WO2007110959A1 - Process for producing semiconductor device - Google Patents

Process for producing semiconductor device Download PDF

Info

Publication number
WO2007110959A1
WO2007110959A1 PCT/JP2006/306574 JP2006306574W WO2007110959A1 WO 2007110959 A1 WO2007110959 A1 WO 2007110959A1 JP 2006306574 W JP2006306574 W JP 2006306574W WO 2007110959 A1 WO2007110959 A1 WO 2007110959A1
Authority
WO
WIPO (PCT)
Prior art keywords
forming
film
films
contact hole
interlayer film
Prior art date
Application number
PCT/JP2006/306574
Other languages
French (fr)
Japanese (ja)
Inventor
Hideaki Kikuchi
Kouichi Nagai
Wensheng Wang
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to PCT/JP2006/306574 priority Critical patent/WO2007110959A1/en
Priority to JP2008507361A priority patent/JP5309988B2/en
Priority to PCT/JP2006/319953 priority patent/WO2007110988A1/en
Publication of WO2007110959A1 publication Critical patent/WO2007110959A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
    • H01L21/76814Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics post-treatment or after-treatment, e.g. cleaning or removal of oxides on underlying conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76829Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/55Capacitors with a dielectric comprising a perovskite structure material
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B20/00Read-only memory [ROM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B53/00Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors
    • H10B53/40Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors characterised by the peripheral circuit region
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B53/00Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B53/00Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors
    • H10B53/30Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors characterised by the memory core region

Definitions

  • the present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for manufacturing a semiconductor device having a strong dielectric capacitor having an interlayer outer structure.
  • Ferroelectric memory Fero-electric Random Access Memory, FeRAM
  • FeRAM Fe-electric Random Access Memory
  • the ferroelectric film has the property of being easily deteriorated by moisture and hydrogen entering from the outside, or moisture and hydrogen generated in the formation process of the interlayer film and FeRAM. .
  • the wiring layer of the ferroelectric capacitor is covered with an aluminum oxide (alumina, Al 2 O 3) film to block moisture and hydrogen from reaching the ferroelectric capacitor.
  • Patent Document 1 Japanese Patent Laid-Open No. 2005-268617
  • FIG. 29 is a schematic cross-sectional view of an essential part of an example of an interlayer contact structure.
  • the lower wiring 200 and the upper wiring 201 are connected by a tungsten (W) plug 202.
  • the lower wiring 200 has a laminated structure of an aluminum (A1) film 200a, a titanium (Ti) film 200b, and a titanium nitride (TiN) film 200c, and an aluminum film 203 is formed on the surface of the lower wiring 200.
  • An interlayer insulating film 204 is formed on the alumina film 203, and further an interlayer insulating film 206 is formed via the alumina film 205.
  • a W plug 202 is formed through the two layers of interlayer insulating films 204 and 206 and the two layers of alumina films 203 and 205, and an upper layer wiring 201 is formed thereon.
  • the interlayer insulating films 204 and 206 may absorb moisture depending on the processing environment between them, especially when cleaning is performed after the contact hole is formed. Such moisture absorption is likely to occur (in the figure, arrows in the directions of the interlayer insulating films 204 and 206).
  • silane gas and TEOS Tetra Ethoxy Silane
  • other moisture generated during the growth of the interlayer dielectric film are taken into the film.
  • Annealing was performed to degas the interlayer insulating film, and then contact holes were filled.
  • the present invention has been made in view of these points, and an object of the present invention is to provide a method of manufacturing a highly moisture-resistant semiconductor device having a good interlayer contact structure.
  • a stacked structure in which an interlayer film is formed between first and second films having moisture resistance is provided.
  • a step of forming, a step of forming a contact hole penetrating the formed first and second films and the interlayer film, and an annealing treatment after the formation of the contact hole to perform the first and second steps There is provided a method for manufacturing a semiconductor device, comprising: a step of degassing the interlayer film sandwiched between films; and a step of forming a plug in the contact hole after the annealing process.
  • a step of forming a laminated structure in which an interlayer film is formed between the first and second films having moisture resistance Forming a contour outer hole penetrating the formed first and second films and the interlayer film, performing a surface treatment on the inner wall surface of the contact hole after the formation of the contact hole, and the surface treatment And a step of forming a plug in the contact hole later.
  • the inner wall surface of the contact hole is formed.
  • Surface treatment is performed on the surface.
  • the invention's effect In the present invention, after a contact hole is formed in a laminated structure in which an interlayer film is sandwiched between first and second films having moisture resistance, annealing treatment for degassing the interlayer film is performed. I did it. As a result, when a plug is formed after the contact hole is formed, degassing from the contact hole can be suppressed to prevent the occurrence of a defective plug formation, and a semiconductor device having a low-resistance interlayer contour structure can be realized. Become.
  • the present invention after forming a contact hole in a laminated structure in which an interlayer film is sandwiched between first and second films having moisture resistance, surface treatment is performed on the inner wall surface of the contact hole. To do. As a result, it is possible to suppress the outgassing due to the contact hole force when the plug is formed after the contact hole is formed, thereby suppressing the occurrence of a plug formation failure, and a semiconductor device having a low resistance interlayer outer structure can be realized.
  • FIG. 1 is a diagram showing an example of a semiconductor device formation flow.
  • FIG. 2 is a diagram illustrating a configuration example of a semiconductor device.
  • FIG. 3 is a diagram showing the configuration of a sample.
  • FIG. 4 is a cross-sectional schematic diagram for major components showing a first step of a first application example.
  • FIG. 5 is a schematic cross-sectional view of an essential part of a second step in the first application example.
  • FIG. 6 is a schematic cross-sectional view of an essential part of a third step in the first application example.
  • FIG. 7 is a schematic cross-sectional view of an essential part of a fourth step in the first application example.
  • FIG. 8 is a schematic cross-sectional view of the relevant part showing a fifth step of the first application example.
  • FIG. 9 is a schematic cross-sectional view of the relevant part showing a sixth step of the first application example.
  • FIG. 10 is a cross-sectional schematic diagram for major components showing a seventh step in the first application example.
  • FIG. 11 is a schematic cross-sectional view of an essential part of an eighth step in the first application example.
  • FIG. 12 is a schematic cross-sectional view of an essential part of the ninth step in the first application example.
  • FIG. 13 is a cross-sectional schematic diagram for major components showing a tenth step of the first application example.
  • FIG. 14 is a schematic cross-sectional view of an essential part of an eleventh step in the first application example.
  • FIG. 15 is a cross-sectional schematic diagram for major components showing a twelfth step of the first application example.
  • FIG. 16 is a cross-sectional schematic diagram for major components showing a thirteenth step of the first application example.
  • FIG. 17 is a cross-sectional schematic diagram for major components showing a fourteenth step of the first application example.
  • FIG. 18 is a cross-sectional schematic diagram for major components showing a fifteenth process of the first application example.
  • FIG. 19 is a cross-sectional schematic diagram for major components showing a sixteenth step of the first application example.
  • FIG. 20 is a cross-sectional schematic diagram for major components showing a seventeenth step of the first application example.
  • FIG. 21 is a cross-sectional schematic diagram for major components showing an eighteenth step of the first application example.
  • FIG. 22 is a cross-sectional schematic diagram for major components showing a nineteenth step of the first application example.
  • FIG. 23 is a cross-sectional schematic diagram for major components showing a twentieth process of a first application example.
  • FIG. 24 is a schematic cross-sectional view (No. 1) of relevant parts showing a modification of the first application example.
  • FIG. 25 is a schematic cross-sectional view of the relevant part showing a modification of the first application example (No. 2).
  • FIG. 26 is a schematic cross-sectional view (No. 3) of relevant parts showing a modification of the first application example.
  • FIG. 27 is a schematic cross-sectional view of the relevant part showing a modification of the first application example (No. 4).
  • FIG. 28 is a schematic cross-sectional view of an essential part of FeRAM in a second application example.
  • FIG. 29 is a schematic cross-sectional view of an essential part of an example of an interlayer contact structure.
  • FIG. 30 is a schematic cross-sectional view of an essential part in the process of forming an interlayer contact structure.
  • FIG. 2 is a diagram illustrating a configuration example of a semiconductor device.
  • a semiconductor device 1 shown in FIG. 2 includes a ferroelectric capacitor 2 having a configuration in which a ferroelectric film 2c is sandwiched between a lower electrode 2a and an upper electrode 2b.
  • the ferroelectric capacitor 2 is covered with a first interlayer insulating film 3, and W plugs 4a, 4b, 4c are formed through the first interlayer insulating film 3.
  • the W plug 4 a is formed so as to be connected to the upper electrode 2 b of the ferroelectric capacitor 2
  • the W plug 4 b is formed so as to be connected to the lower electrode 2 a of the ferroelectric capacitor 2.
  • the W plug 4c is connected to, for example, a transistor portion (not shown) formed in the lower layer of the ferroelectric capacitor 2.
  • first wiring layers 5a, 5b, and 5c are formed, respectively, and the surface of the first wiring layers 5a, 5b, and 5c is exposed and the first interlayer insulation is exposed.
  • moisture and water to the ferroelectric capacitor 2 A first alumina film 6 that suppresses the entry of element is formed.
  • a second interlayer insulating film 7, a second alumina film 8, and a third interlayer insulating film 9 are formed on this structure, and pass through them to connect to the first wiring layer 5c.
  • W plug 10 is formed, and second wiring layers 1 la and 1 lb are formed on the W plug 10 and the third interlayer insulating film 9.
  • Plugs 15a and 15b are formed, and third wiring layers 16a and 16b are formed so as to be connected to the W plugs 15a and 15b.
  • a sixth interlayer insulating film 17 and a protective film 18 are formed with the third wiring layer 16b partially exposed for pads.
  • the flat second alumina film 8 is formed between the first wiring layers 5a, 5b, 5c and the second wiring layers 11a, l ib, It has a so-called double flat alumina structure in which a flat third alumina film 13 is also formed between the wiring layers 11a, ib and the third wiring layers 16a, 16b.
  • the second and third alumina films 8, 13 are formed together with the first wiring layers 5a, 5b, 5c and the first alumina film 6 formed on the surface of the first interlayer insulating film 3. As a result, the intrusion of moisture and hydrogen into the ferroelectric capacitor 2 is effectively suppressed.
  • FIG. 1 is a diagram showing an example of a semiconductor device formation flow. However, here, the description will focus on the flow up to the formation of the second wiring layers 11a, ib of the semiconductor device 1.
  • step S 1 the transistor portion and the ferroelectric capacitor 2 as an upper layer are formed (step S 1).
  • step S2 a first interlayer insulating film 3 and a contact hole penetrating the first interlayer insulating film 3 are formed to form W plugs 4a, 4b, 4c, and further to the first wiring layers 5a, 5b, 5c (step) S2).
  • the first alumina film 6 is formed on the entire surface (step S3).
  • a second interlayer insulating film 7 is formed thereon (step S4), a second alumina film 8 is formed (step S5), and a third interlayer insulating film 9 is formed (step S6).
  • Step S8 annealing is performed. This annealing process is, for example, Nyaa
  • step S9 After the annealing process, after forming the glue layer (step S9), the contact hole is filled with W, and the W is etched back to form the W plug 10 (step S10). A wiring layer 1 la, 1 lb is formed (step S 11).
  • the fourth inter-layer insulating film 12, the third alumina film 13, the fifth inter-layer insulating film 14 and the following steps S4 to S11 W plugs 15a and 15b are formed to form third wiring layers 16a and 16b.
  • a sixth interlayer insulating film 17 and a protective film 18 are formed, and a part of them is removed to partially expose the third wiring layer 16b, thereby forming a pad portion.
  • step S8 the annealing process in step S8 will be described in more detail.
  • the glue layer After forming the contact hole that penetrates through the third interlayer insulating film 9, the second alumina film 8, the second interlayer insulating film 7, and the first alumina film 6 to reach the first wiring layer 5c, the glue layer The annealing process performed before the formation is performed in an inert gas atmosphere such as N or Ar as described above.
  • FIG. 3 is a diagram showing a configuration of the sample. However, in FIG. 3, the same elements as those shown in FIG. 2 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the first wiring layers 5a, 5b, and 5c are formed in the above step S2 in a structure in which the Al film 21, the Ti film 22, and the TiN film 23 are stacked (the first wiring layer 5c As shown in steps S3 to S6 above, a first alumina film 6, a second interlayer insulating film 7, a second alumina film 8, and a third interlayer insulating film 9 are formed thereon. As described in step S7, the contact hole 10a reaching the first wiring layer 5c is formed.
  • this sample 20 as shown in FIG.
  • the contact hole 10a formed in step S7 is intentionally displaced with respect to the first wiring layer 5c, and the subsequent steps S9 to S are performed. More unformed parts occur in the W plug 10 formed by 11 It has a thin structure. Note that a 6-inch wafer was used for sample 20, and the average amount of displacement of the contact hole 1 Oa was about 130 nm.
  • Table 1 shows that annealing temperature is 350 ° C in N atmosphere and annealing time is 60 minutes.
  • the annealing time is 60 minutes, 120 minutes, 180 minutes, and 240 minutes, and the number of unformed portions of W plug 10 is 92, 49, 1, and 13 respectively. Met. Sun Despite the fact that pull 20 has a structure in which unformed parts are likely to occur in W plug 10, the number of occurrences is 49, 1, and 13 at 120 minutes, 180 minutes, and 240 minutes, respectively. You can see that the number is small. As described above, when the annealing temperature is 350 ° C., the generation of the unformed portion of the W plug 10 can be suppressed by setting the annealing time to a range of 120 minutes to 240 minutes.
  • the annealing time is in the range of 180 minutes to 240 minutes
  • the annealing time is 180 minutes when the number of unformed portions of the W plug 10 is very small despite the above structure, the W The number of unformed parts of plug 10 is minimized.
  • the annealing temperature was 350 ° C, 375 ° C, 400 ° C, and the number of unformed portions of W plug 10 was 26, 0, and 0, respectively. there were.
  • Sample 20 has a structure in which unformed parts are likely to occur in W plug 10
  • the number of unformed parts in W plug 10 should be small in the annealing temperature range of 350 ° C to 400 ° C. I understand.
  • the annealing treatment time is 120 minutes, if the annealing treatment temperature is set in the range of 350 ° C. to 400 ° C., the generation of the unformed portion of the W plug 10 can be suppressed. .
  • the annealing temperature is in the range of 375 ° C. to 400 ° C., the W plug 10 is not formed in spite of the above structure, which is very effective.
  • the annealing process performed after the contact hole 10a is formed is preferably performed in an inert gas atmosphere or in a vacuum as described above.
  • an oxidizing gas such as oxygen (O 2) is used to recover the deterioration of the ferroelectric capacitor 2 at an appropriate stage as necessary.
  • Healing recovery with atmosphere is preferably performed in an inert gas atmosphere or in a vacuum as described above.
  • the annealing process is performed in an atmosphere containing an oxidizing gas after the contact hole 10a is formed in this way, the TiN film 23, etc. of the first wiring layer 5c exposed to the bottom of the contact hole 10a is oxidized. This may increase the wiring resistance. Therefore, as described above, the annealing treatment here is preferably performed in an inert gas atmosphere or in a vacuum.
  • the annealing process similar to the force described with reference to the annealing process performed before the formation of the W plug 10 connected to the first wiring layer 5c is applied to the second wiring layers 11a and ib. It can be performed before the W plugs 15a and 15b to be connected are formed, and in this case, the same effect as described above can be obtained.
  • annealing processing under a predetermined condition is performed before the formation of the W plug 10 connected to the first wiring layer 5c and before the formation of the W plugs 15a and 15b connected to the second wiring layers 11a and ib.
  • plasma nitriding treatment is performed on the inner wall surfaces of the contact holes forming them. You may make it perform. When such a plasma nitriding process is performed, the inner wall surface of the contact hole is nitrided and its moisture resistance is improved.
  • such a surface treatment for the inner wall surface of the contact hole is not limited to the plasma nitriding treatment, and other surface treatment methods can be used as long as they improve the moisture resistance of the inner wall surface of the contact hole. It doesn't matter.
  • This section describes an example of the formation flow and configuration of FeRAM with a planar capacitor structure.
  • FIG. 4 is a schematic cross-sectional view of the relevant part in the first step of the first application example.
  • a silicon (Si) substrate 30 is used as a semiconductor substrate, and first, an element isolation region 31 for defining an element region by a LOCOS (LOCal Oxidation of Silicon) method is formed on the surface layer. After a well 32 having a predetermined conductivity type is formed in the element region, a gate electrode 34 having a gate length of about 360 nm is formed through a gate insulating film 33.
  • a LOCOS LOCal Oxidation of Silicon
  • the gate insulating film 33 is formed of, for example, an oxide silicon (SiO 2) film having a thickness of about 6 nm to 7 nm.
  • the gate electrode 34 can be formed by forming a tungsten silicide (WSi) layer having a thickness of about 150 nm on an amorphous silicon layer having a thickness of about 50 nm.
  • WSi tungsten silicide
  • the side wall of the gate electrode 34 is made of a silicon film made of, for example, a SiO film with a film thickness of about 45 nm.
  • a Dow insulating film 35 is formed, and a source diffusion layer 36 and a drain diffusion layer 37 are formed in the Si substrate 30 on both sides of the gate electrode 34. In this way, four transistor portions 38 are formed using the Si substrate 30.
  • FIG. 5 is a schematic cross-sectional view of the relevant part in the second step of the first application example.
  • a silicon oxynitride (SiON) film 39 having a film thickness of about 200 nm is formed as an interlayer insulating film on the surface after the transistor section 38 is formed by using the CVD method. Further, an NSG (Non Silicate Glass) film having a thickness of about 600 nm is formed on the SiON film 39 by a CVD method using TEOS, which is polished by about 200 nm by a CMP (Chemical Mechanical Polishing) process. A TEOS-NSG film 40 having a thickness of about 400 nm is formed by flattening the film.
