on the entire surface of the submirror 41. All of the micro conical mirrors 41a have the above-mentioned characteristics.

第2図において、光束13(又は光束+4)は前述した
ように微小円錐面鏡41aで反射された光束11.12
等の集りである。この光中14がザブミラー41の上部
点Qで反射されろ場合を考えても、サブミラー41の微
小円錐面鏡41aは受光レンズ5からの光束14の主光
t6f l 41を撮影レンズ1の射出瞳の中心点Rを
通過すイ1ように反射面が形成されている。つまりサブ
ミラー41上の全ての微小円錐面141aに入射する1
j111光系からの光束の主光線は、撮影レンズ10力
・1出瞳の中心点Rに通過することになる。
In FIG. 2, the luminous flux 13 (or luminous flux +4) is the luminous flux 11.12 reflected by the micro conical mirror 41a as described above.
It is a collection of etc. Even if we consider the case that part of this light 14 is reflected at the upper point Q of the submirror 41, the micro conical mirror 41a of the submirror 41 directs the principal light t6f l 41 of the light flux 14 from the light receiving lens 5 to the exit pupil of the photographing lens 1. A reflecting surface is formed such that the light passes through the center point R of A1. In other words, the 1
The chief ray of the light flux from the j111 optical system passes through the center point R of the 10 power/1 power pupil of the photographing lens.

このように、微小円錐面鏡41aの反射特性はサブミラ
ー4Iのどの点を取っても実現されている。サブミラ−
41全体としては前記射出瞳の光束を受光系の受光素子
6に集光するような集光特性を有するように構成されて
いる。
In this way, the reflection characteristics of the micro conical mirror 41a are achieved at any point on the submirror 4I. submirror
41 as a whole is configured to have a condensing characteristic to condense the light flux of the exit pupil onto the light receiving element 6 of the light receiving system.

従って、第5図に示ず如くサブミラー41の表面を微小
円錐面鏡41aの簗合体で形成すれば、撮影レンズ1の
射出瞳からザブミラー41に入射してくる被写体光を各
々の微小円A(A面鏡41aが受光系に効率良く反射す
るので、サブミラー41の集光能力が非常に向」二する
。その結果、ファインダー3を明るくするため主ミラー
20半透過部の透過率を従来の透過率より低くしたとし
ても、受光素子6へ入射する被写体光はサブミラー41
により充分に集光されるので測光可能となる。
Therefore, if the surface of the sub-mirror 41 is formed by a combination of micro-conical mirrors 41a as shown in FIG. Since the A-plane mirror 41a efficiently reflects light to the light receiving system, the light collecting ability of the sub-mirror 41 is greatly improved. Even if the ratio is lower than the submirror 41, the subject light incident on the light receiving element 6
Since the light is sufficiently focused, photometry becomes possible.

第6図は多分割測光用の受光素子6の一例を示し、受光
素子6は5つのセグメント61〜65に分割されている
。この受光素子6ば撮影両面に対応がとれており、受光
素子6のセグメント61〜65は撮影画面を多分割41
11光することになる。サブミラー41の各微小円錐面
鏡41aば、撮影レンズ1からの入射光を受光素子6に
均一に集光するように形成されているので、特に第6図
に示す多分割素子を用いる多分割測光では分割された撮
影画面のそれぞれの測光出力が適正に得られる。
FIG. 6 shows an example of a light-receiving element 6 for multi-division photometry, and the light-receiving element 6 is divided into five segments 61-65. This light-receiving element 6 is compatible with both sides of the photographing surface, and the segments 61 to 65 of the light-receiving element 6 divide the photographing screen into multiple sections 41.
There will be 11 lights. Each of the micro conical mirrors 41a of the submirror 41 is formed so as to uniformly condense the incident light from the photographing lens 1 onto the light receiving element 6, so that multi-segment photometry using the multi-segment element shown in FIG. 6 is possible. In this case, the photometric output of each divided photographic screen can be obtained appropriately.

尚、第5図に示した微小円錐面鏡4]aの形状は円錐面
であるが、凹又は凸の角釘C曲や171面等でもよく、
その形状は撮影レンズ1と受光レンズ5の構成により最
適な形状に決めればよい。
Although the shape of the micro conical mirror 4]a shown in FIG. 5 is a conical surface, it may also have a concave or convex square peg C curve, a 171 plane, etc.
Its shape may be determined to be an optimal shape depending on the configuration of the photographing lens 1 and the light receiving lens 5.

第7図及び第8図は本発明の第2実施例を示し、第7図
及び第8図は第1実施例のザブミラー41の改良を示す
。第1実施例の如く雪ブミラー41を構成すれば、最も
効率良く測光できるが、第1実施例では微小円錐面鏡4
1aの向きは1つ1つについて全て異なるためサブミラ
ーの製作が非常に困雌となる。その為、サブミラーの製
作を容易にするため以下述べるごとく構成ずれば良い。
7 and 8 show a second embodiment of the present invention, and FIGS. 7 and 8 show an improvement of the submirror 41 of the first embodiment. If the snow mirror 41 is configured as in the first embodiment, photometry can be performed most efficiently, but in the first embodiment, the micro conical mirror 41
Since the orientation of 1a is different for each submirror, manufacturing of the submirror becomes very difficult. Therefore, in order to facilitate the manufacture of the sub-mirror, the structure may be changed as described below.

