JPH06349950A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPH06349950A
JPH06349950A JP13590093A JP13590093A JPH06349950A JP H06349950 A JPH06349950 A JP H06349950A JP 13590093 A JP13590093 A JP 13590093A JP 13590093 A JP13590093 A JP 13590093A JP H06349950 A JPH06349950 A JP H06349950A
Authority
JP
Japan
Prior art keywords
insulating film
interlayer insulating
wiring layer
film
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13590093A
Other languages
Japanese (ja)
Inventor
Toshiaki Tsutsumi
聡明 堤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP13590093A priority Critical patent/JPH06349950A/en
Publication of JPH06349950A publication Critical patent/JPH06349950A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To prevent gas from going out through the exposed side wall of a hole provided to an interlayer insulating film in a heat treatment process. CONSTITUTION:A nitride film 13 is deposited on an exposed surface which includes the inner wall of a viahole 5 provided to a second interlayer insulating film 4 which is interposed between a first wiring layer 2 and a second wiring layer 7 formed on a semiconductor substrate 1. When a conductive layer 6 which electrically connects the first wiring layer 2 and the second wiring layer 7 together is formed by burying a conductive material through a CVD growth method, the nitride film 13 prevents the growth failure of conductive material caused by gas that goes out through the second interlayer insulating film 4.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この明は半導体装置の製造方法に
係わり、特に、多層配線構造を有した半導体製造装置の
製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for manufacturing a semiconductor manufacturing device having a multilayer wiring structure.

【0002】[0002]

【従来の技術】LSIの高集積化にともない、多層配線
技術の向上が強く望まれるようになってきた。特に、上
下2層の配線層を電気的に接続するために設けられるビ
アホールのアスペクト比が高くなるに従い、ビアホール
における信頼性の劣化が顕著になってきている。この問
題を解消する方法として選択CVD法を用いて、ビアホ
ールを金属膜で埋め込む構造が開発されている。以下、
この半導体装置の構造呼び製造方法の従来例を図21〜
25に基づいて説明する。
2. Description of the Related Art With the high integration of LSIs, improvement in multilayer wiring technology has been strongly desired. In particular, as the aspect ratio of the via hole provided for electrically connecting the upper and lower two wiring layers is increased, the reliability of the via hole is significantly deteriorated. As a method for solving this problem, a structure in which a via hole is filled with a metal film has been developed by using a selective CVD method. Less than,
A conventional example of a method for manufacturing the structure of this semiconductor device is shown in FIGS.
25 will be described.

【0003】図25において、1はSiなどの半導体基
板、2はこの半導体基板1の表面上に形成されたシリコ
ン酸化膜などからなる第一の層間絶縁膜、3はこの第一
の層間絶縁膜上に部分的に形成されたAl合金などからな
る第一の配線層、4はこの第一の配線層及び上記第一の
層間絶縁膜の表面上に形成され、シリコン酸化膜などか
らなる第一の絶縁膜4aとSOG(Spin on Glass )膜か
らなる第二の絶縁膜4bとシリコン酸化膜などからなる第
三の絶縁膜4cとの三層構造からなる第二の層間絶縁膜、
5は上記第二の層間絶縁膜4の表面から上記第一の配線
層3の表面に達する穴(ビア・ホール)、6は上記ビア
・ホールの内部に埋め込まれたタングステン等の金属膜
からなる導電物質、7はこの導電物質及び上記第二の層
間絶縁膜4の表面上に形成されたAl合金などからなる第
二の配線層である。
In FIG. 25, 1 is a semiconductor substrate made of Si or the like, 2 is a first interlayer insulating film made of a silicon oxide film or the like formed on the surface of the semiconductor substrate 1, and 3 is this first interlayer insulating film. A first wiring layer 4 formed partially of an Al alloy or the like is formed on the surfaces of the first wiring layer and the first interlayer insulating film, and is made of a silicon oxide film or the like. Second insulating film 4a, a second insulating film 4b made of an SOG (Spin on Glass) film, and a third insulating film 4c made of a silicon oxide film, etc.
Reference numeral 5 is a hole (via hole) reaching from the surface of the second interlayer insulating film 4 to the surface of the first wiring layer 3, and 6 is a metal film such as tungsten embedded in the via hole. A conductive material 7 is a second wiring layer made of the conductive material and an Al alloy or the like formed on the surface of the second interlayer insulating film 4.

【0004】次に、このように構成された半導体装置の
製造方法について説明する。まず、図21に示すよう
に、半導体基板1の表面上に第一の層間絶縁膜2をCV
D法で形成する。次いで、この第一の層間絶縁膜2の表
面上にスパッタ法などを用いてAl合金膜を成膜し写真製
版及びエッチング技術などを用いて第一の配線層3を形
成する。次いで、CVD法などにより第一の絶縁膜であ
るシリコン膜4aを形成した後、スピンコート法によって
SOG膜からなる第二の絶縁膜4bを形成し、さらに第三
の絶縁膜であるシリコン酸化膜4cをCVD法などにより
形成することによって三層構造からなる第二の層間絶縁
膜4を形成する。ここで、SOG膜からなる第二の絶縁
膜4bは段差の平坦化のために形成されるものであり、ま
た、第一の絶縁膜4a及び第三の絶縁膜4cは上記SOG膜
4bが配線層3等と反応して劣化することを防止するため
に形成されるものである。
Next, a method of manufacturing the semiconductor device having the above structure will be described. First, as shown in FIG. 21, the first interlayer insulating film 2 is formed on the surface of the semiconductor substrate 1 by CV.
It is formed by the D method. Then, an Al alloy film is formed on the surface of the first interlayer insulating film 2 by using a sputtering method or the like, and the first wiring layer 3 is formed by using photoengraving and etching techniques. Next, after forming a silicon film 4a which is a first insulating film by a CVD method or the like, a second insulating film 4b which is an SOG film is formed by a spin coating method and further a silicon oxide film which is a third insulating film. By forming 4c by a CVD method or the like, a second interlayer insulating film 4 having a three-layer structure is formed. Here, the second insulating film 4b made of an SOG film is formed for flattening the step, and the first insulating film 4a and the third insulating film 4c are the SOG film.
It is formed in order to prevent the deterioration of the 4b by reacting with the wiring layer 3 and the like.

【0005】次に、図22に示すように、この第二の層
間絶縁膜4に対して、写真製版技術及びエッチング技術
により上記第一の配線層3の表面に達する穴であるビア
・ホール5を形成する。図23に示すように、ビア・ホ
ール5の内部をBcl3プラズマ8に晒すことにより、第一
の配線層3の表面上に形成された自然酸化膜を除去す
る。次いで、図24に示すように、アニールによって第
一の配線層3の露出面に吸着した塩素を放出させた後、
ビア・ホール5の内部に選択CVD法によってタングス
テンなどの導電物質6を埋め込む。そして、図25に示
すように、導電物質6及び第二の層間絶縁膜4の表面上
にスパッタ法などを用いてAl合金膜を成膜し写真製版及
びエッチング技術などを用いて第二の配線層7を形成す
る。
Next, as shown in FIG. 22, a via hole 5 which is a hole reaching the surface of the first wiring layer 3 is formed in the second interlayer insulating film 4 by photolithography and etching. To form. As shown in FIG. 23, the inside of the via hole 5 is exposed to the Bcl 3 plasma 8 to remove the natural oxide film formed on the surface of the first wiring layer 3. Next, as shown in FIG. 24, after chlorine adsorbed on the exposed surface of the first wiring layer 3 is released by annealing,
A conductive material 6 such as tungsten is embedded in the via hole 5 by the selective CVD method. Then, as shown in FIG. 25, an Al alloy film is formed on the surfaces of the conductive material 6 and the second interlayer insulating film 4 by using a sputtering method or the like, and the second wiring is formed by using photoengraving and etching techniques. Form the layer 7.