  • FIG. 6 is a schematic cross-sectional view of the relevant part in the third step of the first application example.
  • a TEOS-NSG film 41 having a thickness of about lOOnm is further formed thereon. Then, for the degassing of the TEOS-NSG films 40 and 41, for example, annealing is performed in an N atmosphere at about 650 ° C. for about 30 minutes.
  • FIG. 7 is a schematic cross-sectional view of the relevant part in the fourth step of the first application example.
  • a platinum (Pt) film 43 having a film thickness of about 155 nm is formed on the alumina film 42 after the annealing using the PVD method. Further, a film thickness of about 150 nm to about 200 ⁇ is formed on the Pt film 43 using the PVD method. m capsule 44 is formed. After forming the PZT film 44, for example, using an RTA apparatus,
  • iridium oxide (IrO) with a film thickness of about 50 nm is formed on the PZT film 44 using the PVD method.
  • Annealing is performed at about 725 ° C for about 20 seconds. Then, PVD method is applied again on the IrO film.
  • an IrO film 45 having a total film thickness of about 250 nm is formed.
  • FIG. 8 is a schematic cross-sectional view of the relevant part in the fifth step of the first application example.
  • the IrO film 45 After the formation of the IrO film 45, a photoresist is formed and the IrO film 45 is etched. to this
  • the upper electrode 45a made of IrO is formed.
  • an alumina film having a film thickness of about 50 nm is formed on the entire surface using the PVD method (not shown), and further, using a vertical furnace, O
  • FIG. 9 is a schematic cross-sectional view of the relevant part in the sixth step of the first application example.
  • a photoresist is formed, and the Pt film 43 is etched to form a lower electrode 43a made of Pt.
  • a ferroelectric capacitor in which the ferroelectric film 44a is sandwiched between the upper electrode 45a and the lower electrode 43a is configured.
  • an alumina film with a film thickness of about 20 nm is formed on the entire surface by PVD method (not shown), and further in an O atmosphere (O (Flow rate 20LZmin), approx. 550 ° C Annealing is performed for about 60 minutes.
  • O Flow rate 20LZmin
  • the CVD method is used to completely cover the ferroelectric capacitor so as to have a film thickness of about 150
  • FIG. 10 is a schematic cross-sectional view of the relevant part in the seventh step of the first application example.
  • the surface thereof is nitrided (the nitride film is not shown.)
  • 0 Nitriding is performed by, for example, using a CVD apparatus to generate nitrogen monoxide (NO) plasma for about 350 times. About 2 minutes at ° C
  • a photoresist 47 is formed on the nitrided surface and etching is performed to form a contact hole 48 that reaches a predetermined region of the transistor portion 38.
  • FIG. 11 is a schematic cross-sectional view of the relevant part in the eighth step of the first application example.
  • a PVD method is used to sequentially form a Ti film with a thickness of about 20 nm and a TiN film with a thickness of about 50 nm on the entire surface to form a barrier metal film. (Not shown).
  • a W film having a film thickness of about 500 nm is formed on the entire surface by CVD, and the W film formed other than the contact hole 48 is polished by CMP.
  • W is buried in the contact hole 48, and a W plug 49 is formed.
  • the TEOS-NSG film 46 surface was again irradiated with N 2 O plasma at about 350 ° C for about 2 minutes.
  • Nitridation is performed by plasma plasma annealing (nitride film is not shown), and a SiON film 50 having a thickness of about lOO nm is formed thereon by CVD.
  • FIG. 12 is a schematic cross-sectional view of the relevant part showing the ninth step of the first application example.
  • a resist pattern is formed on the SiON film 50 (not shown), and a contact hole 51 communicating with the upper electrode 45a and the lower electrode 43a is formed by etching using the resist pattern as a mask. After that, the recovery annealing treatment of the ferroelectric film 44a is performed in an O atmosphere using a vertical furnace (O
  • the entire surface of the SiON film 50 is etched by an etching process.
  • FIG. 13 is a schematic cross-sectional view of an essential part of the tenth process of the first application example.
  • Al-Cu aluminum copper
  • FIG. 14 is a schematic cross-sectional view of the relevant part in the eleventh step of the first application example.
  • a predetermined resist pattern is formed, and etching is performed using the resist pattern as a mask to form the first wiring layer 52a.
  • a moisture-proof ring 52b outside the pad and a moisture-proof ring 52c inside the pad are formed outside and inside the region where the pad portion is finally connected, respectively.
  • the PVD method was used on the first wiring layer 52a and TEOS— NSG film 46.
  • an alumina film 53 having a thickness of about 20 nm is formed.
  • FIG. 15 is a schematic cross-sectional view of the relevant part showing a twelfth step of the first application example.
  • a TEOS-NSG film 54 having a film thickness of about 2600 nm is formed on the alumina film 53 by using the CVD method, and flattened by CMP processing. After that, the TEOS-NSG film 54 surface
  • Nitrid by plasma annealing that irradiates O plasma at about 350 ° C for about 4 minutes Nitrid by plasma annealing that irradiates O plasma at about 350 ° C for about 4 minutes (nitride film
  • a TEOS-NSG film 55 having a film thickness of about lOOnm is formed by CVD.
  • an alumina film 56 having a thickness of about 50 nm is formed on the TEOS-NSG film 55 by using the PVD method.
  • a TEOS-NSG film 57 having a film thickness of about lOOnm is formed by CVD, and then the surface is irradiated with NO plasma at about 350 ° C for about 2 minutes.
  • FIG. 16 is a schematic cross-sectional view of the relevant part showing a thirteenth step of the first application example.
  • a contact hole 58 leading to 52b is formed.
  • a predetermined resist pattern is formed, and the resist pattern is used as a mask to form the TEOS-NSG film 54, 5
  • annealing treatment under a predetermined condition is performed.
  • This annealing process is based on the findings in Tables 1 and 2 above. Set. That is, the TEOS-NSG film 54, 55 sandwiched between the two alumina films 53, 56 is also effectively degassed, and when the contact hole 58 is filled with W later, the W in the contact hole 58 is reduced. The conditions are such that many unformed parts do not occur in the plug.
  • FIG. 17 is a schematic cross-sectional view of the relevant part showing a fourteenth step of the first application example.
  • a TiN film having a thickness of about 50 nm is formed as a barrier metal film on the entire surface by using the PVD method (not shown).
  • a W film with a film thickness of about 650 nm is formed using the CVD method.
  • the W plug 59 is formed by etching back the entire surface of the W film or planarizing it by CMP.
  • FIG. 18 is a schematic cross-sectional view of the relevant part showing a fifteenth step of the first application example.
  • a second wiring layer is formed in the same manner as the first wiring layer 52a.
  • a laminated film 60 is formed in which an Al—Cu film with a thickness of about 550 nm, a Ti film with a thickness of about 5 nm, and a TiN film with a thickness of about 150 nm are formed in this order.
  • FIG. 19 is a schematic cross-sectional view of the relevant part showing a sixteenth step of the first application example.
  • a predetermined resist pattern is formed and etched to form the second wiring layer 60a.
  • the pad outside moisture-resistant ring 60b and the pad inside moisture-resistant ring 60c are respectively formed on the outside and inside of the region where the pad portion is finally connected.
  • a TEOS-NSG film 61 having a film thickness of about 2200 nm is formed on the entire surface by using the CVD method, and flattened by CMP processing. After nitriding the surface of TEOS-NSG film 61 with plasma annealing that irradiates N 2 O plasma at about 350 ° C for about 4 minutes (
  • a TEOS-NSG film 62 having a film thickness of about lOOnm is formed by CVD, and the surface is irradiated with N 2 O plasma at about 350 ° C for about 2 minutes.
  • FIG. 20 is a schematic cross-sectional view of the relevant part showing a seventeenth step of the first application example.
  • TEOS-NSG film 62 After nitriding the surface of TEOS-NSG film 62, contact holes that lead to second wiring layer 60a, pad external moisture-resistant ring 60b, and pad internal moisture-resistant ring 60c are formed, and PVD is used to form a film with a thickness of approximately 50 nm.
  • a TiN film is formed as a barrier metal film (not shown).
  • a W film with a film thickness of about 650 nm is formed on it using a CVD method, and it is etched back on the entire surface.
  • W plug 63 is formed by flattening by CMP processing.
  • FIG. 21 is a schematic cross-sectional view of the relevant part showing an eighteenth step of the first application example.
  • a third wiring layer is formed in the same manner.
  • a laminated film 64 is formed in which an Al—Cu film with a thickness of about 500 nm and a TiN film with a thickness of about 150 nm are formed in this order.
  • FIG. 22 is a cross-sectional schematic diagram for major components showing a nineteenth step of the first application example.
  • a predetermined resist pattern is formed and etched to form the third wiring layer 64a.
  • an external pad moisture-resistant ring 64b and an internal pad moisture-resistant ring 64c are formed on the outer side and the inner side of the region where the pad part is finally connected, respectively.
  • a TEOS-NSG film 65 having a film thickness of about lOOnm is formed on the entire surface by CVD and flattened by CMP.
  • a SiN film 66 having a film thickness of about 350 nm is formed by CVD.
  • FIG. 23 is a schematic cross-sectional view of an essential part of the twentieth process of the first application example.
  • a resist pattern is formed on the SiN film 66 (not shown), and the SiN film 66 in the pad formation region, the TEOS-NSG film 65, and the TiN film on the third wiring layer 64a are etched. , Forming an opening.
  • photosensitive polyimide having a film thickness of about 3 ⁇ m is applied to the region excluding the opening and patterned.
  • non-photosensitive polyimide is used instead of photosensitive polyimide
  • a resist pattern is formed on it and the non-photosensitive polyimide is dissolved using a dedicated developer.
  • annealing is performed for about 40 minutes at about 310 ° C in N atmosphere (N flow lOOLZmin) using a horizontal furnace.
  • the polyimide is cured to form a protective film 67.
  • the FeRAM 80 including the pad portion 68, the FeRAM cell portion 69, the logic circuit portion 70, and the other peripheral circuit portion 71 is formed.
  • This FeRAM 80 has a structure in which an alumina film 53 is formed on the surface of the first wiring layer 52a, and another alumina film 56 is formed thereon via TEOS-NSG films 54 and 55. Yes.
  • a contact hole 58 leading to the first wiring layer 52a is formed, Thereafter, annealing is performed under predetermined conditions based on the findings in Tables 1 and 2 above. As a result, the FeRAM 80 in which the formation failure of the W plug 59 is effectively suppressed can be formed.
  • a surface treatment for improving the moisture resistance for example, a plasma nitriding treatment may be performed.
  • the formation position (formation layer) of the alumina film functioning as a moisture or hydrogen block film is not limited to the above example.
  • the timing for performing annealing treatment for degassing the interlayer insulating film sandwiched between them, or the timing for performing surface treatment for improving the moisture resistance of the inner wall surface of the contact hole has also changed. come.
  • An alumina film for blocking moisture and hydrogen can be formed at the positions shown in FIGS. 24 to 27, for example.
  • FIGS. 24 to 27 are schematic cross-sectional views of the relevant part showing modifications of the first application example.
  • FIGS. 24 to 27 the same elements as those shown in FIGS. 4 to 23 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • an alumina film 53a is formed between the TEOS-NSG films 54, 55, and another alumina film is formed on the TEOS-NSG film 55.
  • the case where the film 56 is formed is shown.
  • the TEOS—NSG film 54 is formed, the alumina film 53a is formed, and the TEOS—NSG film 55 is formed. Then, an alumina film 56 and a TEOS—NSG film 57 are formed. Then, after the formation of the contact hole 58 for forming the W plug 59, annealing treatment under a predetermined condition is performed. As a result, the degassing from the TEOS-NSG film 55 to the contact hole 58 is sufficiently performed, and the formation failure of the W plug 59 is effectively suppressed.
  • a predetermined surface treatment is performed after the formation of the contact hole 58 for forming the W plug 59.
  • the moisture resistance of the inner wall surface of the contact hole 58 is improved and the TEOS—NSG film 55 force is prevented from degassing to the contact hole 58, and the W plug 59 is not formed properly. It will be effectively suppressed.
  • FIG. 25 instead of the alumina films 53 and 56 shown in FIG. 23, the surface of the second wiring layer 60a and the TEOS-NSG film 57 and the TEOS-NSG film 62 are In this example, alumina films 53b and 56b are formed.
  • the alumina film 53b is formed, the TEOS-NSG films 61 and 62 are formed, and the alumina film is further formed. 56b is formed. Then, after the formation of the contact hole for forming the W plug 63 leading to the second wiring layer 60a, annealing treatment under a predetermined condition is performed. As a result, the TEOS-NSG films 61 and 62 are sufficiently degassed into the contact holes, and the formation failure of the W plug 63 is effectively suppressed.
  • a predetermined surface treatment is performed after the formation of the contact hole for forming the W plug 63.
  • the moisture resistance of the inner wall surface of the contact hole is improved and the TEOS— NSG film 61
  • FIG. 26 shows a ferroelectric capacitor in addition to the alumina film 53c (not shown in FIG. 23) of the ferroelectric capacitor layer in place of the alumina films 53 and 56 shown in FIG.
  • an alumina film 56c is formed in the TEOS-NSG film 46 between the first wiring layer 52a and the first wiring layer 52a.
  • the alumina film 42 shown in FIG. 23 is replaced with another insulating film 42a such as a SiON film or a SiN film, and the alumina film 53 shown in FIG. , 56 shows the case where the anolemina films 53d and 56d are formed.
  • the insulating film 42a is formed, and the alumina film 56d is formed thereon. . Then, a ferroelectric capacitor and a TEOS-NSG film 46 are formed, and after the contact hole 48 reaching the transistor portion 38 is formed, annealing treatment under a predetermined condition is performed. Since two layers of alumina films 53d and 56d are formed between the transistor layer and the ferroelectric capacitor layer, the insulating film 42a is sufficiently degassed to the contact hole 48, and the defective formation of the W plug 49 is effective. Will be suppressed.
  • a predetermined surface treatment is performed after forming the contact hole 48 reaching the transistor portion 38.
  • outgassing from the insulating film 42a to the contact hole 48 is suppressed, and the formation failure of the W plug 49 is effectively suppressed.
  • FeRAM with a stacked capacitor structure is described as an example.
  • FIG. 28 is a schematic cross-sectional view of the relevant part of the FeRAM of the second application example.
  • a well 93 is formed in the element region defined by the element isolation region 92 of the Si substrate 91, and a gate insulating film 94, a gate electrode 95, and a sidewall insulating film 96 are formed in accordance with a conventional method.
  • a source diffusion layer 97 and a drain diffusion layer 98 are formed to constitute a transistor portion 99.
  • the transistor unit 99 is covered with a SiON film 100 formed using the CVD method, and an SiO film 101 similarly formed using the CVD method is deposited thereon.
  • the film 100 has a function as a stopper film in contact hole etching and a function of improving moisture resistance.
  • the source diffusion of the transistor part 99 passes through the SiO film 101 and the SiON film 100.
  • a W plug 102 is formed in a contact hole reaching the layer 97 and the drain diffusion layer 98 via a barrier metal film (not shown).
  • the noria metal film is formed by laminating a Ti film and a TiN film by sputtering after forming the contact holes.
  • the W plug 102 is formed by depositing a barrier metal film on the entire surface, depositing W using the CVD method or the like, and polishing them to the surface of the SiO film 101 using the CMP method.
  • a lower electrode 103 having a thickness of about 200 nm, a ferroelectric film 104 having a thickness of about 120 nm, and an upper electrode having a thickness of about 200 nm.
  • a ferroelectric capacitor having a laminate strength of 105 is formed.
  • the lower electrode 103 is an Ir film
  • the ferroelectric film 104 is a PZT film
  • the upper electrode 105 is an IrO film.
  • the Ir film and IrO film can be formed by sputtering.
  • the The PZT film is formed by using MOCVD (Metal Organic Chemical Vapor Deposition) method. Incidentally, after the formation of the upper electrode 105, a recovery annealing of the PZT film is usually performed.
  • MOCVD Metal Organic Chemical Vapor Deposition
  • An alumina film 106 is formed.
  • a SiO film 107 is formed on the alumina film 106,
  • An alumina film 108 is further formed thereon.
  • a protective film 109 is formed thereon, and the W plug 110 is connected via a barrier metal film (not shown) so as to be connected to the W plug 102 connected to the drain diffusion layer 98 of the transistor section 99. Is formed.
  • Electrodes 11 la, 111b, and 111c are formed on the W plug 110 and contact holes that lead to the upper electrode 105 of the ferroelectric capacitor, respectively. In the case of a multilayer structure, a wiring layer may be formed instead of these electrodes 11la, 111b, 111c.
  • the predetermined conditions based on the knowledge in Table 1 and Table 2 above are satisfied. Annealing is performed. Alternatively, a predetermined surface treatment is performed to improve the moisture resistance of the inner wall surface of the contact hole. From this point, the SiO film 107 sandwiched between the two alumina films 106 and 108 is sufficiently degassed, and the W plug 110 and electrode 11 lb
  • an alumina film may be formed in the same manner as illustrated in FIGS. 24, 25, and 27 for the planar capacitor structure.
  • the formation position formation layer
  • an annealing process for degassing, or a surface treatment for improving the moisture resistance should be performed under predetermined conditions according to the formation position!
  • the conditions are as follows: in an inert gas atmosphere or in vacuum, at a temperature of 350 ° C for 120 minutes to 240 minutes, preferably in an inert gas atmosphere or in vacuum Time at 350 ° C. for 180 minutes to 240 minutes, more preferably in an inert gas atmosphere or in a vacuum at a temperature of 350 ° C. for 180 minutes.
  • in an inert gas atmosphere or in vacuum at a temperature in the range of 350 ° C to 500 ° C for 120 minutes, preferably in an inert gas atmosphere or in vacuum at a temperature of 375 ° C to 400 ° C. The range is 120 minutes.
  • the surface treatment for example, a plasma nitriding treatment is used.
  • a plasma nitriding treatment By performing such surface treatment, the moisture resistance of the inner wall surface of the contact hole is improved, and degassing from the interlayer insulating film sandwiched between the alumina films to the contact hole is suppressed during heating when forming a plug or the like. Therefore, it is possible to effectively suppress the occurrence of formation defects such as plugs.
  • an alumina film is used as the moisture / hydrogen blocking film.
  • an oxide film such as a titanium oxide (TiO 2) film, SiON Membrane, Si
  • N films such as boron nitride (BN) films, silicon carbide (SiC) films, carbide films such as carbon (C) films, and polyimide resin films can be used.
  • nitride films such as boron nitride (BN) films, silicon carbide (SiC) films, carbide films such as carbon (C) films, and polyimide resin films.
  • BN boron nitride
  • SiC silicon carbide
  • C carbon
  • polyimide resin films polyimide resin films
  • the predetermined annealing treatment or surface treatment is performed by using a water-hydrogen blocking film such as an alumina film or another interlayer such as an etching stubber film.
  • the present invention can be widely applied to the formation of various semiconductor devices having the same interlayer outer structure using a film.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Semiconductor Memories (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