第7図及び第8図に示すようにザブミラー42を数ブロ
ックに分割して、この各ブロックの微小円錐面鏡41a
を各ブロックごとに同−向き、つまり同一の反射特性を
有するような同一形状に形成する。第7図においてサブ
ミラ−42ζ才全面を15のブロックに分割して各ブロ
ックごとに微小円錐面鏡41aの向きが決められている
。この微小円錐面鏡41aは、第1実施例と間柱な性f
ilを有するように構成されているものとする。各ブロ
ックごとに微小円11ト41aの向きが決められている
ので、この各ブロックごとの向きは第2図のように撮影
レンズ1の射出瞳からの光束が受光系に最も効率良(集
光するように決められている。
As shown in FIGS. 7 and 8, the submirror 42 is divided into several blocks, and each block has a micro conical mirror 41a.
are formed in the same direction for each block, that is, in the same shape so as to have the same reflection characteristics. In FIG. 7, the entire surface of the submirror 42ζ is divided into 15 blocks, and the direction of the micro conical mirror 41a is determined for each block. This micro conical mirror 41a has the same feature as the first embodiment.
il. Since the direction of the microcircle 11 and 41a is determined for each block, the direction of each block is determined so that the light flux from the exit pupil of the photographic lens 1 is sent to the light receiving system most efficiently (condensing) as shown in FIG. It is decided to do so.

第8図(a)〜(d)は各ブロックの形状を表しており
、(a)、  (b)はそれぞれ三角形、六角形のブロ
ックに構成され、また(C)は撮影画面の中央の測光精
度が特に必要とされる場合で中央部と周辺部とではブロ
ックの大きさを変えており、さらに(d)は各ブロック
を放射状に配置した例を示している。このように、各ブ
ロックの形状を変えるごとにより、ヨリ光装置の測光モ
ードに対応させたり、また測光装置の測光精度があまり
要求されないものについてはブロックの分割数を少なく
したりもできる。
Figures 8 (a) to (d) show the shape of each block; (a) and (b) are triangular and hexagonal blocks, respectively, and (C) is the photometry at the center of the shooting screen. In cases where precision is particularly required, the size of the blocks is different between the central part and the peripheral part, and (d) shows an example in which the blocks are arranged radially. In this way, by changing the shape of each block, it is possible to make it compatible with the photometry mode of the tilt photometer, or to reduce the number of block divisions for photometers that do not require high photometry accuracy.

従って、第7図及び第8図の如く微小円11ト面鏡41
、 aを各ブロックごとに向きを一定にして構成すれば
、ザブミラー42の製作は簡単になり、さらに第8図に
示す如く測光装置に必要とされる仕様に応じて各ブロッ
クの形状を決定できる。
Therefore, as shown in FIGS. 7 and 8, the microcircle 11 and the top mirror 41
, a in a fixed direction for each block, the fabrication of the submirror 42 becomes simple, and the shape of each block can be determined according to the specifications required for the photometric device, as shown in FIG. .

(発明の効果) 以上のように本発明によれば、微小反射鏡の集合体は撮
影レンズからの被写体光を効率良く受光手段に導くこと
ができるので、受光手段の受光出力が大きくなり、低輝
度の被写体まで測光可能となる。また、微小反射鏡の集
合体は被写体光を効率良く集光できるので、主ミラーの
半透過部の透過率を下げてファインダーを明るくできる
(Effects of the Invention) As described above, according to the present invention, the assembly of minute reflecting mirrors can efficiently guide the subject light from the photographing lens to the light receiving means, so that the light receiving output of the light receiving means is increased and the light receiving output is reduced. It is possible to measure the brightness of the subject. Furthermore, since the assembly of microreflectors can efficiently collect the subject light, the viewfinder can be made brighter by lowering the transmittance of the semi-transparent part of the main mirror.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第6図は本発明の第一実施例であり、第1図は
サブミラーの一部の微小円&(1面鏡の拡大図、第2図
はTTI−測光装置の配置図、第3図は1眼レフレツク
スカメラのボディ内の光学系及び測光装置の配置図、第
4図は第1図に示す微小円錐面鏡で反射された光束が投
影されたときの説明図、第5図は第1図のザブミラーの
一部を拡大した斜視図、第6図は多分割測光赤子の一例
を示す図である。 第7図及び第8図は本発明の第2実施例であり、第7図
及び第8図は第1実施例のサブミラーの改良を示す改良
図である。 第9図は従来のT T L測光装置の配置図を示す。 (主要部分の符号の説明) ■・・・撮影レンズ 2・・・主ミラー 4;41;42・・・サブミラー 4a・・・微小円錐面鏡 出願人  日本光学工業株式会社 代理人  渡  辺  隆  男 ■2 Cバ 第5図 第6図 第7図
1 to 6 show a first embodiment of the present invention, FIG. 1 is an enlarged view of a part of the submirror with a microcircle & FIG. 3 is a layout diagram of the optical system and photometry device inside the body of a single-lens reflex camera, and FIG. 4 is an explanatory diagram when the light beam reflected by the micro conical mirror shown in FIG. 1 is projected. Fig. 5 is an enlarged perspective view of a part of the submirror shown in Fig. 1, and Fig. 6 is a diagram showing an example of a multi-segment photometer. Fig. 7 and Fig. 8 show a second embodiment of the present invention. 7 and 8 are improved views showing improvements to the sub-mirror of the first embodiment. FIG. 9 shows a layout diagram of a conventional TTL photometer. (Explanation of symbols of main parts) ■...Photographing lens 2...Main mirror 4; 41; 42...Sub mirror 4a...Micro conical mirror Applicant: Takashi Watanabe, Agent, Nippon Kogaku Kogyo Co., Ltd.■2 C-ba, Figure 5 Figure 6 Figure 7