【0006】[0006]

【発明が解決しようとする課題】従来の半導体装置は以
上のように構成されていたので、選択CVD法で導電物
質6であるタングステンなどを形成する際に第二の層間
絶縁膜4、特にSOG膜4bの膜中に吸着されている水や
炭化水素等が脱離し、選択CVD法によるタングステン
の成長に影響を及ぼすため、タングステンなど導電物質
6の成長不良が発生するという問題点があった。また、
Bcl3プラズマ8処理後のアニールでも吸着ガス、特に水
の脱離により、第一の配線層3の露出面が再度酸化され
て、第一の配線層3とビア・ホール内を埋め込んだ導電
物質6との間の電気抵抗が上昇し、不良の原因となる問
題点があった。
Since the conventional semiconductor device is constructed as described above, the second interlayer insulating film 4, particularly the SOG, is formed when the conductive material 6 such as tungsten is formed by the selective CVD method. Since water, hydrocarbons and the like adsorbed in the film of the film 4b are desorbed and affect the growth of tungsten by the selective CVD method, there is a problem that the growth of the conductive material 6 such as tungsten is defective. Also,
The exposed surface of the first wiring layer 3 is re-oxidized by desorption of adsorbed gas, especially water, even after annealing after the Bcl 3 plasma 8 treatment, and the conductive material filling the first wiring layer 3 and the via holes. There was a problem in that the electric resistance between No. 6 and 6 increased, causing a defect.

【0007】この発明は上記のような問題点を解消する
ためになされたもので、第二の層間絶縁膜における吸着
ガスの脱離による影響を防止できる半導体装置及びその
製造方法を得ることを目的としたものである。
The present invention has been made to solve the above problems, and an object of the present invention is to obtain a semiconductor device capable of preventing the influence of desorption of adsorbed gas in the second interlayer insulating film and a method of manufacturing the same. It is what

【0008】[0008]

【課題を解決するための手段】この発明の第一の発明に
かかわる半導体装置は、半導体基板上に形成された第一
の層間絶縁膜上に形成された配線層と、この配線層上及
び第一の層間絶縁膜上に形成され、表面から配線層の表
面に達する穴を有した第二の層間絶縁膜とを有し、この
第二の層間絶縁膜の少なくとも穴の側面を含む露出面に
窒化物を形成し、穴の内部に導電物質からなる導電層を
埋め込んだものである。
A semiconductor device according to a first aspect of the present invention is a wiring layer formed on a first interlayer insulating film formed on a semiconductor substrate, and a wiring layer formed on the wiring layer and a wiring layer formed on the wiring layer. A second interlayer insulating film having a hole reaching from the surface to the surface of the wiring layer, and the exposed surface including at least the side surface of the hole of the second interlayer insulating film. A nitride is formed and a conductive layer made of a conductive material is embedded inside the hole.

【0009】この発明の第二の発明にかかわる半導体装
置の製造方法は、半導体基板上に第一の層間絶縁膜を形
成する工程と、この第一の層間絶縁膜上に配線層を形成
する工程と、この配線層上及び第一の層間絶縁膜上に第
二の層間絶縁膜を形成する工程と、この第二の層間絶縁
膜の表面からの配線層の表面に達する穴を形成する工程
と、第二の層間絶縁膜の少なくとも穴の側面を含む露出
する面を窒化する工程と、第二の層間絶縁膜の穴の内部
に導電物質を埋め込む工程とを設けたものである。
A method of manufacturing a semiconductor device according to a second aspect of the present invention comprises a step of forming a first interlayer insulating film on a semiconductor substrate and a step of forming a wiring layer on the first interlayer insulating film. And a step of forming a second interlayer insulating film on the wiring layer and the first interlayer insulating film, and a step of forming a hole from the surface of the second interlayer insulating film to the surface of the wiring layer. The step of nitriding the exposed surface of the second interlayer insulating film including at least the side surface of the hole and the step of embedding a conductive material in the hole of the second interlayer insulating film are provided.

【0010】この発明の第三の発明に係わる半導体装置
の製造方法は、半導体基板上に第一の層間絶縁膜を形成
する工程と、この第一の層間絶縁膜上に配線層を形成す
る工程と、この配線層上及び第一の層間絶縁膜上に第二
の層間絶縁膜を形成する工程と、この第二の層間絶縁膜
の表面から配線層の表面に達する穴を形成する工程と、
穴を含む第二の層間絶縁膜の表面及び配線層の表面に窒
化膜を堆積する工程と、この窒化膜を第二の層間絶縁膜
の穴の側面部分を除いて除去する工程と、第二の層間絶
縁膜の穴の内部に導電物質を埋め込む工程とを設けたも
のである。
A method of manufacturing a semiconductor device according to a third aspect of the present invention comprises a step of forming a first interlayer insulating film on a semiconductor substrate and a step of forming a wiring layer on the first interlayer insulating film. A step of forming a second interlayer insulating film on the wiring layer and the first interlayer insulating film, and a step of forming a hole from the surface of the second interlayer insulating film to the surface of the wiring layer,
Depositing a nitride film on the surface of the second interlayer insulating film including the hole and the surface of the wiring layer, and removing the nitride film except the side surface portion of the hole of the second interlayer insulating film; And a step of embedding a conductive material in the hole of the interlayer insulating film.

【0011】この発明の第四の発明にかかわる半導体装
置の製造方法は、半導体基板上に第一の層間絶縁膜を形
成する工程と、この第一の層間絶縁膜上に配線層を形成
する工程と、この配線層上及び第一の層間絶縁膜上に第
二の層間絶縁膜を形成する工程と、この第二の層間絶縁
膜の表面から配線層の表面に達する穴を形成する工程
と、真空中においてアニールを行う工程と、当該真空を
破ることなく第一の配線層上の酸化膜を除去する工程
と、当該真空を破ることなく第二の層間絶縁膜の穴の内
部に導電物質を埋め込む工程とを設けたものである。
A method of manufacturing a semiconductor device according to a fourth aspect of the present invention comprises a step of forming a first interlayer insulating film on a semiconductor substrate and a step of forming a wiring layer on the first interlayer insulating film. A step of forming a second interlayer insulating film on the wiring layer and the first interlayer insulating film, and a step of forming a hole from the surface of the second interlayer insulating film to the surface of the wiring layer, A step of annealing in a vacuum, a step of removing the oxide film on the first wiring layer without breaking the vacuum, and a conductive material inside the hole of the second interlayer insulating film without breaking the vacuum. And a step of embedding.

【0012】[0012]

【作用】この発明の第一の発明においては、第二の層間
絶縁膜の穴の側面を含む露出面に形成された窒化物が、
第二の層間絶縁膜からガスが脱離することを防止する。
In the first aspect of the present invention, the nitride formed on the exposed surface including the side surface of the hole of the second interlayer insulating film is
Gas is prevented from desorbing from the second interlayer insulating film.

【0013】この発明の第二の発明においては、第二の
層間絶縁膜の穴の側面を含む露出面を窒化する工程によ
り、第二の層間絶縁膜における少なくとも穴の側面に窒
化物が形成され、それ以降の工程において、第二層間絶
縁膜からガスが脱離することを防止する。
In the second aspect of the present invention, the nitride is formed on at least the side surface of the hole in the second interlayer insulating film by the step of nitriding the exposed surface including the side surface of the hole of the second interlayer insulating film. In the subsequent steps, the gas is prevented from desorbing from the second interlayer insulating film.