The occurrence of a failure during plug formation is inhibited. A structure comprising alumina films and an interlayer dielectric sandwiched therebetween is formed (steps S3 to S5). Then, contact holes passing through these layers are formed (step S7). Thereafter, annealing is conducted in an inert-gas atmosphere or a vacuum for a given time at a given temperature (step S8), and the contact holes are sufficiently degassed. Thus, degassing of the contact holes during tungsten plug formation is inhibited and the contact holes can be inhibited from coming to have a part not filled with a tungsten plug. Therefore, a semiconductor device can be realized which has an interlayer contact structure having low resistance.

Description

半導体装置の製造方法  Manufacturing method of semiconductor device
技術分野  Technical field
[0001] 本発明は半導体装置の製造方法に関し、特に、層間コンタ外構造を有する、強誘 電体キャパシタを備えた半導体装置の製造方法に関する。 背景技術  TECHNICAL FIELD [0001] The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for manufacturing a semiconductor device having a strong dielectric capacitor having an interlayer outer structure. Background art
[0002] 近年、キャパシタの誘電体膜としてチタン酸ジルコン酸鉛(PbZr Ti O , ΡΖΤ) 等の強誘電体膜を用いることが注目されてきている。このような強誘電体キャパシタを 用いた強誘電体メモリ (Ferro-electric Random Access Memory, FeRAM)は、高速 動作が可能である、低消費電力である、書き込み Z読み出し耐久性に優れる、等の 特徴を有する不揮発性メモリであり、今後、更なる発展が期待されている。  In recent years, attention has been focused on using a ferroelectric film such as lead zirconate titanate (PbZr Ti 2 O 3, ΡΖΤ) as a dielectric film of a capacitor. Ferroelectric memory (Ferro-electric Random Access Memory, FeRAM) using such a ferroelectric capacitor is capable of high-speed operation, low power consumption, excellent write Z read durability, etc. In the future, further development is expected.
[0003] ところで、強誘電体膜は、外部から侵入する水分や水素、あるいは層間膜や FeRA Mの形成過程で生じる水分や水素によって劣化しやす ヽと 、う性質を有して!/、る。そ のため、通常の FeRAMでは、強誘電体キャパシタゃ配線層を酸化アルミニウム(ァ ルミナ, Al O )膜で覆い、水分や水素の強誘電体キャパシタへの到達をブロックす  [0003] By the way, the ferroelectric film has the property of being easily deteriorated by moisture and hydrogen entering from the outside, or moisture and hydrogen generated in the formation process of the interlayer film and FeRAM. . For this reason, in normal FeRAM, the wiring layer of the ferroelectric capacitor is covered with an aluminum oxide (alumina, Al 2 O 3) film to block moisture and hydrogen from reaching the ferroelectric capacitor.
2 3  twenty three
る構造が用いられて 、る(例えば特許文献 1参照)。  (For example, see Patent Document 1).
[0004] さらに、最近では、強誘電体キャパシタゃ配線層の表面のほか、異なる配線層間に 水分や水素のブロック膜として平坦なアルミナ膜を形成する構造も用いられるよう〖こ なってきている。 [0004] Furthermore, in addition to the surface of a ferroelectric capacitor, a structure in which a flat alumina film is formed as a moisture or hydrogen block film between different wiring layers has recently been used.
特許文献 1 :特開 2005— 268617号公報  Patent Document 1: Japanese Patent Laid-Open No. 2005-268617
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] しかし、異なる配線層間に水分や水素のブロック膜としてのアルミナ膜を用いる場 合には、次のような問題点があった。 However, when an alumina film as a moisture or hydrogen block film is used between different wiring layers, there are the following problems.
図 29は層間コンタクト構造の一例の要部断面模式図、図 30は層間コンタクト構造 の形成過程の要部断面模式図である。  FIG. 29 is a schematic cross-sectional view of an essential part of an example of an interlayer contact structure, and FIG.
[0006] 下層配線 200と上層配線 201は、タングステン (W)プラグ 202によって接続されて いる。下層配線 200は、例えば、アルミニウム (A1)膜 200a、チタン (Ti)膜 200b、チ タンナイトライド (TiN)膜 200cの積層構造で構成され、下層配線 200の表面にはァ ルミナ膜 203が形成されている。このアルミナ膜 203上には層間絶縁膜 204が形成さ れており、さらにアルミナ膜 205を介して層間絶縁膜 206が形成されている。そして、 2層の層間絶縁膜 204, 206と 2層のアルミナ膜 203, 205を貫通して Wプラグ 202 が形成され、その上に上層配線 201が形成されている。 [0006] The lower wiring 200 and the upper wiring 201 are connected by a tungsten (W) plug 202. Yes. For example, the lower wiring 200 has a laminated structure of an aluminum (A1) film 200a, a titanium (Ti) film 200b, and a titanium nitride (TiN) film 200c, and an aluminum film 203 is formed on the surface of the lower wiring 200. Has been. An interlayer insulating film 204 is formed on the alumina film 203, and further an interlayer insulating film 206 is formed via the alumina film 205. Then, a W plug 202 is formed through the two layers of interlayer insulating films 204 and 206 and the two layers of alumina films 203 and 205, and an upper layer wiring 201 is formed thereon.
[0007] このような層間コンタクト構造を形成する場合には、まず、図 30に示すように、下層 配線 200およびアルミナ膜 203の形成後、層間絶縁膜 204、アルミナ膜 205、層間 絶縁膜 206を順に形成し、それらを貫通して下層配線 200に達するコンタクトホール を形成する。そして、図 29に示したように、そのコンタクトホールを CVD (Chemical Va por Deposition)法を用いて Wで埋め込んで Wプラグ 202を形成し、その上に上層配 線 201を形成する。 In the case of forming such an interlayer contact structure, first, as shown in FIG. 30, after forming the lower layer wiring 200 and the alumina film 203, the interlayer insulating film 204, the alumina film 205, and the interlayer insulating film 206 are formed. The contact holes are formed in order, and through them, the contact hole reaching the lower layer wiring 200 is formed. Then, as shown in FIG. 29, the contact hole is filled with W using a CVD (Chemical Vapor Deposition) method to form a W plug 202, and an upper wiring 201 is formed thereon.
[0008] ところが、コンタクトホール形成後、 Wプラグ 202の形成前には、その間の処理環境 によっては層間絶縁膜 204, 206が吸湿する場合があり、特にコンタクトホール形成 後に洗浄を行う場合等にはそのような吸湿が起こりやすい(図中、層間絶縁膜 204, 206方向の矢印。 )。また層間絶縁膜成長時にシランガスや TEOS (Tetra EthOxy Si lane)等力 生成した水分が膜中に取り込まれてしまう。  However, after the contact hole is formed and before the W plug 202 is formed, the interlayer insulating films 204 and 206 may absorb moisture depending on the processing environment between them, especially when cleaning is performed after the contact hole is formed. Such moisture absorption is likely to occur (in the figure, arrows in the directions of the interlayer insulating films 204 and 206). In addition, silane gas and TEOS (Tetra Ethoxy Silane) and other moisture generated during the growth of the interlayer dielectric film are taken into the film.
[0009] そのため従来のアルミナ膜を設けな ヽ構造ある!/ヽは配線層間にアルミナ膜を設け ない構造の場合には、コンタクトホール形成後プラグ形成前に、窒素 (N )ガス雰囲  [0009] Therefore, there is a conventional structure without an alumina film! In the case of a structure without an alumina film between wiring layers, a nitrogen (N) gas atmosphere is formed after the contact hole is formed and before the plug is formed.
2  2
気でァニール処理を行って層間絶縁膜の脱ガスを行 、、それからコンタクトホールの 埋め込みを行っていた。  Annealing was performed to degas the interlayer insulating film, and then contact holes were filled.
[0010] 一方、層間絶縁膜 204を挟んで 2枚のアルミナ膜 203, 205を設けた上記のような 構造の場合には、仮にコンタクトホール形成後 Wプラグ形成前に従来と同じァニール 処理を行ったとしても、層間膜からの脱ガスはコンタクトホールを介して行われるため アルミナ膜 203, 205に挟まれた層間絶縁膜 204の充分な脱ガスは行えない。その 結果、残った水分等が、その後に CVD法等を用いて Wプラグ 202を形成する際の加 熱によってコンタクトホール内壁力 脱ガスするようになる(図中、コンタクトホール方 向の矢印。 ) oそのため、コンタクトホール内への Wの埋め込み不良が発生し、コンタ タト抵抗の増加等の問題が発生してしまうようになる。 On the other hand, in the case of the structure as described above in which two alumina films 203 and 205 are provided with an interlayer insulating film 204 interposed therebetween, the same annealing treatment as before is performed after the contact hole is formed and before the W plug is formed. Even so, since the degassing from the interlayer film is performed through the contact hole, the interlayer insulating film 204 sandwiched between the alumina films 203 and 205 cannot be sufficiently degassed. As a result, the remaining moisture etc. comes to be degassed by the inner wall force of the contact hole by heating when the W plug 202 is subsequently formed using the CVD method or the like (in the figure, an arrow in the direction of the contact hole). o For this reason, poor filling of the W in the contact hole occurs and the contour Problems such as an increase in resistance will occur.
[0011] 本発明はこのような点に鑑みてなされたものであり、良好な層間コンタクト構造を備 える高耐湿性の半導体装置の製造方法を提供することを目的とする。  The present invention has been made in view of these points, and an object of the present invention is to provide a method of manufacturing a highly moisture-resistant semiconductor device having a good interlayer contact structure.
課題を解決するための手段  Means for solving the problem
[0012] 本発明では上記課題を解決するために、層間コンタクト構造を有する半導体装置 の製造方法において、耐湿性を有する第 1,第 2の膜の間に層間膜が形成された積 層構造を形成する工程と、形成された前記第 1,第 2の膜と前記層間膜とを貫通する コンタクトホールを形成する工程と、前記コンタクトホールの形成後にァニール処理を 行って前記第 1,第 2の膜に挟まれた前記層間膜の脱ガスを行う工程と、前記ァニー ル処理後に前記コンタクトホールにプラグを形成する工程と、を有することを特徴とす る半導体装置の製造方法が提供される。  In the present invention, in order to solve the above-described problem, in a method of manufacturing a semiconductor device having an interlayer contact structure, a stacked structure in which an interlayer film is formed between first and second films having moisture resistance is provided. A step of forming, a step of forming a contact hole penetrating the formed first and second films and the interlayer film, and an annealing treatment after the formation of the contact hole to perform the first and second steps There is provided a method for manufacturing a semiconductor device, comprising: a step of degassing the interlayer film sandwiched between films; and a step of forming a plug in the contact hole after the annealing process.
[0013] このような半導体装置の製造方法によれば、耐湿性を有する第 1,第 2の膜の間に 層間膜が挟まれた積層構造にコンタクトホールを形成した後に、その層間膜の脱ガ スを行うためのァニール処理が行われる。このァニール処理を所定の条件で行うこと により、その後のプラグ形成時にそのコンタクトホールからの脱ガスが抑制されるよう になる。  [0013] According to such a method of manufacturing a semiconductor device, after a contact hole is formed in a laminated structure in which an interlayer film is sandwiched between first and second films having moisture resistance, the interlayer film is removed. Annealing for gas is performed. By performing this annealing process under predetermined conditions, degassing from the contact hole is suppressed during subsequent plug formation.
[0014] また、本発明では、層間コンタ外構造を有する半導体装置の製造方法において、 耐湿性を有する第 1,第 2の膜の間に層間膜が形成された積層構造を形成する工程 と、形成された前記第 1,第 2の膜と前記層間膜とを貫通するコンタ外ホールを形成 する工程と、前記コンタクトホールの形成後に前記コンタクトホール内壁面に対する 表面処理を行う工程と、前記表面処理後に前記コンタクトホールにプラグを形成する 工程と、を有することを特徴とする半導体装置の製造方法が提供される。  [0014] According to the present invention, in the method of manufacturing a semiconductor device having an outer structure with an interlayer contour, a step of forming a laminated structure in which an interlayer film is formed between the first and second films having moisture resistance; Forming a contour outer hole penetrating the formed first and second films and the interlayer film, performing a surface treatment on the inner wall surface of the contact hole after the formation of the contact hole, and the surface treatment And a step of forming a plug in the contact hole later. A method for manufacturing a semiconductor device is provided.
[0015] このような半導体装置の製造方法によれば、耐湿性を有する第 1,第 2の膜の間に 層間膜が挟まれた積層構造にコンタクトホールを形成した後に、そのコンタクトホール 内壁面に対して表面処理が行われる。この表面処理により、例えばそのコンタクトホ ール内壁面の耐湿性を向上させる。それにより、その後のプラグ形成時にそのコンタ タトホールからの脱ガスが抑制されるようになる。  [0015] According to such a method of manufacturing a semiconductor device, after forming a contact hole in a laminated structure in which an interlayer film is sandwiched between first and second films having moisture resistance, the inner wall surface of the contact hole is formed. Surface treatment is performed on the surface. By this surface treatment, for example, the moisture resistance of the inner wall surface of the contact hole is improved. As a result, degassing from the contact hole is suppressed during subsequent plug formation.
発明の効果 [0016] 本発明では、耐湿性を有する第 1,第 2の膜の間に層間膜が挟まれた積層構造に コンタクトホールを形成した後に、その層間膜から脱ガスするためのァニール処理を 行うようにした。これにより、コンタクトホール形成後のプラグ形成時にそのコンタクトホ ールからの脱ガスを抑えてプラグ形成不良の発生を抑制することができ、低抵抗の 層間コンタ外構造を有する半導体装置が実現可能になる。 The invention's effect In the present invention, after a contact hole is formed in a laminated structure in which an interlayer film is sandwiched between first and second films having moisture resistance, annealing treatment for degassing the interlayer film is performed. I did it. As a result, when a plug is formed after the contact hole is formed, degassing from the contact hole can be suppressed to prevent the occurrence of a defective plug formation, and a semiconductor device having a low-resistance interlayer contour structure can be realized. Become.
[0017] また、本発明では、耐湿性を有する第 1,第 2の膜の間に層間膜が挟まれた積層構 造にコンタクトホールを形成した後に、そのコンタクトホール内壁面に対して表面処理 を行うようにした。これにより、コンタクトホール形成後のプラグ形成時にそのコンタクト ホール力もの脱ガスを抑えてプラグ形成不良の発生を抑制することができ、低抵抗の 層間コンタ外構造を有する半導体装置が実現可能になる。 Further, in the present invention, after forming a contact hole in a laminated structure in which an interlayer film is sandwiched between first and second films having moisture resistance, surface treatment is performed on the inner wall surface of the contact hole. To do. As a result, it is possible to suppress the outgassing due to the contact hole force when the plug is formed after the contact hole is formed, thereby suppressing the occurrence of a plug formation failure, and a semiconductor device having a low resistance interlayer outer structure can be realized.
[0018] 本発明の上記および他の目的、特徴および利点は本発明の例として好ま U、実施 の形態を表す添付の図面と関連した以下の説明により明らかになるであろう。 [0018] The above and other objects, features and advantages of the present invention are preferred as examples of the present invention, and will become apparent from the following description in conjunction with the accompanying drawings showing embodiments.
図面の簡単な説明  Brief Description of Drawings
[0019] [図 1]半導体装置形成フローの一例を示す図である。 FIG. 1 is a diagram showing an example of a semiconductor device formation flow.
[図 2]半導体装置の構成例を示す図である。  FIG. 2 is a diagram illustrating a configuration example of a semiconductor device.
[図 3]サンプルの構成を示す図である。  FIG. 3 is a diagram showing the configuration of a sample.
[図 4]第 1の適用例の第 1工程の要部断面模式図である。  FIG. 4 is a cross-sectional schematic diagram for major components showing a first step of a first application example.
[図 5]第 1の適用例の第 2工程の要部断面模式図である。  FIG. 5 is a schematic cross-sectional view of an essential part of a second step in the first application example.
[図 6]第 1の適用例の第 3工程の要部断面模式図である。  FIG. 6 is a schematic cross-sectional view of an essential part of a third step in the first application example.
[図 7]第 1の適用例の第 4工程の要部断面模式図である。  FIG. 7 is a schematic cross-sectional view of an essential part of a fourth step in the first application example.
[図 8]第 1の適用例の第 5工程の要部断面模式図である。  FIG. 8 is a schematic cross-sectional view of the relevant part showing a fifth step of the first application example.
[図 9]第 1の適用例の第 6工程の要部断面模式図である。  FIG. 9 is a schematic cross-sectional view of the relevant part showing a sixth step of the first application example.
[図 10]第 1の適用例の第 7工程の要部断面模式図である。  FIG. 10 is a cross-sectional schematic diagram for major components showing a seventh step in the first application example.
[図 11]第 1の適用例の第 8工程の要部断面模式図である。  FIG. 11 is a schematic cross-sectional view of an essential part of an eighth step in the first application example.
[図 12]第 1の適用例の第 9工程の要部断面模式図である。  FIG. 12 is a schematic cross-sectional view of an essential part of the ninth step in the first application example.
[図 13]第 1の適用例の第 10工程の要部断面模式図である。  FIG. 13 is a cross-sectional schematic diagram for major components showing a tenth step of the first application example.
[図 14]第 1の適用例の第 11工程の要部断面模式図である。  FIG. 14 is a schematic cross-sectional view of an essential part of an eleventh step in the first application example.
[図 15]第 1の適用例の第 12工程の要部断面模式図である。 [図 16]第 1の適用例の第 13工程の要部断面模式図である。 FIG. 15 is a cross-sectional schematic diagram for major components showing a twelfth step of the first application example. FIG. 16 is a cross-sectional schematic diagram for major components showing a thirteenth step of the first application example.
[図 17]第 1の適用例の第 14工程の要部断面模式図である。  FIG. 17 is a cross-sectional schematic diagram for major components showing a fourteenth step of the first application example.
[図 18]第 1の適用例の第 15工程の要部断面模式図である。  FIG. 18 is a cross-sectional schematic diagram for major components showing a fifteenth process of the first application example.
[図 19]第 1の適用例の第 16工程の要部断面模式図である。  FIG. 19 is a cross-sectional schematic diagram for major components showing a sixteenth step of the first application example.
[図 20]第 1の適用例の第 17工程の要部断面模式図である。  FIG. 20 is a cross-sectional schematic diagram for major components showing a seventeenth step of the first application example.
[図 21]第 1の適用例の第 18工程の要部断面模式図である。  FIG. 21 is a cross-sectional schematic diagram for major components showing an eighteenth step of the first application example.
[図 22]第 1の適用例の第 19工程の要部断面模式図である。  FIG. 22 is a cross-sectional schematic diagram for major components showing a nineteenth step of the first application example.
[図 23]第 1の適用例の第 20工程の要部断面模式図である。  FIG. 23 is a cross-sectional schematic diagram for major components showing a twentieth process of a first application example.