Claims (1)

【特許請求の範囲】 ファインダー系に被写体光を反射すると共に、該被写体
光が通過可能な半透過部を備えた主ミラーと、前記半透
過部を通過した前記被写体光をミラーボックス内の受光
手段に反射し、前記主ミラーに回動可能に設けられたサ
ブミラーとを有するカメラのTTL測光装置において、 前記サブミラーを微小反射鏡の集合体で形成し、前記受
光手段の受光レンズの入射瞳を前記微小反射鏡で反射し
て撮影レンズの射出瞳に投影したとき、前記微小反射鏡
の各々はいずれも前記受光レンズの入射瞳の投影像が撮
影レンズの射出瞳をほぼ包含するような反射特性を有す
ることを特徴とするカメラのTTL測光装置。
[Scope of Claims] A main mirror that reflects subject light to a finder system and has a semi-transparent section through which the subject light can pass, and a light receiving means in a mirror box that receives the subject light that has passed through the semi-transmissive section. In the TTL photometry device for a camera, the camera has a sub-mirror that is rotatably provided on the main mirror, and the sub-mirror is formed by an assembly of micro-reflecting mirrors, and the entrance pupil of the light-receiving lens of the light-receiving means is set to the Each of the micro-reflecting mirrors has a reflection characteristic such that when reflected by the micro-reflecting mirror and projected onto the exit pupil of the photographing lens, the projected image of the entrance pupil of the light-receiving lens almost encompasses the exit pupil of the photographing lens. A TTL photometry device for a camera, comprising:
JP59138810A 1984-07-04 1984-07-04 Camera TTL metering device Expired - Lifetime JPH063517B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59138810A JPH063517B2 (en) 1984-07-04 1984-07-04 Camera TTL metering device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59138810A JPH063517B2 (en) 1984-07-04 1984-07-04 Camera TTL metering device

Publications (2)

Publication Number Publication Date
JPS6118936A true JPS6118936A (en) 1986-01-27
JPH063517B2 JPH063517B2 (en) 1994-01-12

Family

ID=15230767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59138810A Expired - Lifetime JPH063517B2 (en) 1984-07-04 1984-07-04 Camera TTL metering device

Country Status (1)

Country Link
JP (1) JPH063517B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6385529A (en) * 1986-09-29 1988-04-16 Fuji Photo Film Co Ltd Photometer for electronic camera

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6385529A (en) * 1986-09-29 1988-04-16 Fuji Photo Film Co Ltd Photometer for electronic camera

Also Published As

Publication number Publication date
JPH063517B2 (en) 1994-01-12

Similar Documents

Publication Publication Date Title
US4309093A (en) Camera having a diffusing plate with rotationally asymmetric light diffusion property
JP2696360B2 (en) Illumination optics
JPS6118936A (en) Ttl photometric instrument of camera
US4437741A (en) Light measuring device for a single lens reflex camera
US6516152B1 (en) Focusing screen for use in camera
JP3415185B2 (en) Lighting device for liquid crystal display
JPS6255769B2 (en)
JPS6158023B2 (en)
JPH095818A (en) Camera
JPH0448506Y2 (en)
JPS6142621A (en) Ttl photometric device of single-lens reflex camera
JPS59214828A (en) Photometer for camera
JPS6330835A (en) Transmission type screen
JPH09105899A (en) Projection type display device
JPH0326500Y2 (en)
JP2000088642A (en) Optical system for measuring light of single lens reflex camera
JPS6285229A (en) Ttl light measuring device of single-lens reflex camera
JPS6258487B2 (en)
JPS5839449Y2 (en) Ichigan Reflex Camerano Sotsukousouchi
JPH04309934A (en) Finder optical system with photometry means
JPH0534599A (en) Illuminating optical system
JPS6158021B2 (en)
JPS6042900B2 (en) Photometric device
JP2000171847A (en) Photometric optical system for single lens reflex camera
JPS62112135A (en) Photometric device for single-lens reflex camera