【0014】この発明の第三の発明においては、第二の
層間絶縁膜の穴の側面に窒化膜を堆積する工程により、
第二の層間絶縁膜の穴の側面に窒化物が形成され、それ
以降の工程において、第二の層間絶縁膜からガスが脱離
することを防止する。
In a third aspect of the present invention, the step of depositing a nitride film on the side surface of the hole of the second interlayer insulating film
Nitride is formed on the side surface of the hole of the second interlayer insulating film to prevent gas from desorbing from the second interlayer insulating film in the subsequent steps.

【0015】この発明の第四の発明においては、真空中
でアニールを行った後、当該真空を破ることなく連続し
て、配線層の酸化膜除去工程、導電物質を埋め込む工程
を行うことにより、アニールで第二の層間絶縁膜中の吸
着ガスが放出され、吸着ガスの放出が無い状態で以後の
工程が行われる。
In the fourth aspect of the present invention, after performing the annealing in a vacuum, the step of removing the oxide film of the wiring layer and the step of filling the conductive material are continuously performed without breaking the vacuum, By annealing, the adsorbed gas in the second interlayer insulating film is released, and the subsequent steps are performed in the state where the adsorbed gas is not released.

【0016】[0016]

【実施例】実施例1.以下、この発明の半導体装置の実
施例1を図1に基づいて説明する。図において、1はSi
などの半導体基板、2はこの半導体基板1の表面上に形
成されたシリコン酸化膜などからなる第一の層間絶縁
膜、3はこの第一の層間絶縁膜上に部分的に形成された
Al合金などからなる第一の配線層、4はこの第一の配線
層及び上記第一の層間絶縁膜2の表面上に形成され、シ
リコン酸化膜などからなる第一の絶縁膜4aとSOG(Sp
in on Glass )膜からなる第二の絶縁膜4bとシリコン酸
化膜などからなる第三の絶縁膜4cとの三層構造からなる
第二の層間絶縁膜、5はこの第二の層間絶縁膜の表面か
ら上記第一の配線層3の表面に達する穴(ビア・ホー
ル)、6はこのビア・ホール5の内部に埋め込んだタン
グステン等の金属膜からなる導電物質の導電層、7はこ
の導電層及び上記第二の層間絶縁膜4の表面上に形成さ
れたAl合金などからなる第二の配線層、13は第二の層間
絶縁膜の表面上に形成されたSi窒化膜である。
EXAMPLES Example 1. A first embodiment of the semiconductor device of the present invention will be described below with reference to FIG. In the figure, 1 is Si
Such as a semiconductor substrate, 2 is a first interlayer insulating film made of a silicon oxide film or the like formed on the surface of the semiconductor substrate 1, and 3 is partially formed on the first interlayer insulating film.
The first wiring layers 4 made of Al alloy or the like are formed on the surfaces of the first wiring layer and the first interlayer insulating film 2, and the first insulating film 4a made of a silicon oxide film and SOG ( Sp
(In on Glass) film, a second insulating film 4b made of a three-layer structure of a second insulating film 4b made of a silicon oxide film and a third insulating film 4c made of a silicon oxide film. A hole (via hole) reaching from the surface to the surface of the first wiring layer 3, 6 is a conductive layer of a conductive material made of a metal film such as tungsten embedded in the via hole 5, and 7 is this conductive layer. And a second wiring layer made of Al alloy or the like formed on the surface of the second interlayer insulating film 4, and 13 is a Si nitride film formed on the surface of the second interlayer insulating film.

【0017】上記Si窒化膜13はガスに対する通気性が低
いため、第二の層間絶縁膜4の表面全体を覆うことによ
って、第二の層間絶縁膜4、特にSOG膜4bからのガス
の放出を抑制する効果があるので、上記の導電層6を選
択CVD法によって成長する際などの熱処理における、
放出ガスによる成長不良等を防止することができ、導電
層6形成時の導電物質の成長不良及び第一の配線層3の
表面の酸化を防げ、第一の配線層3と第二の配線層7と
の電気的接続が良好になるものである。
Since the Si nitride film 13 has low gas permeability, by covering the entire surface of the second interlayer insulating film 4, the gas is released from the second interlayer insulating film 4, especially the SOG film 4b. Since it has a suppressing effect, in the heat treatment such as when the conductive layer 6 is grown by the selective CVD method,
It is possible to prevent the growth failure due to the released gas, the growth failure of the conductive material at the time of forming the conductive layer 6 and the oxidation of the surface of the first wiring layer 3, and the first wiring layer 3 and the second wiring layer. The electrical connection with 7 is improved.

【0018】実施例2.次ぎに、上記実施例1のように
構成された半導体装置の製造方法について図2ないし図
7を用いて説明する。図2に示すように、半導体基板1
の表面上に第一の層間絶縁膜2をCVD法で形成する。
次に、この第一の層間絶縁膜2の表面上にスパッタ法な
どを用いてAl合金膜を成膜し写真製版及びエッチング技
術などを用いて第一の配線層3を形成する。次に、CV
D法などにより第一の絶縁膜であるリシコン膜4aを形成
した後、スピンコート法によってSOG膜からなる第二
の絶縁膜4bを形成し、さらに第三の絶縁膜であるシリコ
ン酸化膜4cをCVD法などにより形成することによって
三層構造からなる第二の層間絶縁膜4を形成する。ここ
で、SOG膜からなる第二の絶縁膜4bは段差の平坦化の
ために形成するものであり、また、第一の絶縁膜4a及び
第三の絶縁膜4cは上記SOG膜4bが配線層3等と反応し
て劣化することを防止するために形成されている。
Example 2. Next, a method of manufacturing the semiconductor device configured as in the first embodiment will be described with reference to FIGS. As shown in FIG. 2, the semiconductor substrate 1
A first interlayer insulating film 2 is formed on the surface of by the CVD method.
Next, an Al alloy film is formed on the surface of the first interlayer insulating film 2 by using a sputtering method or the like, and the first wiring layer 3 is formed by using photoengraving and etching techniques. Next, CV
After forming the silicon insulating film 4a which is the first insulating film by the D method or the like, the second insulating film 4b made of the SOG film is formed by the spin coating method, and the silicon oxide film 4c which is the third insulating film is further formed. The second interlayer insulating film 4 having a three-layer structure is formed by forming it by the CVD method or the like. Here, the second insulating film 4b made of an SOG film is formed to flatten the step, and the first insulating film 4a and the third insulating film 4c are the same as the SOG film 4b in the wiring layer. It is formed to prevent deterioration due to reaction with 3 or the like.