[図 24]第 1の適用例についての変形例を示す要部断面模式図(その 1)である。  FIG. 24 is a schematic cross-sectional view (No. 1) of relevant parts showing a modification of the first application example.
[図 25]第 1の適用例についての変形例を示す要部断面模式図(その 2)である。  FIG. 25 is a schematic cross-sectional view of the relevant part showing a modification of the first application example (No. 2).
[図 26]第 1の適用例についての変形例を示す要部断面模式図(その 3)である。  FIG. 26 is a schematic cross-sectional view (No. 3) of relevant parts showing a modification of the first application example.
[図 27]第 1の適用例についての変形例を示す要部断面模式図(その 4)である。  FIG. 27 is a schematic cross-sectional view of the relevant part showing a modification of the first application example (No. 4).
[図 28]第 2の適用例の FeRAMの要部断面模式図である。  FIG. 28 is a schematic cross-sectional view of an essential part of FeRAM in a second application example.
[図 29]層間コンタクト構造の一例の要部断面模式図である。  FIG. 29 is a schematic cross-sectional view of an essential part of an example of an interlayer contact structure.
[図 30]層間コンタクト構造の形成過程の要部断面模式図である。  FIG. 30 is a schematic cross-sectional view of an essential part in the process of forming an interlayer contact structure.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0020] 以下、本発明の実施の形態を、強誘電体キャパシタを備えた半導体装置を例に、 図面を参照して詳細に説明する。  Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings, taking a semiconductor device provided with a ferroelectric capacitor as an example.
図 2は半導体装置の構成例を示す図である。  FIG. 2 is a diagram illustrating a configuration example of a semiconductor device.
[0021] 図 2に示す半導体装置 1は、下部電極 2aと上部電極 2bに強誘電体膜 2cが挟まれ た構成を有する強誘電体キャパシタ 2を備えている。強誘電体キャパシタ 2は、第 1の 層間絶縁膜 3で覆われ、この第 1の層間絶縁膜 3を貫通して Wプラグ 4a, 4b, 4cが形 成されている。 Wプラグ 4aは、強誘電体キャパシタ 2の上部電極 2bに接続されるよう に形成され、 Wプラグ 4bは、強誘電体キャパシタ 2の下部電極 2aに接続されるよう〖こ 形成されている。また、 Wプラグ 4cは、例えば、この強誘電体キャパシタ 2の下層に形 成されたトランジスタ部(図示せず。)に接続される。これらの Wプラグ 4a, 4b, 4c上 には、それぞれ第 1の配線層 5a, 5b, 5cが形成されており、第 1の配線層 5a, 5b, 5 c表面と露出する第 1の層間絶縁膜 3表面には、強誘電体キャパシタ 2への水分や水 素の侵入を抑制する第 1のアルミナ膜 6が形成されている。 A semiconductor device 1 shown in FIG. 2 includes a ferroelectric capacitor 2 having a configuration in which a ferroelectric film 2c is sandwiched between a lower electrode 2a and an upper electrode 2b. The ferroelectric capacitor 2 is covered with a first interlayer insulating film 3, and W plugs 4a, 4b, 4c are formed through the first interlayer insulating film 3. The W plug 4 a is formed so as to be connected to the upper electrode 2 b of the ferroelectric capacitor 2, and the W plug 4 b is formed so as to be connected to the lower electrode 2 a of the ferroelectric capacitor 2. The W plug 4c is connected to, for example, a transistor portion (not shown) formed in the lower layer of the ferroelectric capacitor 2. On these W plugs 4a, 4b, and 4c, first wiring layers 5a, 5b, and 5c are formed, respectively, and the surface of the first wiring layers 5a, 5b, and 5c is exposed and the first interlayer insulation is exposed. On the surface of film 3, moisture and water to the ferroelectric capacitor 2 A first alumina film 6 that suppresses the entry of element is formed.
[0022] この構造上に第 2の層間絶縁膜 7、第 2のアルミナ膜 8および第 3の層間絶縁膜 9が 形成され、これらを貫通して第 1の配線層 5cに接続された Wプラグ 10が形成され、こ の Wプラグ 10上および第 3の層間絶縁膜 9上に第 2の配線層 1 la, 1 lbが形成され ている。同様に、この上層には、第 4の層間絶縁膜 12、第 3のアルミナ膜 13および第 5の層間絶縁膜 14、これらを貫通して第 2の配線層 11a, l ibに接続された Wプラグ 15a, 15bが形成され、この Wプラグ 15a, 15bに接続されるように第 3の配線層 16a , 16bが形成されている。そして、その上層には、第 3の配線層 16bをパッド用に一部 露出させた状態で第 6の層間絶縁膜 17および保護膜 18が形成されている。  [0022] A second interlayer insulating film 7, a second alumina film 8, and a third interlayer insulating film 9 are formed on this structure, and pass through them to connect to the first wiring layer 5c. W plug 10 is formed, and second wiring layers 1 la and 1 lb are formed on the W plug 10 and the third interlayer insulating film 9. Similarly, on this upper layer, the fourth interlayer insulating film 12, the third alumina film 13 and the fifth interlayer insulating film 14, and W connected to the second wiring layers 11a and ib through these layers. Plugs 15a and 15b are formed, and third wiring layers 16a and 16b are formed so as to be connected to the W plugs 15a and 15b. On the upper layer, a sixth interlayer insulating film 17 and a protective film 18 are formed with the third wiring layer 16b partially exposed for pads.
[0023] このように、半導体装置 1は、第 1の配線層 5a, 5b, 5cと第 2の配線層 11a, l ibの 間に平坦な第 2のアルミナ膜 8が形成され、第 2の配線層 11a, l ibと第 3の配線層 1 6a, 16bの間にも平坦な第 3のアルミナ膜 13が形成された、いわゆるダブルフラット アルミナ構造を有している。半導体装置 1では、第 1の配線層 5a, 5b, 5cと第 1の層 間絶縁膜 3の表面に形成された第 1のアルミナ膜 6と共に、これら第 2,第 3のアルミナ 膜 8, 13によって、強誘電体キャパシタ 2への水分や水素の侵入が効果的に抑制さ れるようになっている。  Thus, in the semiconductor device 1, the flat second alumina film 8 is formed between the first wiring layers 5a, 5b, 5c and the second wiring layers 11a, l ib, It has a so-called double flat alumina structure in which a flat third alumina film 13 is also formed between the wiring layers 11a, ib and the third wiring layers 16a, 16b. In the semiconductor device 1, the second and third alumina films 8, 13 are formed together with the first wiring layers 5a, 5b, 5c and the first alumina film 6 formed on the surface of the first interlayer insulating film 3. As a result, the intrusion of moisture and hydrogen into the ferroelectric capacitor 2 is effectively suppressed.
[0024] 続いて、上記構成を有する半導体装置 1の形成方法の概略について述べる。  Next, an outline of a method for forming the semiconductor device 1 having the above configuration will be described.
図 1は半導体装置形成フローの一例を示す図である。ただし、ここでは、上記半導 体装置 1の第 2の配線層 11a, l ib形成までのフローを中心に説明する。  FIG. 1 is a diagram showing an example of a semiconductor device formation flow. However, here, the description will focus on the flow up to the formation of the second wiring layers 11a, ib of the semiconductor device 1.
[0025] 半導体装置 1の形成に当たっては、まず、トランジスタ部とその上層の強誘電体キヤ パシタ 2を形成する (ステップ S l)。次いで、第 1の層間絶縁膜 3およびそれを貫通す るコンタクトホールを形成して Wプラグ 4a, 4b, 4cをそれぞれ形成し、さらに第 1の配 線層 5a, 5b, 5cまで形成する(ステップ S2)。 In forming the semiconductor device 1, first, the transistor portion and the ferroelectric capacitor 2 as an upper layer are formed (step S 1). Next, a first interlayer insulating film 3 and a contact hole penetrating the first interlayer insulating film 3 are formed to form W plugs 4a, 4b, 4c, and further to the first wiring layers 5a, 5b, 5c (step) S2).
[0026] 第 1の配線層 5a, 5b, 5cの形成後は、全面に第 1のアルミナ膜 6を形成する (ステツ プ S3)。その上に第 2の層間絶縁膜 7を形成し (ステップ S4)、第 2のアルミナ膜 8を形 成し (ステップ S5)、第 3の層間絶縁膜 9を形成する (ステップ S6)。 [0026] After the formation of the first wiring layers 5a, 5b, 5c, the first alumina film 6 is formed on the entire surface (step S3). A second interlayer insulating film 7 is formed thereon (step S4), a second alumina film 8 is formed (step S5), and a third interlayer insulating film 9 is formed (step S6).
[0027] そして、第 3の層間絶縁膜 9、第 2のアルミナ膜 8、第 2の層間絶縁膜 7および第 1の アルミナ膜 6を貫通して第 1の配線層 5cに達するコンタクトホールを形成した後 (ステ ップ S 7)、ァニール処理を行う(ステップ S8)。このァニール処理は、例えば、 Nゃァ [0027] Then, a contact hole that penetrates through the third interlayer insulating film 9, the second alumina film 8, the second interlayer insulating film 7, and the first alumina film 6 and reaches the first wiring layer 5c is formed. After Step S7), annealing is performed (step S8). This annealing process is, for example, Nyaa
2 ルゴン (Ar)等の不活性ガス雰囲気中あるいは真空中、所定の時間、所定の温度で 行う。このァニール処理の条件およびその効果にっ 、ては後述する。  2 Perform in an inert gas atmosphere such as Lugon (Ar) or in a vacuum at a specified temperature for a specified time. The conditions of the annealing process and the effect will be described later.
[0028] ァニール処理後は、グルーレイヤの形成を行った後(ステップ S9)、コンタクトホー ルを Wで埋め込み、その Wをエッチバックして Wプラグ 10を形成し (ステップ S 10)、 第 2の配線層 1 la, 1 lbを形成する (ステップ S 11)。  [0028] After the annealing process, after forming the glue layer (step S9), the contact hole is filled with W, and the W is etched back to form the W plug 10 (step S10). A wiring layer 1 la, 1 lb is formed (step S 11).
[0029] 第 2の配線層 11a, l ibの形成後は、上記ステップ S4〜S11の例に従い、第 4の層 間絶縁膜 12、第 3のアルミナ膜 13、第 5の層間絶縁膜 14および Wプラグ 15a, 15b を形成して、第 3の配線層 16a, 16bまで形成する。そして、最後に、第 6の層間絶縁 膜 17および保護膜 18を形成し、それらを一部除去して第 3の配線層 16bを部分的に 露出させ、パッド部を形成する。  [0029] After the formation of the second wiring layers 11a and ib, the fourth inter-layer insulating film 12, the third alumina film 13, the fifth inter-layer insulating film 14 and the following steps S4 to S11 W plugs 15a and 15b are formed to form third wiring layers 16a and 16b. Finally, a sixth interlayer insulating film 17 and a protective film 18 are formed, and a part of them is removed to partially expose the third wiring layer 16b, thereby forming a pad portion.
[0030] ここで、上記ステップ S8のァニール処理についてより詳細に説明する。  Here, the annealing process in step S8 will be described in more detail.
第 3の層間絶縁膜 9、第 2のアルミナ膜 8、第 2の層間絶縁膜 7および第 1のアルミナ 膜 6を貫通して第 1の配線層 5cに達するコンタクトホールの形成後でグルーレイヤの 形成前に行うァニール処理は、上記のように、例えば、 Nや Ar等の不活性ガス雰囲  After forming the contact hole that penetrates through the third interlayer insulating film 9, the second alumina film 8, the second interlayer insulating film 7, and the first alumina film 6 to reach the first wiring layer 5c, the glue layer The annealing process performed before the formation is performed in an inert gas atmosphere such as N or Ar as described above.
2  2
気中、所定の時間、所定の温度で行う。以下に、ァニール処理条件について検討し た結果について述べる。  In the air, for a predetermined time, at a predetermined temperature. The results of studying annealing conditions are described below.
[0031] 図 3はサンプルの構成を示す図である。ただし、図 3では、図 2に示した要素と同一 の要素については同一の符号を付し、その説明の詳細は省略する。 FIG. 3 is a diagram showing a configuration of the sample. However, in FIG. 3, the same elements as those shown in FIG. 2 are denoted by the same reference numerals, and detailed description thereof is omitted.
ァニール処理条件を検討するに当たり、ここではこの図 3に示すような構造を有する サンプルを用いた。図 3に示すサンプル 20は、上記ステップ S2において第 1の配線 層 5a, 5b, 5cをそれぞれ Al膜 21、 Ti膜 22、 TiN膜 23が積層された構造で形成し( 第 1の配線層 5cのみ図示。)、上記ステップ S3〜S6で述べたようにその上に第 1の アルミナ膜 6、第 2の層間絶縁膜 7、第 2のアルミナ膜 8および第 3の層間絶縁膜 9を 形成し、上記ステップ S7で述べたように第 1の配線層 5cに達するコンタクトホール 10 aを形成している。ただし、このサンプル 20では、図 3に示したように、上記ステップ S 7で形成されるコンタクトホール 10aを第 1の配線層 5cに対して意図的に位置ずれさ せ、その後のステップ S9〜S 11で形成される Wプラグ 10に、より未形成部分が発生 しゃすい構造にしている。なお、サンプル 20には 6インチウェハを用い、コンタクトホ ール 1 Oaの位置ずれ量は、その平均値を約 130nmとした。 In examining the annealing conditions, a sample having the structure shown in FIG. 3 was used here. In the sample 20 shown in FIG. 3, the first wiring layers 5a, 5b, and 5c are formed in the above step S2 in a structure in which the Al film 21, the Ti film 22, and the TiN film 23 are stacked (the first wiring layer 5c As shown in steps S3 to S6 above, a first alumina film 6, a second interlayer insulating film 7, a second alumina film 8, and a third interlayer insulating film 9 are formed thereon. As described in step S7, the contact hole 10a reaching the first wiring layer 5c is formed. However, in this sample 20, as shown in FIG. 3, the contact hole 10a formed in step S7 is intentionally displaced with respect to the first wiring layer 5c, and the subsequent steps S9 to S are performed. More unformed parts occur in the W plug 10 formed by 11 It has a thin structure. Note that a 6-inch wafer was used for sample 20, and the average amount of displacement of the contact hole 1 Oa was about 130 nm.
[0032] このようなサンプノレ 20を用い、コンタクトホール 10a形成後のァニール処理の時間と 温度について検討した。結果を表 1および表 2に示す。 [0032] Using such a sampnore 20, the annealing process time and temperature after the formation of the contact hole 10a were examined. The results are shown in Tables 1 and 2.
[0033] [表 1] [0033] [Table 1]
Figure imgf000010_0002
Figure imgf000010_0002
[0034] [表 2]  [0034] [Table 2]
Figure imgf000010_0003
Figure imgf000010_0003
[0035] 表 1には、 N雰囲気中、ァニール処理温度が 350°Cで、ァニール処理時間を 60分 [0035] Table 1 shows that annealing temperature is 350 ° C in N atmosphere and annealing time is 60 minutes.
2  2
、 120分、 180分、 240分としたときの、それぞれの条件での Wプラグ 10の未形成部 分の発生個数を示している。また、表 2には、 N雰囲気中、ァニール処理時間が 120  , 120 minutes, 180 minutes, and 240 minutes, the number of occurrence of unformed parts of the W plug 10 under each condition is shown. Table 2 also shows that annealing time is 120 in N atmosphere.
2  2
分で、ァニール処理温度を 350°C、 375°C、 400°Cとしたときの、それぞれの条件で
Figure imgf000010_0001
、る。
Minutes, annealing at 350 ° C, 375 ° C, 400 ° C
Figure imgf000010_0001
RU
[0036] 表 1より、ァニール処理時間については、 60分、 120分、 180分、 240分で、 Wプラ グ 10の未形成部分の発生個数がそれぞれ 92個、 49個、 1個、 13個であった。サン プル 20が Wプラグ 10に未形成部分の発生しやすい構造であるにもかかわらず、了二 ール処理時間が 120分、 180分、 240分ではその発生個数がそれぞれ 49個、 1個、 13個で少ないことがわかる。このように、ァニール処理温度が 350°Cである場合には 、そのァニール処理時間を 120分〜 240分の範囲とすれば、 Wプラグ 10の未形成部 分の発生を抑制することができる。特に、ァニール処理時間を 180分〜 240分の範 囲としたときには、上記構造にもかかわらず Wプラグ 10の未形成部分の発生個数が 非常に少なぐァニール処理時間を 180分としたときには、 Wプラグ 10の未形成部分 の発生個数が最小になる。 [0036] From Table 1, the annealing time is 60 minutes, 120 minutes, 180 minutes, and 240 minutes, and the number of unformed portions of W plug 10 is 92, 49, 1, and 13 respectively. Met. Sun Despite the fact that pull 20 has a structure in which unformed parts are likely to occur in W plug 10, the number of occurrences is 49, 1, and 13 at 120 minutes, 180 minutes, and 240 minutes, respectively. You can see that the number is small. As described above, when the annealing temperature is 350 ° C., the generation of the unformed portion of the W plug 10 can be suppressed by setting the annealing time to a range of 120 minutes to 240 minutes. In particular, when the annealing time is in the range of 180 minutes to 240 minutes, when the annealing time is 180 minutes when the number of unformed portions of the W plug 10 is very small despite the above structure, the W The number of unformed parts of plug 10 is minimized.
[0037] また、表 2より、ァニール処理温度については、 350°C、 375°C、 400°Cで、 Wプラ グ 10の未形成部分の発生個数がそれぞれ 26個、 0個、 0個であった。サンプル 20が Wプラグ 10に未形成部分の発生しやすい構造であるにもかかわらず、ァニール処理 温度が 350°C〜400°Cの範囲では Wプラグ 10の未形成部分の発生個数が少ないこ とがわかる。このように、ァニール処理時間が 120分である場合には、そのァニール 処理温度を 350°C〜400°Cの範囲とすれば、 Wプラグ 10の未形成部分の発生を抑 制することができる。特に、ァニール処理温度を 375°C〜400°Cの範囲としたときに は、上記構造にもかかわらず Wプラグ 10の未形成部分が発生せず、非常に有効で ある。 [0037] From Table 2, the annealing temperature was 350 ° C, 375 ° C, 400 ° C, and the number of unformed portions of W plug 10 was 26, 0, and 0, respectively. there were. Although Sample 20 has a structure in which unformed parts are likely to occur in W plug 10, the number of unformed parts in W plug 10 should be small in the annealing temperature range of 350 ° C to 400 ° C. I understand. As described above, when the annealing treatment time is 120 minutes, if the annealing treatment temperature is set in the range of 350 ° C. to 400 ° C., the generation of the unformed portion of the W plug 10 can be suppressed. . In particular, when the annealing temperature is in the range of 375 ° C. to 400 ° C., the W plug 10 is not formed in spite of the above structure, which is very effective.
[0038] この表 2に示したような効果は、ァニール処理温度が 400°C〜500°Cの範囲でも同 様に確認された。それ以上の温度でも Wプラグ 10の未形成部分の発生を抑制するこ とは可能である力 コンタクトホール 10a下部の第 1の配線層 5cに上記のように A1膜 2 1を用いる場合には、 A1の融点が 660°C程度であるため、ァニール処理温度をそれ 以下に設定する必要がある。  [0038] The effects as shown in Table 2 were similarly confirmed even when the annealing temperature ranged from 400 ° C to 500 ° C. It is possible to suppress the occurrence of the unformed portion of the W plug 10 even at a temperature higher than that. When the A1 film 21 is used for the first wiring layer 5c below the contact hole 10a as described above, Since the melting point of A1 is about 660 ° C, it is necessary to set the annealing temperature below that.
[0039] また、表 1および表 2に示したような効果は、 Ar雰囲気や真空中でも同様に認めら れた。  [0039] The effects as shown in Tables 1 and 2 were also observed in an Ar atmosphere or vacuum.
以上の知見に基づいた条件でァニール処理を行い、その後 Wプラグ 10を形成する ことにより、 Wプラグ 10形成前のコンタクトホールに位置ずれがない場合は勿論のこ と、仮に位置ずれがあつたとしても、 Wプラグ 10に未形成部分のない、あるいは極め て少な 、、良好な Wプラグ 10の形成が可能であると 、うことができる。 [0040] このようなコンタクトホール 10a形成後に行うァニール処理の雰囲気は、上記のよう に不活性ガス雰囲気中や真空中で行うことが望ましい。強誘電体キャパシタ 2を有す る半導体装置 1を形成する際には、必要に応じ適当な段階で、強誘電体キャパシタ 2 の劣化を回復するために、酸素(O )等の酸化性ガスを含む雰囲気で回復ァニール If annealing is performed under the conditions based on the above knowledge, and then the W plug 10 is formed, the contact hole before the W plug 10 is not misaligned. However, it can be said that a good W plug 10 can be formed with no or very few unformed portions in the W plug 10. [0040] The annealing process performed after the contact hole 10a is formed is preferably performed in an inert gas atmosphere or in a vacuum as described above. When forming the semiconductor device 1 having the ferroelectric capacitor 2, an oxidizing gas such as oxygen (O 2) is used to recover the deterioration of the ferroelectric capacitor 2 at an appropriate stage as necessary. Healing recovery with atmosphere
2  2
処理が行われることがある。し力しながら、このようにコンタクトホール 10a形成後に行 ぅァニール処理を酸化性ガスを含む雰囲気で行うと、コンタクトホール 10aの底に露 出する第 1の配線層 5cの TiN膜 23等が酸ィ匕して配線抵抗が増大してしまうおそれが ある。そのため、前述のように、ここでのァニール処理は、不活性ガス雰囲気中や真 空中で行うことが望ましい。  Processing may be performed. However, if the annealing process is performed in an atmosphere containing an oxidizing gas after the contact hole 10a is formed in this way, the TiN film 23, etc. of the first wiring layer 5c exposed to the bottom of the contact hole 10a is oxidized. This may increase the wiring resistance. Therefore, as described above, the annealing treatment here is preferably performed in an inert gas atmosphere or in a vacuum.
[0041] なお、ここでは、第 1の配線層 5cに接続する Wプラグ 10の形成前に行うァニール処 理を例にして述べた力 同様のァニール処理を第 2の配線層 11a, l ibに接続する Wプラグ 15a, 15bの形成前に行うことも可能であり、その場合も上記同様の効果を 得ることが可能である。 [0041] Here, the annealing process similar to the force described with reference to the annealing process performed before the formation of the W plug 10 connected to the first wiring layer 5c is applied to the second wiring layers 11a and ib. It can be performed before the W plugs 15a and 15b to be connected are formed, and in this case, the same effect as described above can be obtained.
[0042] ここでは、第 1の配線層 5cに接続する Wプラグ 10の形成前や、第 2の配線層 11a, l ibに接続する Wプラグ 15a, 15bの形成前に、所定条件のァニール処理を行う場 合について述べた。このほ力、 Wプラグ 10, 15a, 15bの形成不良を抑制するために は、 Wプラグ 10, 15a, 15bの形成前に、それらを形成するコンタクトホールの内壁面 に対し、例えばプラズマ窒化処理を行うようにしてもよい。このようなプラズマ窒化処 理が行われると、コンタクトホール内壁面が窒化され、その耐湿性が向上するようにな る。それにより、 Wプラグ 10, 15a, 15bの形成時には、第 2,第 3,第 4の層間絶縁膜 7, 9, 12からコンタクトホール内への脱ガスが抑えられるようになり、 Wプラグ 10, 15 a, 15bの形成不良が効果的に抑制されるようになる。  Here, annealing processing under a predetermined condition is performed before the formation of the W plug 10 connected to the first wiring layer 5c and before the formation of the W plugs 15a and 15b connected to the second wiring layers 11a and ib. We described the case where In order to suppress the formation failure of the W plugs 10, 15a, 15b, for example, before the formation of the W plugs 10, 15a, 15b, for example, plasma nitriding treatment is performed on the inner wall surfaces of the contact holes forming them. You may make it perform. When such a plasma nitriding process is performed, the inner wall surface of the contact hole is nitrided and its moisture resistance is improved. As a result, when the W plugs 10, 15a, 15b are formed, outgassing from the second, third, and fourth interlayer insulating films 7, 9, 12 into the contact holes can be suppressed. The defective formation of 15a and 15b is effectively suppressed.
[0043] なお、このようなコンタクトホール内壁面に対する表面処理は、プラズマ窒化処理に 限定されるものではなぐコンタクトホール内壁面の耐湿性を向上させるものであれば 、その他の表面処理方法を用いても構わない。  [0043] It should be noted that such a surface treatment for the inner wall surface of the contact hole is not limited to the plasma nitriding treatment, and other surface treatment methods can be used as long as they improve the moisture resistance of the inner wall surface of the contact hole. It doesn't matter.
[0044] また、上記のようなァニール処理後にこのプラズマ窒化処理のような表面処理を行 うことも可能である。  [0044] It is also possible to perform a surface treatment such as plasma nitriding after the annealing as described above.
以下に、上記のァニール処理を種々の形態の半導体装置形成に適用した例につ いて、具体的に説明する。 The following is an example in which the annealing process is applied to the formation of various types of semiconductor devices. This will be described in detail.
[0045] まず、第 1の適用例について説明する。ここでは、プレーナ型キャパシタ構造を有 する FeRAMを例に、その形成フローおよび構成の一例について述べる。  First, a first application example will be described. This section describes an example of the formation flow and configuration of FeRAM with a planar capacitor structure.
図 4は第 1の適用例の第 1工程の要部断面模式図である。  FIG. 4 is a schematic cross-sectional view of the relevant part in the first step of the first application example.
[0046] 半導体基板として例えばシリコン (Si)基板 30を用い、まず、その表層に LOCOS ( LOCal Oxidation of Silicon)法で素子領域を画定するための素子分離領域 31を形 成する。素子領域に所定導電型のゥエル 32を形成した後、ゲート絶縁膜 33を介して 、ゲート長約 360nmのゲート電極 34を形成する。  For example, a silicon (Si) substrate 30 is used as a semiconductor substrate, and first, an element isolation region 31 for defining an element region by a LOCOS (LOCal Oxidation of Silicon) method is formed on the surface layer. After a well 32 having a predetermined conductivity type is formed in the element region, a gate electrode 34 having a gate length of about 360 nm is formed through a gate insulating film 33.
[0047] ゲート絶縁膜 33は、例えば膜厚約 6nm〜7nmの酸ィ匕シリコン (SiO )膜で形成す  [0047] The gate insulating film 33 is formed of, for example, an oxide silicon (SiO 2) film having a thickness of about 6 nm to 7 nm.
2  2
ることができ、また、ゲート電極 34は、膜厚約 50nmのアモルファスシリコン層上に膜 厚約 150nmのタングステンシリサイド (WSi)層を形成して構成することができる。  The gate electrode 34 can be formed by forming a tungsten silicide (WSi) layer having a thickness of about 150 nm on an amorphous silicon layer having a thickness of about 50 nm.
[0048] そして、このようなゲート電極 34側壁に例えば膜厚約 45nmの SiO膜からなるサイ [0048] Then, the side wall of the gate electrode 34 is made of a silicon film made of, for example, a SiO film with a film thickness of about 45 nm.
2  2
ドウオール絶縁膜 35を形成し、ゲート電極 34両側の Si基板 30内にソース拡散層 36 およびドレイン拡散層 37を形成する。このようにして、 Si基板 30を用いて 4つのトラン ジスタ部 38を形成する。  A Dow insulating film 35 is formed, and a source diffusion layer 36 and a drain diffusion layer 37 are formed in the Si substrate 30 on both sides of the gate electrode 34. In this way, four transistor portions 38 are formed using the Si substrate 30.
[0049] 図 5は第 1の適用例の第 2工程の要部断面模式図である。  FIG. 5 is a schematic cross-sectional view of the relevant part in the second step of the first application example.
トランジスタ部 38形成後の表面に層間絶縁膜として、 CVD法を用いて膜厚約 200 nmの酸窒化シリコン(SiON)膜 39を形成する。さらに、この SiON膜 39上に、 TEO Sを用いた CVD法により、膜厚約 600nmの NSG (Non Silicate Glass)膜を形成し、 それを CMP (Chemical Mechanical Polishing)処理によって約 200nm研磨し、表面 を平坦ィ匕した膜厚約 400nmの TEOS—NSG膜 40を形成する。  A silicon oxynitride (SiON) film 39 having a film thickness of about 200 nm is formed as an interlayer insulating film on the surface after the transistor section 38 is formed by using the CVD method. Further, an NSG (Non Silicate Glass) film having a thickness of about 600 nm is formed on the SiON film 39 by a CVD method using TEOS, which is polished by about 200 nm by a CMP (Chemical Mechanical Polishing) process. A TEOS-NSG film 40 having a thickness of about 400 nm is formed by flattening the film.
[0050] 図 6は第 1の適用例の第 3工程の要部断面模式図である。  FIG. 6 is a schematic cross-sectional view of the relevant part in the third step of the first application example.
TEOS— NSG膜 40の形成後は、さらにその上に、同様にして膜厚約 lOOnmの T EOS— NSG膜 41を形成する。そして、 TEOS— NSG膜 40, 41の脱ガス処理のた めに、例えば、 N雰囲気中、約 650°Cで約 30分のァニール処理を行う。  After the formation of the TEOS-NSG film 40, a TEOS-NSG film 41 having a thickness of about lOOnm is further formed thereon. Then, for the degassing of the TEOS-NSG films 40 and 41, for example, annealing is performed in an N atmosphere at about 650 ° C. for about 30 minutes.
2  2
[0051] このァニール処理後、 TEOS— NSG膜 41上に、 PVD (Physical Vapor Deposition )法を用いて膜厚約 20nmのアルミナ膜 42を形成する。その後、 RTA (Rapid Therma 1 Anneal)装置を用い、 O雰囲気中、約 650°Cで約 60秒のァニール処理を行う。 [0052] 図 7は第 1の適用例の第 4工程の要部断面模式図である。 [0051] After this annealing, an alumina film 42 having a film thickness of about 20 nm is formed on the TEOS-NSG film 41 by using a PVD (Physical Vapor Deposition) method. After that, using an RTA (Rapid Therma 1 Anneal) apparatus, annealing is performed at about 650 ° C for about 60 seconds in an O atmosphere. FIG. 7 is a schematic cross-sectional view of the relevant part in the fourth step of the first application example.
ァニール処理後のアルミナ膜 42上に、 PVD法を用いて膜厚約 155nmの白金(Pt )膜 43を形成し、さらにこの Pt膜 43上に、 PVD法を用いて膜厚約 150nm〜約 200η mの ΡΖΤ膜 44を形成する。 PZT膜 44の形成後は、例えば、 RTA装置を用い、 O雰  A platinum (Pt) film 43 having a film thickness of about 155 nm is formed on the alumina film 42 after the annealing using the PVD method. Further, a film thickness of about 150 nm to about 200 η is formed on the Pt film 43 using the PVD method. m capsule 44 is formed. After forming the PZT film 44, for example, using an RTA apparatus,
2 囲気中(O流量 0. 025LZmin)、約 585°Cで約 90秒のァニール処理を行う。  2 In the atmosphere (O flow rate 0.025LZmin), perform annealing for about 90 seconds at about 585 ° C.
2  2
[0053] 次!、で、その PZT膜 44上に、 PVD法を用いて膜厚約 50nmの酸化イリジウム(IrO  [0053] Next, iridium oxide (IrO) with a film thickness of about 50 nm is formed on the PZT film 44 using the PVD method.
)膜を形成し、再度、 RTA装置を用いて、 O雰囲気中(O流量 0. 025LZmin)、 ) Form a film and use the RTA device again in the O atmosphere (O flow rate 0.025LZmin),
2 2 2 2 2 2
約 725°Cで約 20秒のァニール処理を行う。そして、その IrO膜上に再度、 PVD法を  Annealing is performed at about 725 ° C for about 20 seconds. Then, PVD method is applied again on the IrO film.
2  2
用いて IrO膜を形成することにより、合計膜厚約 250nmの IrO膜 45を形成する。  By using this to form an IrO film, an IrO film 45 having a total film thickness of about 250 nm is formed.
2 2  twenty two
[0054] 図 8は第 1の適用例の第 5工程の要部断面模式図である。  FIG. 8 is a schematic cross-sectional view of the relevant part in the fifth step of the first application example.
IrO膜 45の形成後は、フォトレジストを形成し、 IrO膜 45をエッチングする。これに After the formation of the IrO film 45, a photoresist is formed and the IrO film 45 is etched. to this
2 2 twenty two
より、 IrOからなる上部電極 45aを形成する。  Thus, the upper electrode 45a made of IrO is formed.
2  2
[0055] その後、 PZT膜 44の回復のために、縦型炉を用い、 O雰囲気中(O流量 20LZ  [0055] Thereafter, in order to recover the PZT film 44, a vertical furnace was used, and the atmosphere was O atmosphere (O flow rate 20LZ
2 2  twenty two
min)、約 650°Cで約 60分のァニール処理を行う。そして、フォトレジストを形成して P ZT膜 44をエッチングした後、再度、縦型炉を用い、 O雰囲気中(O流量 20LZmin  min), annealing at about 650 ° C for about 60 minutes. After forming the photoresist and etching the PZT film 44, the vertical furnace is used again in the O atmosphere (O flow rate 20LZmin
2 2  twenty two
)、約 350°Cで約 60分のァニール処理を行う。これにより、 PZTからなる強誘電体膜 4 4aを形成する。  ), Annealing at about 350 ° C for about 60 minutes. Thereby, a ferroelectric film 44a made of PZT is formed.
[0056] その後は、強誘電体膜 44aの保護のため、 PVD法を用いて全面に膜厚約 50nmの アルミナ膜を形成し(図示せず。)、さらに、縦型炉を用いて、 O  [0056] Thereafter, in order to protect the ferroelectric film 44a, an alumina film having a film thickness of about 50 nm is formed on the entire surface using the PVD method (not shown), and further, using a vertical furnace, O
2雰囲気中(O  2 In atmosphere (O
2流量 2 2 Flow rate 2
OL/min)、約 550°Cで約 60分程度のァニール処理を行う。 OL / min), annealing at about 550 ° C for about 60 minutes.
[0057] 図 9は第 1の適用例の第 6工程の要部断面模式図である。 FIG. 9 is a schematic cross-sectional view of the relevant part in the sixth step of the first application example.
次いで、フォトレジストを形成して Pt膜 43をエッチングし、 Ptからなる下部電極 43a を形成する。これにより、強誘電体膜 44aが上部電極 45aと下部電極 43aによって挟 まれた強誘電体キャパシタが構成される。  Next, a photoresist is formed, and the Pt film 43 is etched to form a lower electrode 43a made of Pt. Thus, a ferroelectric capacitor in which the ferroelectric film 44a is sandwiched between the upper electrode 45a and the lower electrode 43a is configured.
[0058] その後は、強誘電体膜 44aの回復のために、縦型炉を用いて、 O雰囲気中(O流 [0058] After that, in order to recover the ferroelectric film 44a, a vertical furnace was used in an O atmosphere (O flow
2 2 量 20LZmin)、約 650°Cで約 60分のァニール処理を行う。そして、強誘電体キャパ シタの保護のため、 PVD法を用いて全面に膜厚約 20nmのアルミナ膜を形成し(図 示せず。)、さらに、縦型炉を用いて、 O雰囲気中(O流量 20LZmin)、約 550°Cで 約 60分のァニール処理を行う。 2 2 volume 20LZmin), annealing at about 650 ° C for about 60 minutes. Then, in order to protect the ferroelectric capacitor, an alumina film with a film thickness of about 20 nm is formed on the entire surface by PVD method (not shown), and further in an O atmosphere (O (Flow rate 20LZmin), approx. 550 ° C Annealing is performed for about 60 minutes.
[0059] その後、その強誘電体キャパシタを完全に覆うように、 CVD法を用いて膜厚約 150[0059] After that, the CVD method is used to completely cover the ferroelectric capacitor so as to have a film thickness of about 150
Onmの TEOS— NSG膜 46を形成し、 CMP処理によってその表面を平坦ィ匕する。 図 10は第 1の適用例の第 7工程の要部断面模式図である。 An Onm TEOS-NSG film 46 is formed, and the surface is flattened by CMP. FIG. 10 is a schematic cross-sectional view of the relevant part in the seventh step of the first application example.
[0060] TEOS— NSG膜 46の形成後は、その表面を窒化する(窒化膜は図示せず。 ) 0窒 化は、例えば CVD装置を用いて一酸ィ匕窒素 (N O)プラズマを約 350°Cで約 2分間 [0060] After the formation of the TEOS-NSG film 46, the surface thereof is nitrided (the nitride film is not shown.) 0 Nitriding is performed by, for example, using a CVD apparatus to generate nitrogen monoxide (NO) plasma for about 350 times. About 2 minutes at ° C
2  2
照射するプラズマァニールによって行うことができる。その後は、その窒化後の表面 にフォトレジスト 47を形成してエッチングを行 ヽ、トランジスタ部 38の所定領域に達す るコンタクトホール 48を形成する。  This can be done by plasma annealing. Thereafter, a photoresist 47 is formed on the nitrided surface and etching is performed to form a contact hole 48 that reaches a predetermined region of the transistor portion 38.
[0061] 図 11は第 1の適用例の第 8工程の要部断面模式図である。 FIG. 11 is a schematic cross-sectional view of the relevant part in the eighth step of the first application example.
コンタクトホール 48の形成後は、フォトレジスト 47を除去した後、 PVD法を用いて全 面に膜厚約 20nmの Ti膜および膜厚約 50nmの TiN膜を順に形成し、バリアメタル 膜を形成する(図示せず。)。  After the contact hole 48 is formed, after removing the photoresist 47, a PVD method is used to sequentially form a Ti film with a thickness of about 20 nm and a TiN film with a thickness of about 50 nm on the entire surface to form a barrier metal film. (Not shown).
[0062] ノ リアメタル膜の形成後、 CVD法を用いて全面に膜厚約 500nmの W膜を形成し、 コンタクトホール 48以外に形成された W膜を CMP処理によって研磨する。これにより[0062] After the formation of the rare metal film, a W film having a film thickness of about 500 nm is formed on the entire surface by CVD, and the W film formed other than the contact hole 48 is polished by CMP. This
、コンタクトホール 48に Wが埋め込まれ、 Wプラグ 49が形成される。 Then, W is buried in the contact hole 48, and a W plug 49 is formed.
[0063] 研磨後、 TEOS— NSG膜 46表面を再度、 N Oプラズマを約 350°Cで約 2分間照 [0063] After polishing, the TEOS-NSG film 46 surface was again irradiated with N 2 O plasma at about 350 ° C for about 2 minutes.
2  2
射するプラズマァニールによって窒化し (窒化膜は図示せず。)、その上に、 CVD法 を用いて膜厚約 lOOnmの SiON膜 50を形成する。  Nitridation is performed by plasma plasma annealing (nitride film is not shown), and a SiON film 50 having a thickness of about lOO nm is formed thereon by CVD.
[0064] 図 12は第 1の適用例の第 9工程の要部断面模式図である。 FIG. 12 is a schematic cross-sectional view of the relevant part showing the ninth step of the first application example.
SiON膜 50上にレジストパターンを形成し(図示せず。)、それをマスクにして上部 電極 45aと下部電極 43aに通じるコンタクトホール 51をエッチングにより形成する。そ の後は、強誘電体膜 44aの回復ァニール処理を、縦型炉を用い、 O雰囲気中(O  A resist pattern is formed on the SiON film 50 (not shown), and a contact hole 51 communicating with the upper electrode 45a and the lower electrode 43a is formed by etching using the resist pattern as a mask. After that, the recovery annealing treatment of the ferroelectric film 44a is performed in an O atmosphere using a vertical furnace (O
2 2 流量 20LZmin)、約 500°Cで約 60分の条件で行う。  2 2 Flow rate 20LZmin), about 500 ° C for about 60 minutes.
[0065] コンタクトホール 51の形成後は、エッチング処理によって SiON膜 50を全面エッチ ノ ックする。 [0065] After the contact hole 51 is formed, the entire surface of the SiON film 50 is etched by an etching process.
図 13は第 1の適用例の第 10工程の要部断面模式図である。  FIG. 13 is a schematic cross-sectional view of an essential part of the tenth process of the first application example.
[0066] SiON膜 50のエッチング処理後、コンタクトホール 51内、 Wプラグ 49上および TEO S— NSG膜 46上に、 PVD法を用いて膜厚約 550nmのアルミニウム銅(Al— Cu)膜 、膜厚約 5nmの Ti膜、膜厚約 150nmの TiN膜を順に形成した積層膜 52を形成する [0066] After the etching process of the SiON film 50, the contact hole 51, the W plug 49 and the TEO On the S-NSG film 46, a laminated film 52 in which an aluminum copper (Al-Cu) film with a film thickness of about 550 nm, a Ti film with a film thickness of about 5 nm, and a TiN film with a film thickness of about 150 nm are formed in order using the PVD method. Form
[0067] 図 14は第 1の適用例の第 11工程の要部断面模式図である。 FIG. 14 is a schematic cross-sectional view of the relevant part in the eleventh step of the first application example.
積層膜 52の形成後、所定のレジストパターンを形成し、それをマスクにしてエツチン グを行い、第 1の配線層 52aを形成する。また、同時に、最終的にパッド部が接続さ れるようになる領域の外側と内側にそれぞれパッド外耐湿リング 52b、パッド内耐湿リ ング 52cを形成する。その後は、縦型炉を用いて、 N雰囲気中(N流量 20LZmin)  After forming the laminated film 52, a predetermined resist pattern is formed, and etching is performed using the resist pattern as a mask to form the first wiring layer 52a. At the same time, a moisture-proof ring 52b outside the pad and a moisture-proof ring 52c inside the pad are formed outside and inside the region where the pad portion is finally connected, respectively. After that, using a vertical furnace, in N atmosphere (N flow rate 20LZmin)
2 2  twenty two
、約 350°Cで約 30分のァニール処理を行う。  Perform annealing for about 30 minutes at about 350 ° C.
[0068] ァニール処理後、第 1の配線層 52aおよび TEOS— NSG膜 46上に、 PVD法を用[0068] After annealing, the PVD method was used on the first wiring layer 52a and TEOS— NSG film 46.
Vヽて膜厚約 20nmのアルミナ膜 53を形成する。 As a result, an alumina film 53 having a thickness of about 20 nm is formed.
図 15は第 1の適用例の第 12工程の要部断面模式図である。  FIG. 15 is a schematic cross-sectional view of the relevant part showing a twelfth step of the first application example.