【0019】次に、図3に示すように、この第二の層間
絶縁膜4に対して、写真製版技術及びエッチング技術に
より、第一の配線層3の表面に達する穴であるビア・ホ
ール5を形成する。図4に示すように、図3に示した状
態のものを300 ℃程度に加熱しながら窒素プラズマ11に
晒す。このときの処理条件は、例えば、窒素流量を30sc
cm, 圧力30mtorr 、RFパワー100 W、処理時間3分程
度で行う。このプラズマ処理は減圧状態(30mtorr 程
度)で基板加熱しながら行うため、第二の層間絶縁膜
4、特にSOG膜4b内に吸着している水や炭化水素を効
果的に放出させる。そして、第二の層間絶縁膜4に含ま
れるSiとN2との反応により第二の層間絶縁膜4の露出面
にSi窒化膜(SiN)13が形成される。このSi窒化膜13が形
成されるため、この状態のものを大気中に晒した時に、
再度水等のガスが第二の層間絶縁膜4に吸着されるのを
防止するとともに、第二の層間絶縁膜4中の残留ガスが
後のプロセス中に放出されるのを防ぐことができる。
Next, as shown in FIG. 3, a via hole 5 which is a hole reaching the surface of the first wiring layer 3 is formed in the second interlayer insulating film 4 by photolithography and etching. To form. As shown in FIG. 4, the state shown in FIG. 3 is exposed to nitrogen plasma 11 while being heated to about 300.degree. The processing conditions at this time are, for example, a nitrogen flow rate of 30 sc
cm, pressure 30 mtorr, RF power 100 W, processing time about 3 minutes. Since this plasma treatment is performed while heating the substrate in a reduced pressure state (about 30 mtorr), water and hydrocarbons adsorbed in the second interlayer insulating film 4, especially the SOG film 4b are effectively released. Then, the Si nitride film (SiN) 13 is formed on the exposed surface of the second interlayer insulating film 4 by the reaction of Si and N 2 contained in the second interlayer insulating film 4. Since this Si nitride film 13 is formed, when this state is exposed to the atmosphere,
It is possible to prevent the gas such as water from being adsorbed by the second interlayer insulating film 4 again and prevent the residual gas in the second interlayer insulating film 4 from being released during the subsequent process.

【0020】次に、図5に示すように、ビア・ホール5
の内部をBcl3プラズマ8に晒すことにより、第一の配線
層3の表面上に形成された自然酸化膜を除去する。次い
で、図6に示すように、アニールによって第一の配線層
3に吸着した塩素を放出させた後、ビア・ホール5の内
部に選択CVD法によってタングステンなどの導電物質
を埋め込んで導電層6を形成する。そして、図7に示す
ように、導電層6及び第二の層間絶縁膜4の表面上にス
パッタ法などを用いてAl合金膜を成膜し写真製版及びエ
ッチング技術などを用いて第二の配線層7を形成する。
以上の各工程において、第二の層間絶縁膜4からのガス
の放出がSi窒化膜で防げるので、導電層6を形成するた
めの選択CVD法による導電物質の成長に際しては、従
来例で示した第二の層間絶縁膜からのガスの影響による
成長不良を防止することができる。また、Bcl3プラズマ
8処理後のアニール工程に際しても、水等のガスにより
第一の配線層3の表面が再度酸化されることを防止する
ことができる。
Next, as shown in FIG.
The native oxide film formed on the surface of the first wiring layer 3 is removed by exposing the inside of the substrate to the Bcl 3 plasma 8. Next, as shown in FIG. 6, after chlorine adsorbed on the first wiring layer 3 is released by annealing, a conductive material such as tungsten is embedded in the via hole 5 by a selective CVD method to form the conductive layer 6. Form. Then, as shown in FIG. 7, an Al alloy film is formed on the surfaces of the conductive layer 6 and the second interlayer insulating film 4 by using a sputtering method or the like, and the second wiring is formed by using photoengraving and etching techniques. Form the layer 7.
In each of the above steps, since the release of gas from the second interlayer insulating film 4 can be prevented by the Si nitride film, the growth of the conductive material by the selective CVD method for forming the conductive layer 6 was shown in the conventional example. It is possible to prevent the growth failure due to the influence of the gas from the second interlayer insulating film. Further, also in the annealing step after the Bcl 3 plasma 8 treatment, it is possible to prevent the surface of the first wiring layer 3 from being re-oxidized by a gas such as water.

【0021】実施例3.この発明の実施例3である半導
体装置の製造方法を図8ないし図13に基づいて説明す
る。図8及び図9に示すように、第二の層間絶縁膜4に
ビア・ホール5を形成するまでの工程は上記した実施例
2と同一である。次いで、図10に示すように、第二の
層間絶縁膜4の露出面に対し、アンモニア(NH3 )雰囲
気中、例えば、アンモニア流量1SLM 、圧力0.5torr の
雰囲気で300 ℃に基板加熱しながら、5分程度UV光
(紫外線)12を照射する。この処理は減圧状態(0.5tor
r 程度)で基板加熱しながら行うため、第二の層間絶縁
膜4、特にSOG膜4b内に吸着している水や炭化水素を
効果的に放出させる。そして、第二の層間絶縁膜4に含
まれるSiとN2との反応により第二の層間絶縁膜4の露出
面にSi窒化膜(SiN)13が形成される。このSi窒化膜13が
形成されるため、この状態のものを大気中に晒した時
に、再度水等のガスが第二の層間絶縁膜4に吸着される
のを防止するとともに、第二の層間絶縁膜4中の残留ガ
スが後のプロセス中に放出されるのを防ぐことができる
点は上記実施例2と同様である。
Example 3. A method of manufacturing a semiconductor device according to a third embodiment of the present invention will be described with reference to FIGS. As shown in FIGS. 8 and 9, the steps up to forming the via hole 5 in the second interlayer insulating film 4 are the same as those in the second embodiment. Next, as shown in FIG. 10, while heating the substrate to 300 ° C. in an ammonia (NH 3 ) atmosphere, for example, in an atmosphere with an ammonia flow rate of 1 SLM and a pressure of 0.5 torr, with respect to the exposed surface of the second interlayer insulating film 4, Irradiate UV light (ultraviolet ray) 12 for about 5 minutes. This process is under reduced pressure (0.5tor
Since it is performed while heating the substrate at about r), water and hydrocarbons adsorbed in the second interlayer insulating film 4, especially the SOG film 4b are effectively released. Then, the Si nitride film (SiN) 13 is formed on the exposed surface of the second interlayer insulating film 4 by the reaction of Si and N 2 contained in the second interlayer insulating film 4. Since this Si nitride film 13 is formed, when this state is exposed to the atmosphere, a gas such as water is prevented from being again adsorbed by the second interlayer insulating film 4, and the second interlayer insulating film 4 is prevented. Similar to the second embodiment, the residual gas in the insulating film 4 can be prevented from being released during the subsequent process.

【0022】以後の工程は実施例2と同様であり、図1
1に示すように、ビア・ホール5の内部をBcl3プラズマ
8に晒すことにより、第一の配線層3の表面上に形成さ
れた自然酸化膜を除去する。次いで、図12に示すよう
に、アニールによって第一の配線層3に吸着した塩素を
放出させた後、ビア・ホール5の内部に選択CVD法に
よってタングステンなどの導電物質を埋め込んで導電層
6を形成する。そして、図13に示すように、導電層6
及び第二の層間絶縁膜4の表面上にスパッタ法などを用
いてAl合金膜を成膜し写真製版及びエッチング技術など
を用いて第二の配線層7を形成する。また、各工程にお
ける効果も実施例2と同様である。
Subsequent steps are the same as those in the second embodiment.
As shown in FIG. 1, the inside of the via hole 5 is exposed to the Bcl 3 plasma 8 to remove the natural oxide film formed on the surface of the first wiring layer 3. Then, as shown in FIG. 12, after chlorine adsorbed on the first wiring layer 3 is released by annealing, a conductive material such as tungsten is embedded in the via hole 5 by a selective CVD method to form the conductive layer 6. Form. Then, as shown in FIG.
Then, an Al alloy film is formed on the surface of the second interlayer insulating film 4 by using a sputtering method or the like, and the second wiring layer 7 is formed by using photoengraving and etching techniques. Moreover, the effect in each step is similar to that of the second embodiment.