[0069] アルミナ膜 53上に、 CVD法を用いて膜厚約 2600nmの TEOS— NSG膜 54を形 成し、 CMP処理によってその平坦ィ匕を行う。その後、 TEOS— NSG膜 54表面を、 N[0069] A TEOS-NSG film 54 having a film thickness of about 2600 nm is formed on the alumina film 53 by using the CVD method, and flattened by CMP processing. After that, the TEOS-NSG film 54 surface
Oプラズマを約 350°Cで約 4分間照射するプラズマァニールによって窒化し (窒化膜Nitrid by plasma annealing that irradiates O plasma at about 350 ° C for about 4 minutes (nitride film
2 2
は図示せず。)、続いて、 CVD法を用いて膜厚約 lOOnmの TEOS— NSG膜 55を 形成する。そして、この TEOS— NSG膜 55上に、 PVD法を用いて膜厚約 50nmの アルミナ膜 56を形成する。  Is not shown. Then, a TEOS-NSG film 55 having a film thickness of about lOOnm is formed by CVD. Then, an alumina film 56 having a thickness of about 50 nm is formed on the TEOS-NSG film 55 by using the PVD method.
[0070] このアルミナ膜 56上には、 CVD法を用いて膜厚約 lOOnmの TEOS— NSG膜 57 を形成し、その後、その表面は、 N Oプラズマを約 350°Cで約 2分間照射するプラズ [0070] On this alumina film 56, a TEOS-NSG film 57 having a film thickness of about lOOnm is formed by CVD, and then the surface is irradiated with NO plasma at about 350 ° C for about 2 minutes.
2  2
マァニールによって窒化する(窒化膜は図示せず。)。  Nitrid by Manner (nitride film not shown).
[0071] 図 16は第 1の適用例の第 13工程の要部断面模式図である。 FIG. 16 is a schematic cross-sectional view of the relevant part showing a thirteenth step of the first application example.
TEOS— NSG膜 57表面の窒化後は、第 1の配線層 52aおよびパッド外耐湿リング TEOS— NSG film 57 After nitriding the surface, first wiring layer 52a and pad outside moisture-resistant ring
52bに通じるコンタクトホール 58を形成する。このコンタクトホール 58の形成の際は、 まず、所定のレジストパターンを形成し、それをマスクにして、 TEOS— NSG膜 54, 5A contact hole 58 leading to 52b is formed. When forming the contact hole 58, first, a predetermined resist pattern is formed, and the resist pattern is used as a mask to form the TEOS-NSG film 54, 5
5, 57およびアルミナ膜 53, 56をエッチングする。 5 and 57 and the alumina films 53 and 56 are etched.
[0072] 次いで、このようにしてコンタクトホール 58を形成した後に、所定条件のァニール処 理を行う。このァニール処理は、上記の表 1および表 2の知見に基づき、その条件を 設定する。すなわち、 2枚のアルミナ膜 53, 56で挟まれた TEOS— NSG膜 54, 55 力も効果的に脱ガスが行われ、後にコンタクトホール 58を Wで埋め込んだときに、コ ンタクトホール 58内の Wプラグに未形成部分が多く発生しないような条件とする。 [0072] Next, after the contact hole 58 is formed in this way, annealing treatment under a predetermined condition is performed. This annealing process is based on the findings in Tables 1 and 2 above. Set. That is, the TEOS-NSG film 54, 55 sandwiched between the two alumina films 53, 56 is also effectively degassed, and when the contact hole 58 is filled with W later, the W in the contact hole 58 is reduced. The conditions are such that many unformed parts do not occur in the plug.
[0073] 図 17は第 1の適用例の第 14工程の要部断面模式図である。 FIG. 17 is a schematic cross-sectional view of the relevant part showing a fourteenth step of the first application example.
コンタクトホール 58の形成後、所定のァニール処理を行った後は、まず、 PVD法を 用いて全面に膜厚約 50nmの TiN膜をバリアメタル膜として形成し(図示せず。)、そ の上に、 CVD法を用いて膜厚約 650nmの W膜を形成する。そして、その W膜を全 面エッチバックする、あるいは CMP処理によって平坦ィ匕することにより、 Wプラグ 59 を形成する。  After the contact hole 58 is formed and a predetermined annealing process is performed, first, a TiN film having a thickness of about 50 nm is formed as a barrier metal film on the entire surface by using the PVD method (not shown). Next, a W film with a film thickness of about 650 nm is formed using the CVD method. Then, the W plug 59 is formed by etching back the entire surface of the W film or planarizing it by CMP.
[0074] 図 18は第 1の適用例の第 15工程の要部断面模式図である。  FIG. 18 is a schematic cross-sectional view of the relevant part showing a fifteenth step of the first application example.
Wプラグ 59の形成後は、第 1の配線層 52aと同様にして 2層目の配線層を形成する 。まず、 PVD法を用いて膜厚約 550nmの Al— Cu膜、膜厚約 5nmの Ti膜、膜厚約 1 50nmの TiN膜を順に形成した積層膜 60を形成する。  After the formation of the W plug 59, a second wiring layer is formed in the same manner as the first wiring layer 52a. First, using the PVD method, a laminated film 60 is formed in which an Al—Cu film with a thickness of about 550 nm, a Ti film with a thickness of about 5 nm, and a TiN film with a thickness of about 150 nm are formed in this order.
[0075] 図 19は第 1の適用例の第 16工程の要部断面模式図である。  FIG. 19 is a schematic cross-sectional view of the relevant part showing a sixteenth step of the first application example.
積層膜 60の形成後、所定のレジストパターンを形成してエッチングを行い、第 2の 配線層 60aを形成する。また、同時に、最終的にパッド部が接続されるようになる領 域の外側と内側にそれぞれパッド外耐湿リング 60b、パッド内耐湿リング 60cを形成 する。その後は、 CVD法を用いて全面に膜厚約 2200nmの TEOS— NSG膜 61を 形成し、 CMP処理によってその平坦ィ匕を行う。そして、 TEOS— NSG膜 61表面を、 N Oプラズマを約 350°Cで約 4分間照射するプラズマァニールによって窒化した後( After the formation of the laminated film 60, a predetermined resist pattern is formed and etched to form the second wiring layer 60a. At the same time, the pad outside moisture-resistant ring 60b and the pad inside moisture-resistant ring 60c are respectively formed on the outside and inside of the region where the pad portion is finally connected. After that, a TEOS-NSG film 61 having a film thickness of about 2200 nm is formed on the entire surface by using the CVD method, and flattened by CMP processing. After nitriding the surface of TEOS-NSG film 61 with plasma annealing that irradiates N 2 O plasma at about 350 ° C for about 4 minutes (
2 2
窒化膜は図示せず。)、 CVD法を用いて膜厚約 lOOnmの TEOS—NSG膜 62を形 成し、さらにその表面を、 N Oプラズマを約 350°Cで約 2分間照射するプラズマァニ  The nitride film is not shown. ), A TEOS-NSG film 62 having a film thickness of about lOOnm is formed by CVD, and the surface is irradiated with N 2 O plasma at about 350 ° C for about 2 minutes.
2  2
ールによって窒化する(窒化膜は図示せず。 ) o  (Nitride film not shown.) O
[0076] 図 20は第 1の適用例の第 17工程の要部断面模式図である。  FIG. 20 is a schematic cross-sectional view of the relevant part showing a seventeenth step of the first application example.
TEOS— NSG膜 62表面の窒化後は、第 2の配線層 60a、パッド外耐湿リング 60b およびパッド内耐湿リング 60cに通じるコンタクトホールを形成し、 PVD法を用いて全 面に膜厚約 50nmの TiN膜をバリアメタル膜として形成する(図示せず。 ) 0そして、そ の上に、 CVD法を用いて膜厚約 650nmの W膜を形成し、それを全面エッチバック する、あるいは CMP処理によって平坦ィ匕することにより、 Wプラグ 63を形成する。 After nitriding the surface of TEOS-NSG film 62, contact holes that lead to second wiring layer 60a, pad external moisture-resistant ring 60b, and pad internal moisture-resistant ring 60c are formed, and PVD is used to form a film with a thickness of approximately 50 nm. A TiN film is formed as a barrier metal film (not shown). 0 Then, a W film with a film thickness of about 650 nm is formed on it using a CVD method, and it is etched back on the entire surface. W plug 63 is formed by flattening by CMP processing.
[0077] 図 21は第 1の適用例の第 18工程の要部断面模式図である。 FIG. 21 is a schematic cross-sectional view of the relevant part showing an eighteenth step of the first application example.
Wプラグ 63の形成後は、同様にして 3層目の配線層を形成する。まず、 PVD法を 用いて膜厚約 500nmの Al— Cu膜、膜厚約 150nmの TiN膜を順に形成した積層膜 64を形成する。  After the W plug 63 is formed, a third wiring layer is formed in the same manner. First, using the PVD method, a laminated film 64 is formed in which an Al—Cu film with a thickness of about 500 nm and a TiN film with a thickness of about 150 nm are formed in this order.
[0078] 図 22は第 1の適用例の第 19工程の要部断面模式図である。  FIG. 22 is a cross-sectional schematic diagram for major components showing a nineteenth step of the first application example.
積層膜 64の形成後、所定のレジストパターンを形成してエッチングを行い、第 3の 配線層 64aを形成する。また、同時に、最終的にパッド部が接続されるようになる領 域の外側と内側にそれぞれパッド外耐湿リング 64b、パッド内耐湿リング 64cを形成 する。その後は、 CVD法を用いて全面に膜厚約 lOOnmの TEOS— NSG膜 65を形 成し、 CMP処理によってその平坦ィ匕を行う。そして、 TEOS— NSG膜 65表面を、 N  After forming the laminated film 64, a predetermined resist pattern is formed and etched to form the third wiring layer 64a. At the same time, an external pad moisture-resistant ring 64b and an internal pad moisture-resistant ring 64c are formed on the outer side and the inner side of the region where the pad part is finally connected, respectively. After that, a TEOS-NSG film 65 having a film thickness of about lOOnm is formed on the entire surface by CVD and flattened by CMP. TEOS—NSG film 65
2 2
Oプラズマを約 350°Cで約 2分間照射するプラズマァニールによって窒化した後(窒 化膜は図示せず。)、 CVD法を用いて膜厚約 350nmの SiN膜 66を形成する。 After nitriding with a plasma anneal that irradiates O plasma at about 350 ° C for about 2 minutes (nitride film not shown), a SiN film 66 having a film thickness of about 350 nm is formed by CVD.
[0079] 図 23は第 1の適用例の第 20工程の要部断面模式図である。  FIG. 23 is a schematic cross-sectional view of an essential part of the twentieth process of the first application example.
まず、 SiN膜 66上にレジストパターンを形成し(図示せず。)、パッド部形成領域の S iN膜 66、 TEOS— NSG膜 65、および第 3の配線層 64a上部の TiN膜をエッチング して、開口部を形成する。  First, a resist pattern is formed on the SiN film 66 (not shown), and the SiN film 66 in the pad formation region, the TEOS-NSG film 65, and the TiN film on the third wiring layer 64a are etched. , Forming an opening.
[0080] その後、その開口部を除く領域に膜厚約 3 μ mの感光性ポリイミドを塗布'パター- ングする。なお、このとき感光性ポリイミドに代えて非感光性ポリイミドを用いる場合に は、非感光性ポリイミドを塗布した後、その上にレジストパターンを形成し専用現像液 を用いて非感光性ポリイミドを溶解する。ポリイミドのパターニング後は、横型炉を用 い、 N雰囲気中(N流量 lOOLZmin)、約 310°Cで約 40分のァニール処理を行い Thereafter, photosensitive polyimide having a film thickness of about 3 μm is applied to the region excluding the opening and patterned. In this case, if non-photosensitive polyimide is used instead of photosensitive polyimide, after applying non-photosensitive polyimide, a resist pattern is formed on it and the non-photosensitive polyimide is dissolved using a dedicated developer. . After polyimide patterning, annealing is performed for about 40 minutes at about 310 ° C in N atmosphere (N flow lOOLZmin) using a horizontal furnace.
2 2 twenty two
、そのポリイミドを硬化させて保護膜 67を形成する。  Then, the polyimide is cured to form a protective film 67.
[0081] これにより、パッド部 68、 FeRAMセル部 69、ロジック回路部 70およびその他の周 辺回路部 71で構成される FeRAM80が形成される。 As a result, the FeRAM 80 including the pad portion 68, the FeRAM cell portion 69, the logic circuit portion 70, and the other peripheral circuit portion 71 is formed.
この FeRAM80は、第 1の配線層 52a表面にアルミナ膜 53が形成され、その上に T EOS— NSG膜 54, 55を介して、もう 1枚のアルミナ膜 56が形成された構造を有して いる。このような構造に対し、第 1の配線層 52aに通じるコンタクトホール 58を形成し、 その後、上記の表 1および表 2の知見に基づいた所定条件のァニール処理を行う。こ れにより、 Wプラグ 59の形成不良が効果的に抑制された FeRAM80を形成すること ができる。 This FeRAM 80 has a structure in which an alumina film 53 is formed on the surface of the first wiring layer 52a, and another alumina film 56 is formed thereon via TEOS-NSG films 54 and 55. Yes. For such a structure, a contact hole 58 leading to the first wiring layer 52a is formed, Thereafter, annealing is performed under predetermined conditions based on the findings in Tables 1 and 2 above. As a result, the FeRAM 80 in which the formation failure of the W plug 59 is effectively suppressed can be formed.
[0082] なお、 Wプラグ 59の形成不良を抑制するためには、前述のように、このような所定 条件のァニール処理に代えて、 Wプラグ 59形成前のコンタクトホール 58内壁面に対 し、その耐湿性を向上させる表面処理、例えばプラズマ窒化処理を行うようにしてもよ い。  [0082] In order to suppress the formation failure of the W plug 59, as described above, instead of the annealing process under such a predetermined condition, the inner wall surface of the contact hole 58 before the W plug 59 is formed, A surface treatment for improving the moisture resistance, for example, a plasma nitriding treatment may be performed.
[0083] また、水分や水素のブロック膜として機能するアルミナ膜の形成位置 (形成層)は、 上記の例に限定されるものはない。また、その形成位置に応じ、それらに挟まれる層 間絶縁膜の脱ガスのためのァニール処理を行うタイミング、ある 、はコンタクトホール 内壁面の耐湿性向上のための表面処理を行うタイミングも変わってくる。水分や水素 をブロックするためのアルミナ膜は、例えば、次の図 24から図 27に示すような位置に 形成することも可能である。  In addition, the formation position (formation layer) of the alumina film functioning as a moisture or hydrogen block film is not limited to the above example. In addition, depending on the formation position, the timing for performing annealing treatment for degassing the interlayer insulating film sandwiched between them, or the timing for performing surface treatment for improving the moisture resistance of the inner wall surface of the contact hole, has also changed. come. An alumina film for blocking moisture and hydrogen can be formed at the positions shown in FIGS. 24 to 27, for example.
[0084] 図 24から図 27は第 1の適用例についての変形例を示す要部断面模式図である。  FIGS. 24 to 27 are schematic cross-sectional views of the relevant part showing modifications of the first application example.
なお、図 24から図 27では、図 4から図 23に示した要素と同一の要素については同 一の符号を付し、その説明の詳細は省略する。  In FIGS. 24 to 27, the same elements as those shown in FIGS. 4 to 23 are denoted by the same reference numerals, and detailed description thereof is omitted.
[0085] 図 24には、上記の図 23に示したアルミナ膜 53に代えて、 TEOS— NSG膜 54, 55 間にアルミナ膜 53aを形成し、 TEOS— NSG膜 55上にもう 1枚のアルミナ膜 56を形 成した場合を示している。  In FIG. 24, instead of the alumina film 53 shown in FIG. 23, an alumina film 53a is formed between the TEOS-NSG films 54, 55, and another alumina film is formed on the TEOS-NSG film 55. The case where the film 56 is formed is shown.
[0086] この図 24に示すような構造を形成する場合には、第 1の配線層 52aの形成後に、 T EOS— NSG膜 54を形成し、アルミナ膜 53aを形成し、 TEOS— NSG膜 55、アルミ ナ膜 56および TEOS— NSG膜 57を形成する。そして、 Wプラグ 59形成用のコンタ タトホール 58の形成後に、所定条件のァニール処理を行う。それにより、 TEOS— N SG膜 55からそのコンタクトホール 58への脱ガスが充分になされ、 Wプラグ 59の形成 不良が効果的に抑制されるようになる。  When forming the structure as shown in FIG. 24, after the formation of the first wiring layer 52a, the TEOS—NSG film 54 is formed, the alumina film 53a is formed, and the TEOS—NSG film 55 is formed. Then, an alumina film 56 and a TEOS—NSG film 57 are formed. Then, after the formation of the contact hole 58 for forming the W plug 59, annealing treatment under a predetermined condition is performed. As a result, the degassing from the TEOS-NSG film 55 to the contact hole 58 is sufficiently performed, and the formation failure of the W plug 59 is effectively suppressed.
[0087] あるいは、 Wプラグ 59形成用のコンタクトホール 58の形成後に、所定の表面処理を 行う。それにより、そのコンタクトホール 58内壁面の耐湿性が向上して TEOS— NSG 膜 55力 そのコンタクトホール 58への脱ガスが抑えられ、 Wプラグ 59の形成不良が 効果的に抑制されるようになる。 Alternatively, a predetermined surface treatment is performed after the formation of the contact hole 58 for forming the W plug 59. As a result, the moisture resistance of the inner wall surface of the contact hole 58 is improved and the TEOS—NSG film 55 force is prevented from degassing to the contact hole 58, and the W plug 59 is not formed properly. It will be effectively suppressed.
[0088] 図 25には、上記の図 23〖こ示したアルミナ膜 53, 56に代えて、第 2の配線層 60aお よび TEOS— NSG膜 57の表面と、 TEOS—NSG膜 62上に、それぞれアルミナ膜 5 3b, 56bを形成した場合を示している。  In FIG. 25, instead of the alumina films 53 and 56 shown in FIG. 23, the surface of the second wiring layer 60a and the TEOS-NSG film 57 and the TEOS-NSG film 62 are In this example, alumina films 53b and 56b are formed.
[0089] この図 25に示すような構造を形成する場合には、第 2の配線層 60aの形成後に、ァ ルミナ膜 53bを形成し、 TEOS— NSG膜 61, 62を形成し、さらにアルミナ膜 56bを 形成する。そして、第 2の配線層 60aに通じる Wプラグ 63形成用のコンタクトホールの 形成後に、所定条件のァニール処理を行う。それにより、 TEOS—NSG膜 61, 62か らそのコンタクトホールへの脱ガスが充分になされ、 Wプラグ 63の形成不良が効果的 に抑制されるようになる。  When forming the structure as shown in FIG. 25, after forming the second wiring layer 60a, the alumina film 53b is formed, the TEOS-NSG films 61 and 62 are formed, and the alumina film is further formed. 56b is formed. Then, after the formation of the contact hole for forming the W plug 63 leading to the second wiring layer 60a, annealing treatment under a predetermined condition is performed. As a result, the TEOS-NSG films 61 and 62 are sufficiently degassed into the contact holes, and the formation failure of the W plug 63 is effectively suppressed.
[0090] あるいは、 Wプラグ 63形成用のコンタクトホールの形成後に、所定の表面処理を行 う。それにより、そのコンタクトホール内壁面の耐湿性が向上して TEOS— NSG膜 61Alternatively, a predetermined surface treatment is performed after the formation of the contact hole for forming the W plug 63. As a result, the moisture resistance of the inner wall surface of the contact hole is improved and the TEOS— NSG film 61
, 62からそのコンタクトホールへの脱ガスが抑えられ、 Wプラグ 63の形成不良が効果 的に抑制されるようになる。 , 62 is prevented from degassing to the contact hole, and the formation failure of the W plug 63 is effectively suppressed.
[0091] 図 26には、上記の図 23〖こ示したアルミナ膜 53, 56に代えて、強誘電体キャパシタ 層のアルミナ膜 53c (図 23では図示せず。)に加え、強誘電体キャパシタ層と第 1の 配線層 52aの間の TEOS - NSG膜 46内にアルミナ膜 56cを形成した場合を示して いる。 FIG. 26 shows a ferroelectric capacitor in addition to the alumina film 53c (not shown in FIG. 23) of the ferroelectric capacitor layer in place of the alumina films 53 and 56 shown in FIG. In this example, an alumina film 56c is formed in the TEOS-NSG film 46 between the first wiring layer 52a and the first wiring layer 52a.
[0092] この図 26に示すような構造を形成する場合には、下部電極 43a、強誘電体膜 44a および上部電極 45aの形成後、アルミナ膜 53cを形成し、さらに間にアルミナ膜 56c が挟まれるようにして TEOS— NSG膜 46を形成する。その後、 Wプラグ 49形成用の コンタクトホール 48の形成後と、その後に行われる上部電極 45aと下部電極 43aに通 じるコンタクトホール 51の形成後に、それぞれ所定条件のァニール処理を行う。それ により、 TEOS— NSG膜 46からそのコンタクトホール 48, 51への脱ガスが充分にな され、 Wプラグ 49および図 13の積層膜 52 (第 1の配線層 52a)の形成不良が効果的 に抑制されるようになる。  In the case of forming the structure as shown in FIG. 26, after the formation of the lower electrode 43a, the ferroelectric film 44a and the upper electrode 45a, an alumina film 53c is formed, and an alumina film 56c is sandwiched therebetween. In this way, a TEOS-NSG film 46 is formed. After that, after the formation of the contact hole 48 for forming the W plug 49 and the subsequent formation of the contact hole 51 leading to the upper electrode 45a and the lower electrode 43a, annealing treatment under predetermined conditions is performed. As a result, the degassing from the TEOS-NSG film 46 to the contact holes 48 and 51 is sufficiently performed, and the formation failure of the W plug 49 and the laminated film 52 (first wiring layer 52a) of FIG. 13 is effectively performed. It will be suppressed.
[0093] あるいは、 Wプラグ 49形成用のコンタクトホール 48の形成後と、上部電極 45aと下 部電極 43aに通じるコンタクトホール 51の形成後に、それぞれ所定の表面処理を行 う。それにより、そのコンタクトホール 48, 51内壁面の而湿性が向上して TEOS— NS G膜 46からそのコンタクトホール 48, 51への脱ガスが抑えられ、 Wプラグ 49および図 13の積層膜 52 (第 1の配線層 52a)の形成不良が効果的に抑制されるようになる。 [0093] Alternatively, after the formation of the contact hole 48 for forming the W plug 49 and the formation of the contact hole 51 leading to the upper electrode 45a and the lower electrode 43a, a predetermined surface treatment is performed. Yeah. As a result, the moisture content of the inner wall surfaces of the contact holes 48, 51 is improved, and degassing from the TEOS-NS G film 46 to the contact holes 48, 51 is suppressed, and the W plug 49 and the laminated film 52 (FIG. 13) The formation failure of the first wiring layer 52a) is effectively suppressed.
[0094] 図 27には、上記の図 23に示したアルミナ膜 42を SiON膜や SiN膜等の別の絶縁 膜 42aに代えると共に、その上下層に、上記の図 23に示したアルミナ膜 53, 56に代 えてァノレミナ膜 53d, 56dを形成した場合を示して 、る。  In FIG. 27, the alumina film 42 shown in FIG. 23 is replaced with another insulating film 42a such as a SiON film or a SiN film, and the alumina film 53 shown in FIG. , 56 shows the case where the anolemina films 53d and 56d are formed.
[0095] この図 27に示すような構造を形成する場合には、 TEOS—NSG膜 41上にアルミ ナ膜 53dを形成した後、絶縁膜 42aを形成し、その上にアルミナ膜 56dを形成する。 そして、強誘電体キャパシタおよび TEOS— NSG膜 46を形成し、トランジスタ部 38 に達するコンタクトホール 48の形成後に、所定条件のァニール処理を行う。トランジ スタ層と強誘電体キャパシタ層の間に 2層のアルミナ膜 53d, 56dが形成されるため、 絶縁膜 42aからコンタクトホール 48への脱ガスが充分になされ、 Wプラグ 49の形成 不良が効果的に抑制されるようになる。  When forming the structure shown in FIG. 27, after forming the alumina film 53d on the TEOS-NSG film 41, the insulating film 42a is formed, and the alumina film 56d is formed thereon. . Then, a ferroelectric capacitor and a TEOS-NSG film 46 are formed, and after the contact hole 48 reaching the transistor portion 38 is formed, annealing treatment under a predetermined condition is performed. Since two layers of alumina films 53d and 56d are formed between the transistor layer and the ferroelectric capacitor layer, the insulating film 42a is sufficiently degassed to the contact hole 48, and the defective formation of the W plug 49 is effective. Will be suppressed.
[0096] あるいは、トランジスタ部 38に達するコンタクトホール 48の形成後に所定の表面処 理を行う。それにより、絶縁膜 42aからそのコンタクトホール 48への脱ガスが抑えられ 、 Wプラグ 49の形成不良が効果的に抑制されるようになる。  Alternatively, a predetermined surface treatment is performed after forming the contact hole 48 reaching the transistor portion 38. As a result, outgassing from the insulating film 42a to the contact hole 48 is suppressed, and the formation failure of the W plug 49 is effectively suppressed.
[0097] 次に、第 2の適用例について説明する。ここでは、スタック型キャパシタ構造を有す る FeRAMを例にして述べる。  Next, a second application example will be described. Here, FeRAM with a stacked capacitor structure is described as an example.
図 28は第 2の適用例の FeRAMの要部断面模式図である。  FIG. 28 is a schematic cross-sectional view of the relevant part of the FeRAM of the second application example.
[0098] 図 28に示す FeRAM90は、 Si基板 91の素子分離領域 92で画定された素子領域 にゥエル 93が形成され、常法に従い、ゲート絶縁膜 94、ゲート電極 95、サイドウォー ル絶縁膜 96、ソース拡散層 97およびドレイン拡散層 98が形成されて、トランジスタ部 99が構成されている。  In the FeRAM 90 shown in FIG. 28, a well 93 is formed in the element region defined by the element isolation region 92 of the Si substrate 91, and a gate insulating film 94, a gate electrode 95, and a sidewall insulating film 96 are formed in accordance with a conventional method. A source diffusion layer 97 and a drain diffusion layer 98 are formed to constitute a transistor portion 99.
[0099] トランジスタ部 99は、 CVD法を用いて形成された SiON膜 100で覆われ、その上に は、同じく CVD法を用いて形成された SiO膜 101が堆積されている。なお、 SiON  The transistor unit 99 is covered with a SiON film 100 formed using the CVD method, and an SiO film 101 similarly formed using the CVD method is deposited thereon. SiON
2  2
膜 100は、コンタクトホールエッチングの際のストッパ膜としての機能と、耐湿性向上 の機能を有している。  The film 100 has a function as a stopper film in contact hole etching and a function of improving moisture resistance.
[0100] そして、 SiO膜 101および SiON膜 100を貫通し、トランジスタ部 99のソース拡散 層 97およびドレイン拡散層 98に達するコンタクトホールに、バリアメタル膜(図示せず 。)を介して Wプラグ 102が形成されている。ノ リアメタル膜は、コンタクトホール形成 後にスパッタ法等を用いて Ti膜と TiN膜を積層して形成される。 Wプラグ 102は、全 面にバリアメタル膜を堆積した後に、その上力も CVD法等を用いて Wを堆積し、それ らを CMP法を用いて SiO膜 101表面まで研磨することによって形成する。 [0100] Then, the source diffusion of the transistor part 99 passes through the SiO film 101 and the SiON film 100. A W plug 102 is formed in a contact hole reaching the layer 97 and the drain diffusion layer 98 via a barrier metal film (not shown). The noria metal film is formed by laminating a Ti film and a TiN film by sputtering after forming the contact holes. The W plug 102 is formed by depositing a barrier metal film on the entire surface, depositing W using the CVD method or the like, and polishing them to the surface of the SiO film 101 using the CMP method.
2  2
[0101] トランジスタ部 99のソース拡散層 97に接続された Wプラグ 102の直上には、膜厚約 200nmの下部電極 103、膜厚約 120nmの強誘電体膜 104、膜厚約 200nmの上部 電極 105の積層体力もなる強誘電体キャパシタが形成されている。例えば、下部電 極 103は Ir膜で、強誘電体膜 104は PZT膜で、上部電極 105は IrO膜で、それぞれ  [0101] Immediately above the W plug 102 connected to the source diffusion layer 97 of the transistor part 99 is a lower electrode 103 having a thickness of about 200 nm, a ferroelectric film 104 having a thickness of about 120 nm, and an upper electrode having a thickness of about 200 nm. A ferroelectric capacitor having a laminate strength of 105 is formed. For example, the lower electrode 103 is an Ir film, the ferroelectric film 104 is a PZT film, and the upper electrode 105 is an IrO film.
2  2
構成される。その場合、 Ir膜および IrO膜は、スパッタ法を用いて形成することができ  Composed. In that case, the Ir film and IrO film can be formed by sputtering.
2  2
る。また、 PZT膜は、 MOCVD (Metal Organic Chemical Vapor Deposition)法を用 いて形成する。なお、上部電極 105の形成後には、通常、 PZT膜の回復ァニールが 行われる。  The The PZT film is formed by using MOCVD (Metal Organic Chemical Vapor Deposition) method. Incidentally, after the formation of the upper electrode 105, a recovery annealing of the PZT film is usually performed.
[0102] 強誘電体キャパシタ表面と SiO膜 101上には、強誘電体キャパシタ保護のため、  [0102] On the surface of the ferroelectric capacitor and the SiO film 101, in order to protect the ferroelectric capacitor,
2  2
アルミナ膜 106が形成されている。アルミナ膜 106上には、 SiO膜 107が形成され、  An alumina film 106 is formed. A SiO film 107 is formed on the alumina film 106,
2  2
その上にはさらにアルミナ膜 108が形成されている。その上には保護膜 109が形成さ れ、トランジスタ部 99のドレイン拡散層 98に接続された Wプラグ 102に接続されるよう に、バリアメタル膜(図示せず。)を介して Wプラグ 110が形成されている。そして、こ の Wプラグ 110上、および強誘電体キャパシタの上部電極 105に通じるコンタクトホ ールに、それぞれ電極 11 la, 111b, 111cが形成されている。なお、より多層の構造 の場合には、これらの電極 11 la, 111b, 111cに代えて、配線層を形成すればよい  An alumina film 108 is further formed thereon. A protective film 109 is formed thereon, and the W plug 110 is connected via a barrier metal film (not shown) so as to be connected to the W plug 102 connected to the drain diffusion layer 98 of the transistor section 99. Is formed. Electrodes 11 la, 111b, and 111c are formed on the W plug 110 and contact holes that lead to the upper electrode 105 of the ferroelectric capacitor, respectively. In the case of a multilayer structure, a wiring layer may be formed instead of these electrodes 11la, 111b, 111c.
[0103] このような構成の FeRAM90では、 Wプラグ 110形成用のコンタクトホールの形成 後や、上部電極 105に通じるコンタクトホールの形成後に、上記の表 1および表 2の 知見に基づいた所定条件のァニール処理を行う。あるいは、コンタクトホール内壁面 の耐湿性向上のために所定の表面処理を行う。それ〖こより、 2枚のアルミナ膜 106, 1 08に挟まれた SiO膜 107からの脱ガスが充分になされ、 Wプラグ 110や電極 11 lb [0103] In the FeRAM90 having such a configuration, after the formation of the contact hole for forming the W plug 110 or after the formation of the contact hole leading to the upper electrode 105, the predetermined conditions based on the knowledge in Table 1 and Table 2 above are satisfied. Annealing is performed. Alternatively, a predetermined surface treatment is performed to improve the moisture resistance of the inner wall surface of the contact hole. From this point, the SiO film 107 sandwiched between the two alumina films 106 and 108 is sufficiently degassed, and the W plug 110 and electrode 11 lb
2  2
、 11 lcの形成不良が効果的に抑制されるようになる。 [0104] なお、この FeRAM90のようなスタック型キャパシタ構造の場合においても、その構 造によっては、上記プレーナ型キャパシタ構造について図 24、図 25および図 27に 例示したのと同様に、アルミナ膜の形成位置 (形成層)を変更することが可能である。 そのような場合も、その形成位置に応じ、適当なタイミングで脱ガスのためのァニール 処理、ある 、は耐湿性向上のための表面処理を所定条件にて行うようにすればよ!、 , 11 lc formation defects are effectively suppressed. Note that even in the case of a stacked capacitor structure such as this FeRAM90, depending on the structure, an alumina film may be formed in the same manner as illustrated in FIGS. 24, 25, and 27 for the planar capacitor structure. The formation position (formation layer) can be changed. Even in such a case, an annealing process for degassing, or a surface treatment for improving the moisture resistance should be performed under predetermined conditions according to the formation position!
[0105] 以上説明したように、ここでは、層間絶縁膜がアルミナ膜に挟まれた構造に対してコ ンタクトホールを形成してそこにプラグ等を形成する際、コンタクトホール形成後でプ ラグ等の形成前に、所定条件のァニール処理、またはコンタクトホール内壁面に対す る所定の表面処理を行うようにした。 [0105] As described above, here, when a contact hole is formed in a structure in which an interlayer insulating film is sandwiched between alumina films and a plug or the like is formed therein, the plug or the like is formed after the contact hole is formed. Annealing treatment under a predetermined condition or a predetermined surface treatment for the inner wall surface of the contact hole was performed before the formation of.
[0106] ァニール処理を行う場合、その条件としては、不活性ガス雰囲気中または真空中、 温度 350°Cで時間 120分〜 240分の範囲、好ましくは、不活性ガス雰囲気中または 真空中、温度 350°Cで時間 180分〜 240分、より好ましくは、不活性ガス雰囲気中ま たは真空中、温度 350°Cで時間 180分とする。あるいは、不活性ガス雰囲気中また は真空中、温度 350°C〜500°Cの範囲で時間 120分、好ましくは、不活性ガス雰囲 気中または真空中、温度 375°C〜400°Cの範囲で時間 120分とする。このようなァ- ール処理を行うことにより、アルミナ膜に挟まれた層間絶縁膜からコンタクトホールへ の脱ガスを充分に行うことができ、プラグ等を形成する際の加熱に起因するプラグ等 の形成不良の発生を効果的に抑制することができる。  [0106] When the annealing treatment is performed, the conditions are as follows: in an inert gas atmosphere or in vacuum, at a temperature of 350 ° C for 120 minutes to 240 minutes, preferably in an inert gas atmosphere or in vacuum Time at 350 ° C. for 180 minutes to 240 minutes, more preferably in an inert gas atmosphere or in a vacuum at a temperature of 350 ° C. for 180 minutes. Alternatively, in an inert gas atmosphere or in vacuum, at a temperature in the range of 350 ° C to 500 ° C for 120 minutes, preferably in an inert gas atmosphere or in vacuum at a temperature of 375 ° C to 400 ° C. The range is 120 minutes. By performing such a pole treatment, degassing from the interlayer insulating film sandwiched between the alumina films to the contact hole can be sufficiently performed, and plugs and the like caused by heating when forming the plugs and the like can be performed. Generation | occurrence | production of formation defect can be suppressed effectively.
[0107] また、表面処理を行う場合には、例えばプラズマ窒化処理を用いる。このような表面 処理を行うことにより、コンタクトホール内壁面の耐湿性を向上させ、プラグ等を形成 する際の加熱時に、アルミナ膜に挟まれた層間絶縁膜からコンタクトホールへの脱ガ スを抑えることができ、プラグ等の形成不良の発生を効果的に抑制することができる。  [0107] Further, when performing the surface treatment, for example, a plasma nitriding treatment is used. By performing such surface treatment, the moisture resistance of the inner wall surface of the contact hole is improved, and degassing from the interlayer insulating film sandwiched between the alumina films to the contact hole is suppressed during heating when forming a plug or the like. Therefore, it is possible to effectively suppress the occurrence of formation defects such as plugs.
[0108] なお、以上の説明では、水分 ·水素ブロック膜としてアルミナ膜を用いる場合を例に して述べたが、アルミナ膜のほか、酸ィ匕チタン (TiO )膜等の酸化物膜、 SiON膜、 Si  In the above description, the case where an alumina film is used as the moisture / hydrogen blocking film has been described as an example. In addition to the alumina film, an oxide film such as a titanium oxide (TiO 2) film, SiON Membrane, Si
2  2
N膜、窒化ホウ素(BN)膜等の窒化物膜、シリコンカーバイド (SiC)膜、カーボン (C) 膜等の炭化物膜、ポリイミド等の榭脂膜等も用いることができ、その場合にも上記所 定のァニール処理や表面処理によって上記同様の効果を得ることが可能である。ま た、これらの中の異なる膜を用いて層間絶縁膜を挟んだ構造とした場合にも、上記所 定のァニール処理や表面処理によって上記同様の効果を得ることが可能である。 N films, nitride films such as boron nitride (BN) films, silicon carbide (SiC) films, carbide films such as carbon (C) films, and polyimide resin films can be used. The same effects as described above can be obtained by predetermined annealing or surface treatment. Ma Even in the case where the interlayer insulating film is sandwiched by using different films among these, the same effects as described above can be obtained by the predetermined annealing treatment or surface treatment.
[0109] また、以上の説明では、強誘電体膜として PZT膜を用いる場合を例にして述べたが 、 PZT膜のほ力、ランタンドープチタン酸ジルコン酸鉛(Pb La Zr Ti O )、 -ォ  [0109] In the above description, the case where a PZT film is used as a ferroelectric film has been described as an example. However, the power of the PZT film, lanthanum-doped lead zirconate titanate (Pb La Zr TiO),- O
1-χ l -y y 3 ブ酸タンタノレ酸ストロンチウムビスマス(SrBi (Ta Nb ) O ) )、チタン酸ビスマス (  1-χ l -y y 3 Strontium bismuth tantalate tantalate (SrBi (Ta Nb) O)), bismuth titanate (
2 1 2 9  2 1 2 9
Bi Ti O )等も用いることが可能である。  BiTi 2 O 3) or the like can also be used.
4 2 12  4 2 12
[0110] また、以上の説明では、 FeRAMを例にして述べた力 上記所定のァニール処理 や表面処理は、アルミナ膜等の水分'水素ブロック膜や、エッチングストツバ膜等のそ の他の層間膜を用いた同様の層間コンタ外構造を有する種々の半導体装置の形成 に広く適用可能である。  [0110] In the above description, the force described using FeRAM as an example. The predetermined annealing treatment or surface treatment is performed by using a water-hydrogen blocking film such as an alumina film or another interlayer such as an etching stubber film. The present invention can be widely applied to the formation of various semiconductor devices having the same interlayer outer structure using a film.
[0111] 上記については単に本発明の原理を示すものである。さらに、多数の変形、変更が 当業者にとって可能であり、本発明は上記に示し、説明した正確な構成および応用 例に限定されるものではなぐ対応するすべての変形例および均等物は、添付の請 求項およびその均等物による本発明の範囲とみなされる。  [0111] The above merely illustrates the principle of the present invention. In addition, many variations and modifications are possible to those skilled in the art, and the invention is not limited to the precise configuration and application shown and described above, but all corresponding variations and equivalents are It is regarded as the scope of the present invention by the claims and their equivalents.
符号の説明  Explanation of symbols
[0112] 1 半導体装置 [0112] 1 Semiconductor device
2 強誘電体キャパシタ  2 Ferroelectric capacitor
2a, 43a, 103 下部電極  2a, 43a, 103 Bottom electrode
2b, 45a, 105 上部電極  2b, 45a, 105 Upper electrode
2c, 44a, 104 強誘電体膜  2c, 44a, 104 Ferroelectric film
3 第 1の層間絶縁膜  3 First interlayer insulating film
4a, 4b, 4c, 10, 15a, 15b, 49, 59, 63, 102, 110 Wプラグ  4a, 4b, 4c, 10, 15a, 15b, 49, 59, 63, 102, 110 W plug
5a, 5b, 5c, 52a 第 1の配線層  5a, 5b, 5c, 52a First wiring layer
6 第 1のアルミナ膜  6 First alumina film
7 第 2の層間絶縁膜  7 Second interlayer insulating film
8 第 2のアルミナ膜  8 Second alumina membrane
9 第 3の層間絶縁膜  9 Third interlayer insulating film
10a, 48, 51, 58 コンタクトホール a, l ib, 60a 第 2の配線層 10a, 48, 51, 58 Contact hole a, l ib, 60a Second wiring layer
第 4の層間絶縁膜  Fourth interlayer insulating film
第 3のアルミナ膜  Third alumina membrane
第 5の層間絶縁膜 Fifth interlayer insulating film
a, 16b, 64a 第 3の配線層 a, 16b, 64a 3rd wiring layer
第 6の層間絶縁膜 6th interlayer insulating film
, 67, 109 保護膜 , 67, 109 Protective film
サンプノレ  Samnore
A1膜  A1 membrane
TiH  TiH
TiN膜 TiN film
, 91 Si基板, 91 Si substrate
, 92 素子分離領域, 92 Device isolation region
, 93 ゥエル, 93 uel
, 94 ゲート絶縁膜, 94 Gate insulation film
, 95 ゲート電極, 95 Gate electrode
, 96 サイドウォール絶縁膜, 96 Side wall insulation film
, 97 ソース拡散層, 97 Source diffusion layer
, 98 ドレイン拡散層, 98 Drain diffusion layer
, 99 トランジスタ部, 99 Transistor part
, 50, 100 SiON膜, 50, 100 SiON film
, 41, 46, 54, 55, 57, 61, 62, 65 TEOS— NSG膜, 41, 46, 54, 55, 57, 61, 62, 65 TEOS— NSG film
, 53, 53a, 53b, 53c, 53d, 56, 56b, 56c, 56d, 106, 108 アルミナ膜a 絶縁膜 , 53, 53a, 53b, 53c, 53d, 56, 56b, 56c, 56d, 106, 108 Alumina film a Insulating film
Pt膜  Pt film
PZT膜  PZT film
IrO膜  IrO film
2  2
フォトレジスト , 60, 64 積層膜Photoresist , 60, 64 laminated film
b, 60b, 64b ノ ッド外而湿リングc, 60c, 64c ノ ッド内而ォ湿リング SiN膜 b, 60b, 64b Node external moisture ring c, 60c, 64c Node internal moisture ring SiN film
パッド部  Pad part
FeRAMセノレ部  FeRAM Senor Department
ロジック回路部  Logic circuit part
周辺回路部 Peripheral circuit
, 90 FeRAM, 90 FeRAM
1, 107 SiO膜 1, 107 SiO film
2 2
1a, 111b, 111c 電極 1a, 111b, 111c electrodes