【0023】実施例4.この発明の実施例4である半導
体装置の製造方法を図14ないし図20に基づいて説明
する。図14及び図15に示すように、第二の層間絶縁
膜4にビア・ホール5を形成するまでの工程は上記実施
例2および実施例3と同一である。次いで、図16に示
すように、プラズマCVD法により、第二の層間絶縁膜
4の露出面全体に対して、Si窒化膜(SiN)13を成膜す
る。このときの処理条件は例えば、1torr程度の圧力の
シラン(SiH4)とアンモニア(NH3 )の流量比1:1の
混合ガスに対して、300 ℃程度の基板温度で、500 Å程
度の膜厚に成膜を行う。また、これ以外の成膜条件でも
可能なことはいうまでもない。この処理は減圧状態(1
torr程度)で基板加熱しながら行うため、第二の層間絶
縁膜4、特にSOG膜4b内に吸着している水や炭化水素
を効果的に放出させる。そして、第二の層間絶縁膜4の
露出面にSi窒化膜(SiN)13が成膜される。このSi窒化膜
13が形成されるため、この状態のものを大気中に晒した
時に、再度水等のガスが第二の層間絶縁膜4に吸着され
るのを防止するとともに、第二の層間絶縁膜4中の残留
ガスが後のプロセス中に放出されるのを防ぐことができ
る点は上記実施例2及び3と同様である。さらに、Si窒
化膜(SiN)13の厚さを自在に設定できるのでガスの吸着
防止の効果を高めることができる。
Example 4. A semiconductor device manufacturing method according to a fourth embodiment of the present invention will be described with reference to FIGS. As shown in FIGS. 14 and 15, the steps up to forming the via hole 5 in the second interlayer insulating film 4 are the same as those in the above-described second and third embodiments. Next, as shown in FIG. 16, a Si nitride film (SiN) 13 is formed on the entire exposed surface of the second interlayer insulating film 4 by the plasma CVD method. The processing conditions at this time are, for example, a mixed gas of silane (SiH 4 ) and ammonia (NH 3 ) with a pressure ratio of about 1 torr and a flow ratio of 1: 1 at a substrate temperature of about 300 ° C. A thick film is formed. Needless to say, other film forming conditions can be used. This process is performed under reduced pressure (1
Since it is performed while heating the substrate at about (torr), water and hydrocarbon adsorbed in the second interlayer insulating film 4, especially the SOG film 4b are effectively released. Then, a Si nitride film (SiN) 13 is formed on the exposed surface of the second interlayer insulating film 4. This Si nitride film
Since 13 is formed, when the gas in this state is exposed to the atmosphere, the gas such as water is prevented from being adsorbed to the second interlayer insulating film 4 again, and the inside of the second interlayer insulating film 4 is prevented. It is the same as in Embodiments 2 and 3 in that the residual gas can be prevented from being released during the subsequent process. Further, since the thickness of the Si nitride film (SiN) 13 can be freely set, the effect of preventing gas adsorption can be enhanced.

【0024】次いで、図17に示すように異方性ドライ
エッチングで、ビア・ホール5の側面部を除いた領域の
Si窒化膜(SiN)13をエッチバックして、ビア・ホール5
の側面部のみにSi窒化膜(SiN)13を残す。以後の工程は
実施例2及び3と同様であり、図18に示すように、ビ
ア・ホール5の内部をBcl3プラズマ8に晒すことによ
り、第一の配線層3の表面上に形成された自然酸化膜を
除去する。次いで、図19に示すように、アニールによ
って第一の配線層3に吸着した塩素を放出させた後、ビ
ア・ホール5の内部に選択CVD法によってタングステ
ンなどの導電物質を埋め込んで導電層6形成する。そし
て、図20に示すように、導電層6及び第二の層間絶縁
膜4の表面上にスパッタ法などを用いてAl合金膜を成膜
し写真製版及びエッチング技術などを用いて第二の配線
層7を形成する。また、各工程における効果も実施例2
及び3と同様である。なお、この実施例ではプラズマC
VDによってSi窒化膜(SiN)13を形成したが他の方法、
例えば、常圧CVDなどによって形成してもよい。
Next, as shown in FIG. 17, anisotropic dry etching is applied to a region of the via hole 5 excluding the side surface.
Etch-back of Si nitride film (SiN) 13, via hole 5
Si nitride film (SiN) 13 is left only on the side surface of the. Subsequent steps are the same as those in Examples 2 and 3, and as shown in FIG. 18, by exposing the inside of the via hole 5 to Bcl 3 plasma 8, it was formed on the surface of the first wiring layer 3. Remove the natural oxide film. Then, as shown in FIG. 19, chlorine adsorbed on the first wiring layer 3 is released by annealing, and then a conductive material such as tungsten is embedded in the via hole 5 by a selective CVD method to form a conductive layer 6. To do. Then, as shown in FIG. 20, an Al alloy film is formed on the surfaces of the conductive layer 6 and the second interlayer insulating film 4 by using a sputtering method or the like, and the second wiring is formed by using photoengraving and etching techniques. Form the layer 7. In addition, the effect of each step is the same as in the second embodiment.
And 3 are the same. In this embodiment, plasma C
The Si nitride film (SiN) 13 was formed by VD, but another method,
For example, it may be formed by atmospheric pressure CVD or the like.

【0025】実施例5.この発明の実施例5である半導
体装置の製造方法について説明する。本実施例5では、
基本的な工程は従来例に示したものとほぼ同一であるの
で、図21〜図25を参照して説明する。図22に示し
た工程おいて、第二の層間絶縁膜4にビア・ホール5を
形成した後、10-5torr程度の高真空中において、400 ℃
で10分間程度加熱を行う。その後、図22に示した状態
のものを大気に晒すことなく、高真空を保った状態で以
下の工程を連続して行う。つまり図23に示すようにを
Bcl3プラズマ8に晒すことにより、第一の配線層3の表
面上に形成された自然酸化膜を除去し、アニールによっ
て第一の配線3に吸着した塩素を放出させ、図24に示
すように、ビア・ホール5の内部に選択CVD法によっ
てタングステンなどの導電物質を埋め込んで導電層6を
形成するまでを高真空を保った状態で連続して行うもの
である。図24に示したこれ以後の工程は従来例と同様
である。
Example 5. A semiconductor device manufacturing method according to a fifth embodiment of the present invention will be described. In the fifth embodiment,
Since the basic steps are almost the same as those shown in the conventional example, they will be described with reference to FIGS. In the step shown in FIG. 22, after forming the via hole 5 in the second interlayer insulating film 4, in a high vacuum of about 10 −5 torr, 400 ° C.
Heat for about 10 minutes. After that, the following steps are continuously performed in a high vacuum state without exposing the state shown in FIG. 22 to the atmosphere. That is, as shown in FIG.
By exposing to Bcl 3 plasma 8, the natural oxide film formed on the surface of the first wiring layer 3 is removed, and chlorine adsorbed to the first wiring 3 is released by annealing, as shown in FIG. The process of filling the inside of the via hole 5 with a conductive material such as tungsten by the selective CVD method to form the conductive layer 6 is continuously performed while maintaining a high vacuum. The subsequent steps shown in FIG. 24 are similar to those of the conventional example.

【0026】本実施例5においては、ビア・ホール5形
成後に、高真空中において加熱処理を行うことにより第
二の層間絶縁膜4に吸着されていたガスが放出される。
そして、大気にさらすことなく導電層6を形成する工程
までを行うことにより、水等のガスが新たに第二の層間
絶縁膜4中に吸着されるのを防ぐことができる。従っ
て、選択CVDによって導電物質を埋め込む工程および
BCl3処理後のアニール工程における従来例で説明した第
二の層間絶縁膜4からの脱ガスによる影響を防ぐことが
可能になる。なお、上記各実施例において、導電物質6
としてタングステンを使用したが、モリブデン、タンタ
ル、アルミニウム、銅などであってもよく、またこれら
の金属の合金やシリサイド化合物であってもよい。
In the fifth embodiment, the gas adsorbed on the second interlayer insulating film 4 is released by performing a heat treatment in high vacuum after forming the via hole 5.
Then, by up to the step of forming the conductive layer 6 without exposing it to the atmosphere, it is possible to prevent a gas such as water from being newly adsorbed in the second interlayer insulating film 4. Therefore, a process of embedding a conductive material by selective CVD and
It is possible to prevent the influence of degassing from the second interlayer insulating film 4 described in the conventional example in the annealing process after the BCl 3 treatment. In each of the above examples, the conductive material 6
Although tungsten is used as the material, molybdenum, tantalum, aluminum, copper, or the like may be used, or an alloy of these metals or a silicide compound may be used.

【0027】[0027]

【発明の効果】この発明の第一の発明は、第二の層間絶
縁膜の穴の側面を含む露出面に窒化膜を形成したので、
この窒化膜が第二の層間絶縁膜からのガスの放出を防止
し、脱ガスによる導電物質の埋め込み時の成長不良や脱
ガスによる第一の配線層の表面の酸化を防ぐことがで
き、第一の配線層と穴に埋め込まれた導電層との電気的
接続を確実に行え、信頼性を向上させることができると
いう効果を有する。
According to the first aspect of the present invention, the nitride film is formed on the exposed surface including the side surface of the hole of the second interlayer insulating film.
This nitride film can prevent release of gas from the second interlayer insulating film, prevent growth failure during filling of the conductive material due to degassing, and prevent oxidation of the surface of the first wiring layer due to degassing. There is an effect that the electrical connection between the one wiring layer and the conductive layer embedded in the hole can be surely performed and the reliability can be improved.

【0028】この発明の第二の発明は、第二の層間絶縁
膜の穴の側面を含む露出面を窒化する工程を設けたの
で、第二の層間絶縁膜における穴の側面に窒化膜が形成
され、以後の熱処理を含む工程において第二の層間絶縁
膜からのガスの放出を防止でき、第二の層間絶縁膜から
の脱ガスによる導電物質の埋め込み時の成長不良や脱ガ
スによる第一の配線層の表面の酸化を防ぐことができ、
第一の配線層と穴に埋め込まれた導電層との電気的接続
を確実に行え、信頼性を向上させることができるという
効果を有する。
In the second aspect of the present invention, since the step of nitriding the exposed surface including the side surface of the hole of the second interlayer insulating film is provided, the nitride film is formed on the side surface of the hole in the second interlayer insulating film. It is possible to prevent the release of gas from the second interlayer insulating film in the process including the subsequent heat treatment, and to prevent the growth of the first interlayer insulating film due to the growth failure and the degassing during the filling of the conductive material by the degassing from the second interlayer insulating film. The surface of the wiring layer can be prevented from oxidation,
There is an effect that the electrical connection between the first wiring layer and the conductive layer embedded in the hole can be surely performed and the reliability can be improved.

【0029】この発明の第三の発明は、第二の層間絶縁
膜の穴の側面を含む露出面に窒化膜を堆積する工程を設
けたので、第二の層間絶縁膜における穴の側面に窒化物
が形成され、以後の熱処理を含む工程において第二の層
間絶縁膜からのガスの放出を防止でき、第二の層間絶縁
膜からの脱ガスによる導電物質の埋め込み時の成長不良
や脱ガスによる第一の配線層の表面の酸化を防ぐことが
でき、第一の配線層と穴に埋め込まれる導電層との電気
的接続を確実に行え、信頼性を向上させることができる
という効果を有する。
According to the third aspect of the present invention, since the step of depositing the nitride film on the exposed surface including the side surface of the hole of the second interlayer insulating film is provided, the side surface of the hole in the second interlayer insulating film is nitrided. Gas is prevented from being released from the second interlayer insulating film in the subsequent process including heat treatment, and growth failure or degassing due to degassing from the second interlayer insulating film when the conductive material is embedded. This has an effect that the surface of the first wiring layer can be prevented from being oxidized, the electrical connection between the first wiring layer and the conductive layer embedded in the hole can be surely performed, and the reliability can be improved.

【0030】この発明の第四の発明は、第二の層間絶縁
膜の穴の形成後に、高真空中において加熱処理を行うこ
とで第二の層間絶縁膜に吸着されていたガスを放出し、
その後大気にさらすことなく穴へ導電物質を埋め込む工
程までを行うこととしたので、水等のガスが新たに第二
の層間絶縁膜中に吸着されるのを防げ、以後の熱処理を
含む工程においても第二の絶縁膜からのガスの放出がな
く、第一の配線層と穴に埋め込まれる導電層との電気的
接続を確実に行え、信頼性を向上させることができると
いう効果を有する。
In a fourth aspect of the present invention, after forming a hole in the second interlayer insulating film, heat treatment is performed in a high vacuum to release the gas adsorbed in the second interlayer insulating film,
Since the process up to the step of embedding the conductive material in the hole without exposing to the atmosphere is performed thereafter, it is possible to prevent the gas such as water from being newly adsorbed in the second interlayer insulating film, and in the process including the subsequent heat treatment. Also, there is an effect that gas is not released from the second insulating film, electrical connection between the first wiring layer and the conductive layer embedded in the hole can be surely performed, and reliability can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例1を示す半導体装置の断面
図。
FIG. 1 is a sectional view of a semiconductor device showing a first embodiment of the present invention.

【図2】この発明の実施例2における半導体装置の製造
方法を工程順に示すための断面図。
FIG. 2 is a cross-sectional view showing the method of manufacturing the semiconductor device according to the second embodiment of the present invention in the order of steps.

【図3】この発明の実施例2における半導体装置の製造
方法を工程順に示すための断面図。
FIG. 3 is a cross-sectional view showing the method of manufacturing the semiconductor device according to the second embodiment of the present invention in the order of steps.

【図4】この発明の実施例2における半導体装置の製造
方法を工程順に示すための断面図。
FIG. 4 is a cross-sectional view showing the method of manufacturing the semiconductor device according to the second embodiment of the present invention in the order of steps.

【図5】この発明の実施例2における半導体装置の製造
方法を工程順に示すための断面図。
5A to 5C are cross-sectional views showing a method of manufacturing a semiconductor device according to the second embodiment of the present invention in the order of steps.

【図6】この発明の実施例2における半導体装置の製造
方法を工程順に示すための断面図。
FIG. 6 is a cross-sectional view showing the method of manufacturing a semiconductor device according to the second embodiment of the present invention in the order of steps.

【図7】この発明の実施例2における半導体装置の製造
方法を工程順に示すための断面図。
FIG. 7 is a cross-sectional view showing the method of manufacturing the semiconductor device according to the second embodiment of the present invention in the order of steps.

【図8】この発明の実施例3における半導体装置の製造
方法を工程順に示すための断面図。
FIG. 8 is a sectional view showing a method of manufacturing a semiconductor device according to a third embodiment of the present invention in the order of steps.

【図9】この発明の実施例3における半導体装置の製造
方法を工程順に示すための断面図。
FIG. 9 is a cross-sectional view showing the method of manufacturing the semiconductor device according to the third embodiment of the present invention in the order of steps.

【図10】この発明の実施例3における半導体装置の製
造方法を工程順に示すための断面図。
FIG. 10 is a cross-sectional view showing the method of manufacturing the semiconductor device according to the third embodiment of the present invention in the order of steps.

【図11】この発明の実施例3における半導体装置の製
造方法を工程順に示すための断面図。
FIG. 11 is a cross-sectional view showing the method of manufacturing the semiconductor device according to the third embodiment of the present invention in the order of steps.

【図12】この発明の実施例3における半導体装置の製
造方法を工程順に示すための断面図。
FIG. 12 is a cross-sectional view showing the method of manufacturing the semiconductor device in the process order of the third embodiment of the present invention.

【図13】この発明の実施例3における半導体装置の製
造方法を工程順に示すための断面図。
FIG. 13 is a cross-sectional view showing the method of manufacturing the semiconductor device according to the third embodiment of the present invention in the order of steps.

【図14】この発明の実施例4における半導体装置の製
造方法を工程順に示すための断面図。
FIG. 14 is a cross-sectional view showing the method of manufacturing the semiconductor device according to the fourth embodiment of the present invention in the order of steps.

【図15】この発明の実施例4における半導体装置の製
造方法を工程順に示すための断面図。
FIG. 15 is a cross-sectional view showing the method of manufacturing the semiconductor device in the process order of the fourth embodiment of the present invention.

【図16】この発明の実施例4における半導体装置の製
造方法を工程順に示すための断面図。
FIG. 16 is a cross-sectional view showing the method of manufacturing the semiconductor device according to the fourth embodiment of the present invention in the order of steps.

【図17】この発明の実施例4における半導体装置の製
造方法を工程順に示すための断面図。
FIG. 17 is a sectional view showing the method of manufacturing the semiconductor device according to the fourth embodiment of the present invention in the order of steps.

【図18】この発明の実施例4における半導体装置の製
造方法を工程順に示すための断面図。
FIG. 18 is a cross-sectional view showing the method of manufacturing the semiconductor device according to the fourth embodiment of the present invention in the order of steps.

【図19】この発明の実施例4における半導体装置の製
造方法を工程順に示すための断面図。
FIG. 19 is a cross-sectional view showing the method of manufacturing the semiconductor device according to the fourth embodiment of the present invention in the order of steps.

【図20】この発明の実施例4における半導体装置の製
造方法を工程順に示すための断面図。
FIG. 20 is a cross-sectional view showing the method of manufacturing the semiconductor device according to the fourth embodiment of the present invention in the order of steps.

【図21】従来の半導体装置の製造方法を工程順に示す
断面図。
FIG. 21 is a sectional view showing the method of manufacturing the conventional semiconductor device in the order of steps.

【図22】従来の半導体装置の製造方法を工程順に示す
断面図。
FIG. 22 is a sectional view showing the method of manufacturing the conventional semiconductor device in the order of steps.

【図23】従来の半導体装置の製造方法を工程順に示す
断面図。
FIG. 23 is a cross-sectional view showing the method of manufacturing the conventional semiconductor device in the order of steps.

【図24】従来の半導体装置の製造方法を工程順に示す
断面図。
FIG. 24 is a cross-sectional view showing the method of manufacturing the conventional semiconductor device in the order of steps.

【図25】従来の半導体装置の製造方法を工程順に示す
断面図。
FIG. 25 is a cross-sectional view showing the method of manufacturing the conventional semiconductor device in the order of steps.

【符号の説明】[Explanation of symbols]

1 半導体基板 2 第一の層間絶縁膜 3 第一の配線層 4 第二の層間絶縁膜 5 穴(ビア・ホール) 6 導電物質 13 Si窒化膜 1 Semiconductor Substrate 2 First Interlayer Insulating Film 3 First Wiring Layer 4 Second Interlayer Insulating Film 5 Holes (Via / Hole) 6 Conductive Material 13 Si Nitride Film

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板上に形成された第一の層間絶
縁膜、この第一の層間絶縁膜上に形成された配線層、こ
の配線層上及び上記第一の層間絶縁膜上に形成され、表
面から上記の配線層の表面に達する穴を有した第二の層
間絶縁膜、この第二の層間絶縁膜の少なくとも上記穴の
側面を含む露出面に形成された窒化膜、上記第二の層間
絶縁膜の上記穴の内部に埋め込まれた導電物質からなる
導電層を備えた半導体装置。
1. A first interlayer insulating film formed on a semiconductor substrate, a wiring layer formed on the first interlayer insulating film, and a wiring layer formed on the wiring layer and the first interlayer insulating film. A second interlayer insulating film having a hole reaching from the surface to the surface of the wiring layer, a nitride film formed on an exposed surface of at least the side surface of the hole of the second interlayer insulating film, the second interlayer insulating film A semiconductor device comprising a conductive layer made of a conductive material embedded in the hole of an interlayer insulating film.
【請求項2】 半導体基板上に第一の層間絶縁膜を形成
する工程、この第一の層間絶縁膜上に配線層を形成する
工程、この配線層上及び上記第一の層間絶縁膜上に第二
の層間絶縁膜を形成する工程、この第二の層間絶縁膜の
表面から上記の配線層の表面に達する穴を形成する工
程、上記の第二の層間絶縁膜の少なくとも穴の側面を含
む露出する面を窒化する工程、上記第二の層間絶縁膜の
穴の内部に導電物質を埋め込む工程を備えた半導体装置
の製造方法。
2. A step of forming a first interlayer insulating film on a semiconductor substrate, a step of forming a wiring layer on the first interlayer insulating film, and a step of forming a wiring layer on the wiring layer and the first interlayer insulating film. Including a step of forming a second interlayer insulating film, a step of forming a hole from the surface of the second interlayer insulating film to the surface of the wiring layer, and a side surface of at least the hole of the second interlayer insulating film. A method of manufacturing a semiconductor device, comprising: a step of nitriding an exposed surface; and a step of burying a conductive material in the hole of the second interlayer insulating film.
【請求項3】 半導体基板上に第一の層間絶縁膜を形成
する工程、この第一の層間絶縁膜上に配線層を形成する
工程、この配線層上及び上記第一の層間絶縁膜上に第二
の層間絶縁膜を形成する工程、この第二の層間絶縁膜の
表面から上記の配線層の表面に達する穴を形成する工
程、上記の穴を含む第二の層間絶縁膜の表面及び上記の
配線層の表面に窒化膜を堆積する工程、 この窒化膜を上記第二の層間絶縁膜の穴の側面部分を除
いて除去する工程、上記第二の層間絶縁膜の穴の内部に
導電物質を埋め込む工程を備えた半導体装置の製造方
法。
3. A step of forming a first interlayer insulating film on a semiconductor substrate, a step of forming a wiring layer on the first interlayer insulating film, and a step of forming a wiring layer on the wiring layer and the first interlayer insulating film. Forming a second interlayer insulating film, forming a hole from the surface of the second interlayer insulating film to the surface of the wiring layer, the surface of the second interlayer insulating film including the hole, and A step of depositing a nitride film on the surface of the wiring layer, a step of removing the nitride film except for a side surface portion of the hole of the second interlayer insulating film, and a conductive material inside the hole of the second interlayer insulating film. A method for manufacturing a semiconductor device, comprising a step of embedding a semiconductor.
【請求項4】 半導体基板上に第一の層間絶縁膜を形成
する工程、この第一の層間絶縁膜上に配線層を形成する
工程、この配線層上及び上記第一の層間絶縁膜上に第二
の層間絶縁膜を形成する工程、この第二の層間絶縁膜の
表面から上記の配線層の表面に達する穴を形成する工
程、真空中においてアニールを行う工程、当該真空を破
ることなく上記の第一の配線層上の酸化膜を除去する工
程、当該真空を破ることなく上記第二の層間絶縁膜の穴
の内部に導電物質を埋め込む工程を備えた半導体装置の
製造方法。
4. A step of forming a first interlayer insulating film on a semiconductor substrate, a step of forming a wiring layer on the first interlayer insulating film, and a step of forming a wiring layer on the wiring layer and the first interlayer insulating film. The step of forming a second interlayer insulating film, the step of forming a hole from the surface of the second interlayer insulating film to the surface of the wiring layer, the step of annealing in a vacuum, the above without breaking the vacuum. 2. A method of manufacturing a semiconductor device, comprising: a step of removing an oxide film on the first wiring layer; and a step of burying a conductive material in the hole of the second interlayer insulating film without breaking the vacuum.
JP13590093A 1993-06-07 1993-06-07 Semiconductor device and manufacture thereof Pending JPH06349950A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13590093A JPH06349950A (en) 1993-06-07 1993-06-07 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13590093A JPH06349950A (en) 1993-06-07 1993-06-07 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH06349950A true JPH06349950A (en) 1994-12-22

Family

ID=15162451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13590093A Pending JPH06349950A (en) 1993-06-07 1993-06-07 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH06349950A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6177343B1 (en) 1995-09-14 2001-01-23 Sanyo Electric Co., Ltd. Process for producing semiconductor devices including an insulating layer with an impurity
US6214749B1 (en) 1994-09-14 2001-04-10 Sanyo Electric Co., Ltd. Process for producing semiconductor devices
US6235648B1 (en) 1997-09-26 2001-05-22 Sanyo Electric Co., Ltd. Semiconductor device including insulation film and fabrication method thereof
US6288438B1 (en) 1996-09-06 2001-09-11 Sanyo Electric Co., Ltd. Semiconductor device including insulation film and fabrication method thereof
US6326318B1 (en) 1995-09-14 2001-12-04 Sanyo Electric Co., Ltd. Process for producing semiconductor devices including an insulating layer with an impurity
JP2002043422A (en) * 2000-07-24 2002-02-08 Tokyo Ohka Kogyo Co Ltd Method for processing film and method for manufacturing semiconductor device using the same
US6633082B1 (en) 1997-05-30 2003-10-14 Nec Corporation Semiconductor device and method for manufacturing the semiconductor device
US6690084B1 (en) 1997-09-26 2004-02-10 Sanyo Electric Co., Ltd. Semiconductor device including insulation film and fabrication method thereof
US6794283B2 (en) 1998-05-29 2004-09-21 Sanyo Electric Co., Ltd. Semiconductor device and fabrication method thereof
US6825132B1 (en) 1996-02-29 2004-11-30 Sanyo Electric Co., Ltd. Manufacturing method of semiconductor device including an insulation film on a conductive layer
US6831015B1 (en) 1996-08-30 2004-12-14 Sanyo Electric Co., Ltd. Fabrication method of semiconductor device and abrasive liquid used therein
US6917110B2 (en) 2001-12-07 2005-07-12 Sanyo Electric Co., Ltd. Semiconductor device comprising an interconnect structure with a modified low dielectric insulation layer
WO2007110988A1 (en) * 2006-03-29 2007-10-04 Fujitsu Microelectronics Limited Process for producing semiconductor device
JP5309988B2 (en) * 2006-03-29 2013-10-09 富士通セミコンダクター株式会社 Manufacturing method of semiconductor device

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6214749B1 (en) 1994-09-14 2001-04-10 Sanyo Electric Co., Ltd. Process for producing semiconductor devices
US6177343B1 (en) 1995-09-14 2001-01-23 Sanyo Electric Co., Ltd. Process for producing semiconductor devices including an insulating layer with an impurity
US6268657B1 (en) 1995-09-14 2001-07-31 Sanyo Electric Co., Ltd. Semiconductor devices and an insulating layer with an impurity
US6326318B1 (en) 1995-09-14 2001-12-04 Sanyo Electric Co., Ltd. Process for producing semiconductor devices including an insulating layer with an impurity
US6825132B1 (en) 1996-02-29 2004-11-30 Sanyo Electric Co., Ltd. Manufacturing method of semiconductor device including an insulation film on a conductive layer
US6831015B1 (en) 1996-08-30 2004-12-14 Sanyo Electric Co., Ltd. Fabrication method of semiconductor device and abrasive liquid used therein
US6288438B1 (en) 1996-09-06 2001-09-11 Sanyo Electric Co., Ltd. Semiconductor device including insulation film and fabrication method thereof
US6633082B1 (en) 1997-05-30 2003-10-14 Nec Corporation Semiconductor device and method for manufacturing the semiconductor device
US6690084B1 (en) 1997-09-26 2004-02-10 Sanyo Electric Co., Ltd. Semiconductor device including insulation film and fabrication method thereof
US6235648B1 (en) 1997-09-26 2001-05-22 Sanyo Electric Co., Ltd. Semiconductor device including insulation film and fabrication method thereof
US6794283B2 (en) 1998-05-29 2004-09-21 Sanyo Electric Co., Ltd. Semiconductor device and fabrication method thereof
JP2002043422A (en) * 2000-07-24 2002-02-08 Tokyo Ohka Kogyo Co Ltd Method for processing film and method for manufacturing semiconductor device using the same
US6917110B2 (en) 2001-12-07 2005-07-12 Sanyo Electric Co., Ltd. Semiconductor device comprising an interconnect structure with a modified low dielectric insulation layer
WO2007110988A1 (en) * 2006-03-29 2007-10-04 Fujitsu Microelectronics Limited Process for producing semiconductor device
WO2007110959A1 (en) * 2006-03-29 2007-10-04 Fujitsu Limited Process for producing semiconductor device
JP5309988B2 (en) * 2006-03-29 2013-10-09 富士通セミコンダクター株式会社 Manufacturing method of semiconductor device

Similar Documents

Publication Publication Date Title
JP3216345B2 (en) Semiconductor device and manufacturing method thereof
JPH09148268A (en) Method for manufacturing semiconductor device
JPH08241895A (en) Semiconductor device and manufacture thereof
JPH06349950A (en) Semiconductor device and manufacture thereof
JPH10125782A (en) Manufacturing method of semiconductor device
KR100259692B1 (en) Semiconductor device manufacturing method having contact structure
JP2004253791A (en) Insulation film and semiconductor device using same
JP2007165428A (en) Process for fabricating semiconductor device
JPH0653337A (en) Manufacture of semiconductor device
JP4638140B2 (en) Method for forming copper wiring of semiconductor element
US20040150075A1 (en) Semiconductor device with cupper wiring and method for manufacturing semiconductor device
JP5217272B2 (en) Wiring forming method and semiconductor device manufacturing method
JP3230182B2 (en) Method for manufacturing semiconductor device
TWI237869B (en) Methods for forming aluminum metal wirings
JP2000150517A (en) Semiconductor integrated circuit device and fabrication thereof
JPH10256372A (en) Manufacture of semiconductor device
JP2004522315A (en) Semiconductor structure
TWI393215B (en) Method for manufacturing semiconductor device
JP3087692B2 (en) Method for manufacturing semiconductor device
JPH08139190A (en) Manufacture of semiconductor device
JP2003218199A (en) Manufacturing method for semiconductor device
JPH08181214A (en) Semiconductor device
JPH1022390A (en) Manufacture of semiconductor device
JP2000323569A (en) Semiconductor integrated circuit device, and manufacture thereof
JP2904165B2 (en) Method for manufacturing semiconductor device