Claims

請求の範囲 The scope of the claims
[1] 層間コンタ外構造を有する半導体装置の製造方法において、  [1] In a method of manufacturing a semiconductor device having an outer structure of an interlayer contour,
耐湿性を有する第 1,第 2の膜の間に層間膜が形成された積層構造を形成するェ 程と、  Forming a laminated structure in which an interlayer film is formed between the first and second films having moisture resistance;
形成された前記第 1,第 2の膜と前記層間膜とを貫通するコンタクトホールを形成す る工程と、  Forming a contact hole penetrating the formed first and second films and the interlayer film;
前記コンタクトホールの形成後にァニール処理を行って前記第 1,第 2の膜に挟ま れた前記層間膜の脱ガスを行う工程と、  Performing an annealing process after forming the contact holes to degas the interlayer film sandwiched between the first and second films;
前記ァニール処理後に前記コンタクトホールにプラグを形成する工程と、 を有することを特徴とする半導体装置の製造方法。  And a step of forming a plug in the contact hole after the annealing process.
[2] 前記コンタクトホールの形成後に前記ァニール処理を行って前記第 1,第 2の膜に 挟まれた前記層間膜の脱ガスを行う工程にぉ 、ては、 [2] In the step of degassing the interlayer film sandwiched between the first and second films by performing the annealing process after the formation of the contact hole,
前記ァニール処理を、不活性ガス雰囲気中または真空中で行い、前記第 1,第 2の 膜に挟まれた前記層間膜の脱ガスを行うことを特徴とする請求の範囲第 1項記載の 半導体装置の製造方法。  2. The semiconductor according to claim 1, wherein the annealing treatment is performed in an inert gas atmosphere or in a vacuum to degas the interlayer film sandwiched between the first and second films. Device manufacturing method.
[3] 前記コンタクトホールの形成後に前記ァニール処理を行って前記第 1,第 2の膜に 挟まれた前記層間膜の脱ガスを行う工程にぉ 、ては、  [3] In the step of degassing the interlayer film sandwiched between the first and second films by performing the annealing process after forming the contact hole,
前記ァニール処理を、温度 350°C、時間 120分〜 240分の範囲で行い、前記第 1 The annealing treatment is performed at a temperature of 350 ° C. for a time of 120 minutes to 240 minutes, and the first treatment is performed.
,第 2の膜に挟まれた前記層間膜の脱ガスを行うことを特徴とする請求の範囲第 1項 記載の半導体装置の製造方法。 The method of manufacturing a semiconductor device according to claim 1, wherein the interlayer film sandwiched between the second films is degassed.
[4] 前記コンタクトホールの形成後に前記ァニール処理を行って前記第 1,第 2の膜に 挟まれた前記層間膜の脱ガスを行う工程にぉ 、ては、 [4] In the step of degassing the interlayer film sandwiched between the first and second films by performing the annealing process after forming the contact hole,
前記ァニール処理を、温度 350°C〜500°Cの範囲、時間 120分で行い、前記第 1 The annealing treatment is performed at a temperature of 350 ° C. to 500 ° C. for a time of 120 minutes.
,第 2の膜に挟まれた前記層間膜の脱ガスを行うことを特徴とする請求の範囲第 1項 記載の半導体装置の製造方法。 The method of manufacturing a semiconductor device according to claim 1, wherein the interlayer film sandwiched between the second films is degassed.
[5] 前記第 1,第 2の膜は、酸化物膜、窒化物膜、炭化物膜または榭脂膜を用いて形成 されることを特徴とする請求の範囲第 1項記載の半導体装置の製造方法。 [5] The semiconductor device according to claim 1, wherein the first and second films are formed using an oxide film, a nitride film, a carbide film, or a resin film. Method.
[6] 耐湿性を有する前記第 1,第 2の膜の間に前記層間膜が形成された前記積層構造 を形成する工程の前に、 [6] The laminated structure in which the interlayer film is formed between the first and second films having moisture resistance Before the process of forming
下層配線を形成する工程を有し、  A step of forming a lower layer wiring;
耐湿性を有する前記第 1,第 2の膜の間に前記層間膜が形成された前記積層構造 を形成する工程においては、  In the step of forming the laminated structure in which the interlayer film is formed between the first and second films having moisture resistance,
形成された前記下層配線の上層に前記積層構造を形成し、  Forming the laminated structure on the upper layer of the formed lower layer wiring;
前記第 1,第 2の膜と前記層間膜とを貫通する前記コンタクトホールを形成する工程 においては、  In the step of forming the contact hole penetrating the first and second films and the interlayer film,
前記コンタクトホールを前記第 1,第 2の膜と前記層間膜とを貫通して前記下層配線 に達するように形成し、  Forming the contact hole so as to penetrate the first and second films and the interlayer film to reach the lower layer wiring;
前記ァニール処理後に前記コンタクトホールにプラグを形成する工程の後に、 形成された前記プラグ上に上層配線を形成する工程を有することを特徴とする請求 の範囲第 1項記載の半導体装置の製造方法。  2. The method of manufacturing a semiconductor device according to claim 1, further comprising a step of forming an upper layer wiring on the formed plug after the step of forming a plug in the contact hole after the annealing treatment.
[7] 耐湿性を有する前記第 1,第 2の膜の間に前記層間膜が形成された前記積層構造 を形成する工程の前に、 [7] Before the step of forming the laminated structure in which the interlayer film is formed between the first and second films having moisture resistance,
強誘電体キャパシタを形成する工程を有し、  Forming a ferroelectric capacitor;
耐湿性を有する前記第 1,第 2の膜の間に前記層間膜が形成された前記積層構造 を形成する工程においては、  In the step of forming the laminated structure in which the interlayer film is formed between the first and second films having moisture resistance,
形成された前記強誘電体キャパシタの上層に前記積層構造を形成し、 前記第 1,第 2の膜と前記層間膜とを貫通する前記コンタクトホールを形成する工程 においては、  In the step of forming the stacked structure in the upper layer of the formed ferroelectric capacitor, and forming the contact hole penetrating the first and second films and the interlayer film,
前記コンタクトホールを前記第 1,第 2の膜と前記層間膜とを貫通して前記強誘電体 キャパシタに達するように形成し、  Forming the contact hole so as to penetrate the first and second films and the interlayer film to reach the ferroelectric capacitor;
前記ァニール処理後に前記コンタクトホールにプラグを形成する工程の後に、 形成された前記プラグ上に配線を形成する工程を有することを特徴とする請求の範 囲第 1項記載の半導体装置の製造方法。  2. The method of manufacturing a semiconductor device according to claim 1, further comprising a step of forming a wiring on the formed plug after the step of forming a plug in the contact hole after the annealing process.
[8] 耐湿性を有する前記第 1,第 2の膜の間に前記層間膜が形成された前記積層構造 を形成する工程の前に、 [8] Before the step of forming the laminated structure in which the interlayer film is formed between the first and second films having moisture resistance,
トランジスタを形成する工程を有し、 耐湿性を有する前記第 1,第 2の膜の間に前記層間膜が形成された前記積層構造 を形成する工程においては、 Forming a transistor, In the step of forming the laminated structure in which the interlayer film is formed between the first and second films having moisture resistance,
形成された前記トランジスタの上層に前記積層構造を形成し、  Forming the stacked structure on an upper layer of the formed transistor;
前記第 1,第 2の膜と前記層間膜とを貫通する前記コンタクトホールを形成する工程 においては、  In the step of forming the contact hole penetrating the first and second films and the interlayer film,
前記コンタクトホールを前記第 1,第 2の膜と前記層間膜とを貫通して前記トランジス タに達するように形成し、  The contact hole is formed so as to penetrate the first and second films and the interlayer film to reach the transistor;
前記ァニール処理後に前記コンタクトホールにプラグを形成する工程の後に、 形成された前記プラグ上に配線を形成する工程を有することを特徴とする請求の範 囲第 1項記載の半導体装置の製造方法。  2. The method of manufacturing a semiconductor device according to claim 1, further comprising a step of forming a wiring on the formed plug after the step of forming a plug in the contact hole after the annealing process.
[9] 耐湿性を有する前記第 1,第 2の膜の間に前記層間膜が形成された前記積層構造 を形成する工程の前に、 [9] Before the step of forming the laminated structure in which the interlayer film is formed between the first and second films having moisture resistance,
トランジスタを形成する工程を有し、  Forming a transistor,
耐湿性を有する前記第 1,第 2の膜の間に前記層間膜が形成された前記積層構造 を形成する工程においては、  In the step of forming the laminated structure in which the interlayer film is formed between the first and second films having moisture resistance,
形成された前記トランジスタの上層に前記積層構造を形成し、  Forming the stacked structure on an upper layer of the formed transistor;
前記積層構造を形成する工程の後に、  After the step of forming the laminated structure,
前記積層構造上に強誘電体キャパシタを形成する工程と、  Forming a ferroelectric capacitor on the multilayer structure;
前記強誘電体キャパシタ上に層間絶縁膜を形成する工程と、  Forming an interlayer insulating film on the ferroelectric capacitor;
を有し、  Have
前記第 1,第 2の膜と前記層間膜とを貫通する前記コンタクトホールを形成する工程 においては、  In the step of forming the contact hole penetrating the first and second films and the interlayer film,
前記コンタクトホールを前記層間絶縁膜と前記第 1,第 2の膜と前記層間膜とを貫 通して前記トランジスタに達するように形成し、  The contact hole is formed so as to penetrate the interlayer insulating film, the first and second films, and the interlayer film to reach the transistor;
前記ァニール処理後に前記コンタクトホールにプラグを形成する工程の後に、 形成された前記プラグ上に配線を形成する工程を有することを特徴とする請求の範 囲第 1項記載の半導体装置の製造方法。  2. The method of manufacturing a semiconductor device according to claim 1, further comprising a step of forming a wiring on the formed plug after the step of forming a plug in the contact hole after the annealing process.
[10] 層間コンタ外構造を有する半導体装置の製造方法において、 耐湿性を有する第 1,第 2の膜の間に層間膜が形成された積層構造を形成するェ 程と、 [10] In a method of manufacturing a semiconductor device having an outer structure between interlayer contours, Forming a laminated structure in which an interlayer film is formed between the first and second films having moisture resistance;
形成された前記第 1,第 2の膜と前記層間膜とを貫通するコンタクトホールを形成す る工程と、  Forming a contact hole penetrating the formed first and second films and the interlayer film;
前記コンタクトホールの形成後に前記コンタクトホール内壁面に対する表面処理を 行う工程と、  Performing a surface treatment on the inner wall surface of the contact hole after forming the contact hole;
前記表面処理後に前記コンタクトホールにプラグを形成する工程と、  Forming a plug in the contact hole after the surface treatment;
を有することを特徴とする半導体装置の製造方法。  A method for manufacturing a semiconductor device, comprising:
[11] 前記表面処理は、前記コンタクトホール内壁面の耐湿性を向上させる処理であるこ とを特徴とする請求の範囲第 10項記載の半導体装置の製造方法。 11. The method for manufacturing a semiconductor device according to claim 10, wherein the surface treatment is a treatment for improving moisture resistance of the inner wall surface of the contact hole.
[12] 前記表面処理は、前記コンタクトホール内壁面に窒素含有プラズマを照射して窒化 するプラズマ窒化処理であることを特徴とする請求の範囲第 10項記載の半導体装置 の製造方法。 12. The method of manufacturing a semiconductor device according to claim 10, wherein the surface treatment is a plasma nitridation treatment in which the inner wall surface of the contact hole is irradiated with nitrogen-containing plasma for nitriding.
[13] 前記第 1,第 2の膜は、酸化物膜、窒化物膜、炭化物膜または榭脂膜を用いて形成 されることを特徴とする請求の範囲第 10項記載の半導体装置の製造方法。  13. The method for manufacturing a semiconductor device according to claim 10, wherein the first and second films are formed using an oxide film, a nitride film, a carbide film, or a resin film. Method.
[14] 耐湿性を有する前記第 1,第 2の膜の間に前記層間膜が形成された前記積層構造 を形成する工程の前に、  [14] Before the step of forming the laminated structure in which the interlayer film is formed between the first and second films having moisture resistance,
下層配線を形成する工程を有し、  A step of forming a lower layer wiring;
耐湿性を有する前記第 1,第 2の膜の間に前記層間膜が形成された前記積層構造 を形成する工程においては、  In the step of forming the laminated structure in which the interlayer film is formed between the first and second films having moisture resistance,
形成された前記下層配線の上層に前記積層構造を形成し、  Forming the laminated structure on the upper layer of the formed lower layer wiring;
前記第 1,第 2の膜と前記層間膜とを貫通する前記コンタクトホールを形成する工程 においては、  In the step of forming the contact hole penetrating the first and second films and the interlayer film,
前記コンタクトホールを前記第 1,第 2の膜と前記層間膜とを貫通して前記下層配線 に達するように形成し、  Forming the contact hole so as to penetrate the first and second films and the interlayer film to reach the lower layer wiring;
前記表面処理後に前記コンタクトホールにプラグを形成する工程の後に、 形成された前記プラグ上に上層配線を形成する工程を有することを特徴とする請求 の範囲第 10項記載の半導体装置の製造方法。 11. The method of manufacturing a semiconductor device according to claim 10, further comprising a step of forming an upper layer wiring on the formed plug after the step of forming a plug in the contact hole after the surface treatment.
[15] 耐湿性を有する前記第 1,第 2の膜の間に前記層間膜が形成された前記積層構造 を形成する工程の前に、 [15] Before the step of forming the laminated structure in which the interlayer film is formed between the first and second films having moisture resistance,
強誘電体キャパシタを形成する工程を有し、  Forming a ferroelectric capacitor;
耐湿性を有する前記第 1,第 2の膜の間に前記層間膜が形成された前記積層構造 を形成する工程においては、  In the step of forming the laminated structure in which the interlayer film is formed between the first and second films having moisture resistance,
形成された前記強誘電体キャパシタの上層に前記積層構造を形成し、 前記第 1,第 2の膜と前記層間膜とを貫通する前記コンタクトホールを形成する工程 においては、  In the step of forming the stacked structure in the upper layer of the formed ferroelectric capacitor, and forming the contact hole penetrating the first and second films and the interlayer film,
前記コンタクトホールを前記第 1,第 2の膜と前記層間膜とを貫通して前記強誘電体 キャパシタに達するように形成し、  Forming the contact hole so as to penetrate the first and second films and the interlayer film to reach the ferroelectric capacitor;
前記表面処理後に前記コンタクトホールにプラグを形成する工程の後に、 形成された前記プラグ上に配線を形成する工程を有することを特徴とする請求の範 囲第 10項記載の半導体装置の製造方法。  11. The method of manufacturing a semiconductor device according to claim 10, further comprising a step of forming a wiring on the formed plug after the step of forming a plug in the contact hole after the surface treatment.
[16] 耐湿性を有する前記第 1,第 2の膜の間に前記層間膜が形成された前記積層構造 を形成する工程の前に、 [16] Before the step of forming the laminated structure in which the interlayer film is formed between the first and second films having moisture resistance,
トランジスタを形成する工程を有し、  Forming a transistor,
耐湿性を有する前記第 1,第 2の膜の間に前記層間膜が形成された前記積層構造 を形成する工程においては、  In the step of forming the laminated structure in which the interlayer film is formed between the first and second films having moisture resistance,
形成された前記トランジスタの上層に前記積層構造を形成し、  Forming the stacked structure on an upper layer of the formed transistor;
前記第 1,第 2の膜と前記層間膜とを貫通する前記コンタクトホールを形成する工程 においては、  In the step of forming the contact hole penetrating the first and second films and the interlayer film,
前記コンタクトホールを前記第 1,第 2の膜と前記層間膜とを貫通して前記トランジス タに達するように形成し、  The contact hole is formed so as to penetrate the first and second films and the interlayer film to reach the transistor;
前記表面処理後に前記コンタクトホールにプラグを形成する工程の後に、 形成された前記プラグ上に配線を形成する工程を有することを特徴とする請求の範 囲第 10項記載の半導体装置の製造方法。  11. The method of manufacturing a semiconductor device according to claim 10, further comprising a step of forming a wiring on the formed plug after the step of forming a plug in the contact hole after the surface treatment.
[17] 耐湿性を有する前記第 1,第 2の膜の間に前記層間膜が形成された前記積層構造 を形成する工程の前に、 トランジスタを形成する工程を有し、 [17] Before the step of forming the laminated structure in which the interlayer film is formed between the first and second films having moisture resistance, Forming a transistor,
耐湿性を有する前記第 1,第 2の膜の間に前記層間膜が形成された前記積層構造 を形成する工程においては、  In the step of forming the laminated structure in which the interlayer film is formed between the first and second films having moisture resistance,
形成された前記トランジスタの上層に前記積層構造を形成し、  Forming the stacked structure on an upper layer of the formed transistor;
前記積層構造を形成する工程の後に、  After the step of forming the laminated structure,
前記積層構造上に強誘電体キャパシタを形成する工程と、  Forming a ferroelectric capacitor on the multilayer structure;
前記強誘電体キャパシタ上に層間絶縁膜を形成する工程と、  Forming an interlayer insulating film on the ferroelectric capacitor;
を有し、  Have
前記第 1,第 2の膜と前記層間膜とを貫通する前記コンタクトホールを形成する工程 においては、  In the step of forming the contact hole penetrating the first and second films and the interlayer film,
前記コンタクトホールを前記層間絶縁膜と前記第 1,第 2の膜と前記層間膜とを貫 通して前記トランジスタに達するように形成し、  The contact hole is formed so as to penetrate the interlayer insulating film, the first and second films, and the interlayer film to reach the transistor;
前記表面処理後に前記コンタクトホールにプラグを形成する工程の後に、 形成された前記プラグ上に配線を形成する工程を有することを特徴とする請求の範 囲第 10項記載の半導体装置の製造方法。  11. The method of manufacturing a semiconductor device according to claim 10, further comprising a step of forming a wiring on the formed plug after the step of forming a plug in the contact hole after the surface treatment.
PCT/JP2006/306574 2006-03-29 2006-03-29 Process for producing semiconductor device WO2007110959A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2006/306574 WO2007110959A1 (en) 2006-03-29 2006-03-29 Process for producing semiconductor device
JP2008507361A JP5309988B2 (en) 2006-03-29 2006-10-05 Manufacturing method of semiconductor device
PCT/JP2006/319953 WO2007110988A1 (en) 2006-03-29 2006-10-05 Process for producing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/306574 WO2007110959A1 (en) 2006-03-29 2006-03-29 Process for producing semiconductor device

Publications (1)

Publication Number Publication Date
WO2007110959A1 true WO2007110959A1 (en) 2007-10-04

Family

ID=38540899

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2006/306574 WO2007110959A1 (en) 2006-03-29 2006-03-29 Process for producing semiconductor device
PCT/JP2006/319953 WO2007110988A1 (en) 2006-03-29 2006-10-05 Process for producing semiconductor device

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/319953 WO2007110988A1 (en) 2006-03-29 2006-10-05 Process for producing semiconductor device

Country Status (1)

Country Link
WO (2) WO2007110959A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6507860B2 (en) 2015-06-01 2019-05-08 富士電機株式会社 Semiconductor device manufacturing method
JP6866326B2 (en) * 2018-03-19 2021-04-28 株式会社東芝 Semiconductor device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06349950A (en) * 1993-06-07 1994-12-22 Mitsubishi Electric Corp Semiconductor device and manufacture thereof
JPH10256372A (en) * 1997-03-17 1998-09-25 Sony Corp Manufacture of semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06349950A (en) * 1993-06-07 1994-12-22 Mitsubishi Electric Corp Semiconductor device and manufacture thereof
JPH10256372A (en) * 1997-03-17 1998-09-25 Sony Corp Manufacture of semiconductor device

Also Published As

Publication number Publication date
WO2007110988A1 (en) 2007-10-04

Similar Documents

Publication Publication Date Title
JP5141550B2 (en) Semiconductor device and manufacturing method thereof
JP4901105B2 (en) Manufacturing method of semiconductor device
TW498548B (en) Semiconductor device having a capacitor and method for the manufacture thereof
KR100830108B1 (en) Semiconductor device and manufacturing method thereof
JP5251129B2 (en) Semiconductor device and manufacturing method thereof
WO2007004295A1 (en) Semiconductor device and method for manufacturing same
TWI459540B (en) Semiconductor device and method of manufacturing the same
US20060220091A1 (en) Semiconductor device and method for fabricating the same
US20050181559A1 (en) Semiconductor device and method of manufacturing the same
JP5168273B2 (en) Semiconductor device and manufacturing method thereof
JP2006278942A (en) Semiconductor device and its manufacturing method
US20090206379A1 (en) Semiconductor device and manufacturing method thereof
JP5353237B2 (en) Semiconductor device and manufacturing method thereof
WO2007110959A1 (en) Process for producing semiconductor device
US20090256259A1 (en) Semiconductor device and method for manufacturing the same
JP3623427B2 (en) Manufacturing method of semiconductor device having ferroelectric capacitor
JP5309988B2 (en) Manufacturing method of semiconductor device
JP2005116546A (en) Semiconductor device and its manufacturing method
JP4985401B2 (en) Semiconductor device and manufacturing method thereof
JP5040912B2 (en) Semiconductor device having ferroelectric element
JP2004193176A (en) Semiconductor device and its manufacturing method
JP2007329232A (en) Dielectric memory and its manufacturing method
JP4718193B2 (en) Manufacturing method of semiconductor device
JP2004281935A (en) Semiconductor device and its manufacturing method
JP2006157062A (en) Semiconductor device and manufacturing method of semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06730522

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06730522

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP