JPH06346149A - Production of high strength cold rolled steel sheet good in plane anisotropy and excellent in deep drawability - Google Patents

Production of high strength cold rolled steel sheet good in plane anisotropy and excellent in deep drawability

Info

Publication number
JPH06346149A
JPH06346149A JP13426493A JP13426493A JPH06346149A JP H06346149 A JPH06346149 A JP H06346149A JP 13426493 A JP13426493 A JP 13426493A JP 13426493 A JP13426493 A JP 13426493A JP H06346149 A JPH06346149 A JP H06346149A
Authority
JP
Japan
Prior art keywords
deep drawability
steel sheet
less
value
plane anisotropy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP13426493A
Other languages
Japanese (ja)
Inventor
Shiro Sayanagi
志郎 佐柳
Masaharu Kameda
正春 亀田
Yasuhiko Yamashita
康彦 山下
Kunio Nishimura
邦男 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP13426493A priority Critical patent/JPH06346149A/en
Publication of JPH06346149A publication Critical patent/JPH06346149A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PURPOSE:To provide the method for producing a high strength cold rolled steel sheet good in plane anisotropy and excellent in deep drawability. CONSTITUTION:Steel having a compsn. contg. <=0.015% C, <=0.7% Si, 0.40 to 1.90% Mn, <=0.090% P, 0.015 to 0.080% Al, 0.010 to 0.06% Ti and 0.0003 to 0.0025% B is subjected to hot rolling, is subjected to >=65% cold rolling and is subjected to continuous annealing at the recrystallization temp. to the Ac3 point. In this way, the cold rolling of a good high strength cold rolled steel sheet excellent in (r) value which is the index of deep drawability, small in the absolute value of DELTAr and excellent in deep drawability can be made possible with small consumption energy of the cold rolling.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高強度深絞り用鋼板の製
造法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a steel plate for high strength deep drawing.

【0002】[0002]

【従来の技術】近年、自動車の安全性、軽量化による燃
費向上の要請から高強度鋼板が用いられている。これら
の内、外板・内板パネル用には深絞り性が要求される。
深絞り用高強度鋼板はMn,P,Si等の固溶体強化元
素を添加した極低炭素鋼にTi,Nb等の炭窒化物形成
元素を添加して製造されている。例えばTi添加した技
術として特公昭59−42742号公報がある。またN
b,Tiを複合添加する方法として特開昭60−779
57号公報が、さらにTi,Vを複合添加する技術とし
て特開昭61−246327号公報がある。
2. Description of the Related Art In recent years, high-strength steel sheets have been used because of the demand for improving fuel efficiency by reducing vehicle safety and weight. Of these, deep drawability is required for the outer and inner panel.
High-strength steel sheets for deep drawing are manufactured by adding carbonitride forming elements such as Ti and Nb to ultra-low carbon steel to which solid solution strengthening elements such as Mn, P and Si are added. For example, as a technique of adding Ti, there is Japanese Patent Publication No. 59-42742. Also N
As a method of adding b and Ti in combination, JP-A-60-779
No. 57 and Japanese Patent Application Laid-Open No. 61-246327 disclose a technique for adding Ti and V in combination.

【0003】これらはいずれもr値の絶対値が2.0程
度と低く、しかも面内異方性が大きい欠点があり、深絞
り性を要求される部品への高強度鋼板の摘要を遅らせて
いる。この面内異方性を改善する技術として特開昭58
−107414号公報が開示されている。これはTiを
Nで固定する量添加し、CをNbで固定する考えで、面
内異方性を小さくするものである。しかし、この技術も
r値の絶対値が低く、深絞り性を要求される部品への高
強度鋼板の摘要を可能とできない。またこれらの鋼は熱
延時に高速で圧延すると強度が高くなり、冷延負荷を高
くし、冷延生産性、冷延板厚精度を劣化さす欠点も有し
ている。
All of these have the drawbacks that the absolute value of the r-value is as low as about 2.0 and that the in-plane anisotropy is large, which delays the description of high-strength steel sheets for parts that require deep drawability. There is. As a technique for improving this in-plane anisotropy, Japanese Patent Laid-Open No.
Japanese Patent Laid-Open No. 107414 is disclosed. This is to add Ti in an amount that fixes N and to fix C in Nb to reduce the in-plane anisotropy. However, this technique also has a low absolute value of the r value, and cannot apply a high-strength steel plate to a part that requires deep drawability. Further, these steels have the drawbacks that when they are rolled at a high speed during hot rolling, the strength increases, the cold rolling load increases, and cold rolling productivity and cold rolled sheet thickness accuracy deteriorate.

【0004】[0004]

【発明が解決しようとする課題】本発明は上記欠点を克
服し、深絞り性が優れ、しかも面内異方性の少ない高強
度冷延鋼板を冷延生産性を落とすこと無く製造できる技
術の完成を目的とする。
DISCLOSURE OF THE INVENTION The present invention overcomes the above-mentioned drawbacks and provides a technique for producing a high-strength cold-rolled steel sheet having excellent deep drawability and less in-plane anisotropy without lowering the cold-rolling productivity. For the purpose of completion.

【0005】[0005]

【課題を解決するための手段】発明者等は、極低炭素鋼
の各種成分と材質特性の関係を詳細に調査する中で、上
記欠点を克服する極低Cと適量のTi,Nb添加の組合
せ技術を見いだし、本発明を完成した。本発明の要旨は
重量%でC:0.0015%以下、Si:0.70%以
下、Mn:0.40〜1.90%、P:0.090%以
下、Al:0.015〜0.080%、Ti:0.01
0〜0.060%、B:0.0003〜0.0025
%、必要に応じ0.020%以下のNbを含有する組成
の鋼を、熱間圧延および65%以上の冷間圧延後、70
0℃以上Ac3 変態点以下の温度で連続焼鈍することを
特徴とする面内異方性が小さく深絞り性が良好な鋼板の
製造方法にある。
Means for Solving the Problems In carrying out a detailed investigation of the relationship between various components of ultra-low carbon steel and material properties, the inventors have found that ultra-low C and an appropriate amount of Ti and Nb added to overcome the above-mentioned drawbacks. The combination technique was found and the present invention was completed. The gist of the present invention is, by weight%, C: 0.0015% or less, Si: 0.70% or less, Mn: 0.40 to 1.90%, P: 0.090% or less, Al: 0.015 to 0. 0.080%, Ti: 0.01
0 to 0.060%, B: 0.0003 to 0.0025
%, And optionally, a steel having a composition containing 0.020% or less of Nb is 70 after hot rolling and 65% or more of cold rolling.
This is a method for producing a steel sheet having a small in-plane anisotropy and a good deep drawability, which is characterized by continuous annealing at a temperature of 0 ° C. or more and Ac 3 transformation point or less.

【0006】以下本発明を具体的に説明する。まず本発
明において鋼成分組成を上記の範囲に限定した理由につ
いて説明する。Cは低いほど材質に有利であることが知
られていたが、本発明者らはC量の影響を詳細に検討し
た結果、従来の予想以上に加工性が良好になり、面内異
方性が良好となることを知見した。以下に実験事実につ
いて述べる。
The present invention will be specifically described below. First, the reason why the steel component composition is limited to the above range in the present invention will be described. It was known that the lower C is, the more advantageous the material is. However, as a result of detailed examination of the influence of the amount of C, the present inventors found that the workability was better than expected and the in-plane anisotropy was higher than expected. It was found that The experimental facts are described below.

【0007】Si:0.010%,Mn:1.50%,
P:0.050%,N:0.0020%,Al:0.0
35%,B:0.0005%をベースにTi:0.07
%−Nb:0.040%,Ti:0.04%−Nb:
0.01%,Ti:0.005%−Nb:0.005%
と変えた鋼についてC:0.0003〜0.0050%
の範囲で変化させた組成の鋼を真空溶解炉で溶製し、1
250℃×1時間の加熱・保定後に3.2mmまで仕上
げ温度930℃で熱延した。熱延後の冷却速度を50℃
/秒で650℃まで冷却後1時間保定後炉冷却した。こ
の熱延板の引張特性を測定、および酸洗後に0.80m
m厚まで冷間圧延し、800℃×1minの連続焼鈍の
熱サイクルの焼鈍を行い、材質特性調査に供した。引張
強度はC量が多くなると若干高くなるが、412MPa
〜423MPaの範囲で大きな変化は無かった。r値、
ΔrとC量、Ti,Nbの関係を図1に示した。図中の
数字はTi,Nb添加量である。
Si: 0.010%, Mn: 1.50%,
P: 0.050%, N: 0.0020%, Al: 0.0
35%, B: 0.0005% based on Ti: 0.07
% -Nb: 0.040%, Ti: 0.04% -Nb:
0.01%, Ti: 0.005% -Nb: 0.005%
For steel changed to C: 0.0003 to 0.0050%
The steel with the composition changed in the range of
After heating and holding at 250 ° C. for 1 hour, hot rolling was performed at a finishing temperature of 930 ° C. to 3.2 mm. Cooling rate after hot rolling is 50 ℃
After cooling for 1 hour to 650 ° C./sec, the furnace was cooled. Measure the tensile properties of this hot-rolled sheet, and after pickling 0.80m
It was cold-rolled to a thickness of m, annealed in a thermal cycle of 800 ° C. × 1 min of continuous annealing, and subjected to a material property investigation. The tensile strength increases slightly as the C content increases, but it is 412 MPa.
There was no significant change in the range of ˜423 MPa. r-value,
The relationship between Δr, the amount of C, Ti, and Nb is shown in FIG. The numbers in the figure are the amounts of Ti and Nb added.

【0008】図から良くわかるようにTi,Nb添加量
が少ない(Ti0.005%,Nb0.005%)と、
r値はC量の低下にともない若干向上するのみであるに
対し、Ti:0.04%,Nb:0.01%添加材では
C量が15ppm以下になると急速にr値が高くなり、
Δrの絶対値もほぼゼロに近くなる。一方、Ti:0.
07%,Nb:0.04%と添加量が多くなりすぎる
と、C量が15ppm以下になってもr値はほとんど向
上しなく、Δrもマイナスで絶対値が大きいままであ
る。このようにC量を極端に低め、Ti,Nbを適量添
加すると極めて優れた深絞り性高強度鋼板が製造でき
る。これは、Ti及びNbとC量の適当な組合せによ
り、適当なサイズ分布のTiC,NbCが出来、これが
深絞り性向上に有利な集合組織を生ぜしめているためと
推定される。
As can be seen clearly from the figure, when the added amounts of Ti and Nb are small (Ti 0.005%, Nb 0.005%),
The r-value only slightly increases with a decrease in the C content, whereas in the Ti: 0.04%, Nb: 0.01% additive material, the r-value rapidly increases when the C content becomes 15 ppm or less.
The absolute value of Δr is also close to zero. On the other hand, Ti: 0.
When the amount of addition is too large as 07% and Nb: 0.04%, the r value is hardly improved even if the C amount is 15 ppm or less, and Δr is negative and the absolute value remains large. In this way, by extremely reducing the C content and adding an appropriate amount of Ti and Nb, it is possible to manufacture an extremely excellent deep drawability and high strength steel sheet. It is presumed that this is because TiC and NbC having an appropriate size distribution can be produced by an appropriate combination of Ti and Nb and the amount of C, and this produces a texture that is advantageous for improving deep drawability.

【0009】図2は熱延板の引張強さとC量の影響を示
した。図からわかるようにTi,Nbを添加しないもの
はC量が変化しても強度はほとんど変化していない。一
方Ti,Nbが多く添加したものは強度が高く、C量が
低下してもほとんど軟質とならない。Ti:0.04
%,Nb:0.01%添加した成分系はC量が15pp
m以下になると急速に強度が低下する。冷延鋼板素材は
冷間圧延・焼鈍して製品に供されるので熱延板は強度が
低いほど冷間圧延が容易である。したがって、冷延素材
として軟質熱延板が好ましいのはいうまでもない。以上
の実験事実からC量を特定した。すなわち、良好なr
値、Δr、熱延板の強度が高くならない条件としてC量
は15ppm以下を特定、好ましくはr値、面内異方性
をより良好とするために10ppm以下である。
FIG. 2 shows the effects of tensile strength and C content of the hot rolled sheet. As can be seen from the figure, in the case where Ti and Nb are not added, the strength hardly changes even if the C content changes. On the other hand, a material containing a large amount of Ti and Nb has a high strength and hardly becomes soft even if the amount of C is reduced. Ti: 0.04
%, Nb: 0.01% of the added component system has a C content of 15 pp
If it is less than m, the strength is rapidly reduced. Since the cold-rolled steel sheet material is cold-rolled and annealed before it is used as a product, the lower the strength of the hot-rolled sheet, the easier the cold-rolling. Therefore, it goes without saying that the soft hot rolled sheet is preferable as the cold rolled material. The amount of C was specified from the above experimental facts. That is, good r
Value, Δr, the amount of C is specified to be 15 ppm or less as a condition that the strength of the hot-rolled sheet is not increased, and is preferably 10 ppm or less in order to improve the r value and the in-plane anisotropy.

【0010】図1は従来の知見と異なりTi,Nb添加
量は多すぎると特性が悪くなることを示唆しているの
で、C量が10ppmでNb,Ti量の影響を検討し
た。その結果を図3に示した。C,Nb,Ti量以外の
成分試験条件は図1の場合と同じである。尚C量は10
ppmを目標にしたが、8〜12ppmの範囲で変化し
ていた。図よりわかるようにr値はTi量の増加と共に
高くなり、0.050%で最大値となり、それ以上の添
加により若干低下する。TiとNbを複合添加すると低
Ti添加域では大きな影響がないが、高Ti添加域では
r値が低下する。またNb添加量が多くなるとTi単独
添加材よりほとんどのTi添加域でr値が低くなる。Δ
rはTi単独添加あるいはNb:0.02%まで複合添
加ではTi添加量の増大と共に小さくなるが、Ti添加
量が多くなると逆にマイナスで絶対値が大きくなる。N
bを0.04%添加するとTi添加の全域でマイナスの
Δrとなり、その絶対値も大きくなる。良好なr値、Δ
rを兼備する条件としてTi,Nb量を特定した。好ま
しい範囲はTi:0.020〜0.045%、Nb:
0.015%以下である。
Since FIG. 1 suggests that the characteristics are deteriorated when the amount of addition of Ti and Nb is too large unlike the conventional knowledge, the effect of the amounts of Nb and Ti was examined when the amount of C was 10 ppm. The results are shown in Fig. 3. The component test conditions other than the amounts of C, Nb, and Ti are the same as in the case of FIG. The amount of C is 10
The target was ppm, but it varied in the range of 8 to 12 ppm. As can be seen from the figure, the r value increases with an increase in the Ti amount, reaches the maximum value at 0.050%, and decreases slightly with the addition of more. When Ti and Nb are added in combination, there is no great influence in the low Ti addition region, but the r value decreases in the high Ti addition region. Further, when the amount of Nb added increases, the r value becomes lower in most of the Ti addition region than in the Ti single addition material. Δ
r decreases with an increase in the Ti addition amount when Ti alone is added or when Nb: 0.02% is added in combination, but when the Ti addition amount increases, the value becomes negative and the absolute value increases. N
When 0.04% of b is added, it becomes negative Δr in the whole area of Ti addition, and its absolute value also becomes large. Good r value, Δ
The amount of Ti and Nb was specified as a condition that combines r. A preferable range is Ti: 0.020 to 0.045%, Nb:
It is 0.015% or less.

【0011】次にC,Nb,Ti以外の成分について説
明する。Siは深絞り性を劣化させずに強化する元素で
あることが良く知られているが、0.70%を越えると
冷延鋼板の表面性状を劣化する。この理由からSi量を
0.70%に特定した。下限はSiを添加しない場合も
あるので、工業的に実施可能な下限である0.001%
である。Mnも深絞り性を損なうこと無く強化に有効な
元素である。しかし、2.0%を越えると極低炭素化す
るのが困難になり、また熱延板の高強度化が著しく大き
くなり、冷延性を悪くするので、上限を2.0%に特定
した。下限は0.45%である。好ましい範囲は0.5
0〜1.5%である。
Next, components other than C, Nb and Ti will be described. It is well known that Si is an element that strengthens deep drawability without deteriorating it, but if it exceeds 0.70%, the surface properties of the cold rolled steel sheet deteriorate. For this reason, the amount of Si was specified as 0.70%. The lower limit is 0.001%, which is the lower limit industrially practicable because Si may not be added in some cases.
Is. Mn is also an element effective for strengthening without impairing the deep drawability. However, if it exceeds 2.0%, it becomes difficult to achieve an extremely low carbon, and the strength of the hot-rolled sheet becomes remarkably large, which deteriorates the cold rolling property. Therefore, the upper limit is specified to be 2.0%. The lower limit is 0.45%. The preferred range is 0.5
0 to 1.5%.

【0012】PもSi,Mnと同様に深絞り性を劣化さ
せずに鋼板の高強度に有効な元素である。しかし、0.
10%を越えると鋼板の延性、深絞り性を劣化させると
同時に後で述べるBを添加してもプレス加工後の製品の
二次加工性を確保できない。これらの理由から上限を
0.10%に特定した。Alは脱酸などのため0.01
5%は添加する必要があるが、0.080%を越える添
加は表面性状に悪影響をおよぼすので上限を0.080
%に特定した。SはMnS、TiS等の介在物、析出物
となり、延性を劣化させるので0.02%以下にするこ
とが好ましい。
Similar to Si and Mn, P is also an element effective for high strength of the steel sheet without deteriorating the deep drawability. However, 0.
If it exceeds 10%, the ductility and deep drawability of the steel sheet will be deteriorated, and at the same time, even if B, which will be described later, is added, the secondary workability of the product after pressing cannot be secured. For these reasons, the upper limit was specified as 0.10%. Al is 0.01 because it is deoxidized.
5% must be added, but the addition of more than 0.080% adversely affects the surface properties, so the upper limit is 0.080.
Specified in%. Since S becomes an inclusion such as MnS or TiS or a precipitate and deteriorates the ductility, it is preferably made 0.02% or less.

【0013】NはAl,Tiと結合してAlN,TiN
析出物となるので、鋼板の材質特性に大きな影響を及ぼ
さないが、あまり多くなると加工性に悪影響を及ぼすの
で0.0040%以下にすることが好ましい。Bは粒界
に偏析し、鋼板の二次加工性を向上せしめる元素である
ため添加が必要である。二次加工性を確保するため、少
なくとも0.0003%は添加する必要がある。しか
し、0.0025%を越えると熱延時に鋼板を硬質化さ
せる。またr値の面内異方性を大きくするので0.00
25%を上限とした。
N combines with Al and Ti to form AlN and TiN
Since it becomes a precipitate, it does not have a great influence on the material properties of the steel sheet, but if it is too much, it adversely affects the workability, so it is preferably made 0.0040% or less. B is an element that segregates at the grain boundaries and improves the secondary workability of the steel sheet, so B must be added. In order to secure the secondary workability, it is necessary to add at least 0.0003%. However, if it exceeds 0.0025%, the steel sheet is hardened during hot rolling. Further, since the in-plane anisotropy of the r value is increased, 0.00
The upper limit was 25%.

【0014】以上の組成の鋼を転炉、電気炉等の通常の
溶解炉−真空脱ガス炉で溶製する。続いて、連続鋳造、
造塊で鋼片をつくる、この鋼片の厚みによって本発明の
特徴を損なわない。鋼片は高温なまま熱間圧延に供して
も、冷却後に再加熱して熱延しても、また熱延加熱温度
が変化しても本発明の特徴を損なわないので仕上げ温度
が確保できれば何度でもかまわない。熱延仕上げ温度は
深絞り性確保する点からAc3 点温度以上とすることが
好ましい。熱延のROTの冷却は、本発明鋼では急冷し
ても鋼板が硬質化することがないので、冷却条件を特定
する必要がない。捲取温度は特に規定しなくても良い
が、本発明では酸洗性等を考慮して600〜700℃の
範囲で主に実施している。
The steel having the above composition is melted in a conventional melting furnace such as a converter and an electric furnace-a vacuum degassing furnace. Then, continuous casting,
The billet is formed by ingot casting, and the thickness of the billet does not impair the features of the present invention. Even if the steel slab is subjected to hot rolling as it is at a high temperature, even if it is reheated after cooling and hot-rolled, and the hot-rolling heating temperature changes, the characteristics of the present invention are not impaired. I don't care. The hot rolling finishing temperature is preferably set to the Ac 3 point temperature or higher from the viewpoint of ensuring deep drawability. In the hot rolling ROT cooling, it is not necessary to specify the cooling conditions because the steel sheet does not harden in the steel of the present invention even if it is rapidly cooled. The winding temperature does not have to be specified in particular, but in the present invention, it is mainly carried out in the range of 600 to 700 ° C. in consideration of pickling property and the like.

【0015】熱延板は脱スケール後に冷間圧延される。
冷間圧延率は良好なr値、Δrを得るためには65%以
上が必要である。好ましい条件は同様の理由から75%
以上、90%以下である。本発明鋼は従来技術鋼に比較
して冷間圧延のエネルギー、板厚精度が良好となる。表
1に示す成分の鋼を冷間圧下率70%の冷間消費エネル
ギー、冷延板厚変動を表2に示した。冷間圧延消費エネ
ルギーは比較鋼との比で示し、板厚変動は20トンコイ
ル全長での最大板厚から最小板厚を引いた値で示した。
表2から良くわかるように冷間圧延消費エネルギーが従
来技術で製造されている比較鋼の70%と大幅に低減で
きる特徴がある。また、冷延コイルの板厚変動も大幅に
小さくすることが可能であるという特徴もある。この効
果は工業的に大変有用である。
The hot-rolled sheet is cold-rolled after descaling.
The cold rolling rate must be 65% or more to obtain a good r value and Δr. 75% is preferable for the same reason
As described above, it is 90% or less. The steel of the present invention has better cold rolling energy and plate thickness accuracy than the prior art steels. Table 2 shows the cold energy consumption and the cold-rolled sheet thickness variation of the steel having the components shown in Table 1 at a cold reduction of 70%. The cold rolling energy consumption is shown as a ratio to the comparative steel, and the plate thickness fluctuation is shown as a value obtained by subtracting the minimum plate thickness from the maximum plate thickness over the entire length of the 20 ton coil.
As can be seen from Table 2, the energy consumption of cold rolling can be greatly reduced to 70% of the comparative steel produced by the conventional technique. Another feature is that it is possible to significantly reduce the plate thickness variation of the cold rolled coil. This effect is very useful industrially.

【0016】[0016]

【表1】 [Table 1]

【0017】[0017]

【表2】 [Table 2]

【0018】焼鈍は連続焼鈍、箱焼鈍でもかまわない
が、本発明の効果は連続焼鈍方法で顕著である。焼鈍温
度は加工性確保するため再結晶温度以上にする必要があ
る。本発明の特徴を顕現させるためには775℃以上の
高温で焼鈍することが好ましい。再結晶焼鈍後の冷却は
急冷しても、徐冷しても良いし、過時効処理をしても、
しなくても本発明の特徴を損なわないので特に限定の必
要がない。焼鈍された鋼板は必要に応じ、調質圧延して
製品に供される。本発明の方法は冷延鋼板以外に亜鉛、
アルミ等の溶融メッキ、電気メッキ鋼板に適用してもr
値が高く、面内異方性が小さいという特徴を発揮する。
The annealing may be continuous annealing or box annealing, but the effect of the present invention is remarkable in the continuous annealing method. The annealing temperature must be higher than the recrystallization temperature to secure workability. In order to reveal the characteristics of the present invention, it is preferable to anneal at a high temperature of 775 ° C or higher. Cooling after recrystallization annealing may be rapid cooling, gradual cooling, or overaging treatment,
Even if it is not performed, the characteristics of the present invention are not impaired, and thus there is no particular limitation. The annealed steel sheet is temper-rolled as necessary and provided as a product. The method of the present invention is zinc other than cold rolled steel,
R even when applied to hot-dip aluminum or electroplated steel
It exhibits high values and small in-plane anisotropy.

【0019】[0019]

【実施例】表3に示す成分の鋼を表4に示す製造条件で
製造した。その鋼板の材質特性を表4に併せて示した。
引張特性は圧延方向の値で、r値は通常の方法での平均
値である。冷延の消費エネルギー比は比較鋼の値を1.
0とし、それぞれ最終製品強度が最も近いものとの比で
示した。A−1〜H−2までが本発明範囲の実施例で、
K−1〜P−1までが比較例である。B−1,C−1は
343MPa級の実施例である。C量の高い343MP
a級の比較例K−1に比べればr値が高く、面内異方性
も小さいことが分かる。また冷延消費エネルギーも大幅
に小さくて良いことが分かる。A−1,D−1,A−2
は372MPa級の実施例である。比較例のL−1より
優れたr値と面内異方性の鋼板が得られている。特にA
−2は高温焼鈍の実施例であるがr値=2.5の極めて
高い値が得られている。
EXAMPLE Steels having the components shown in Table 3 were produced under the production conditions shown in Table 4. The material properties of the steel sheet are also shown in Table 4.
The tensile property is a value in the rolling direction, and the r value is an average value in a usual method. The energy consumption ratio of cold rolling is 1.
It was set to 0, and it was shown by the ratio with the closest final product strength. A-1 to H-2 are Examples within the scope of the present invention,
K-1 to P-1 are comparative examples. B-1 and C-1 are examples of the 343 MPa class. High C content 343MP
It can be seen that the r value is higher and the in-plane anisotropy is smaller than that of the a-class comparative example K-1. Also, it can be seen that the energy consumption of cold rolling can be significantly reduced. A-1, D-1, A-2
Is an example of 372 MPa class. A steel sheet having an r-value and in-plane anisotropy superior to L-1 of the comparative example is obtained. Especially A
-2 is an example of high temperature annealing, but an extremely high value of r value = 2.5 was obtained.

【0020】E−1,F−1,G−1,E−2.F−2
は392MPaKg級の本発明範囲の実施例である。3
92MPa級のC量が本発明範囲外の実施例であるN−
1およびTi,Nb量が本発明範囲外のP−1に比較し
て優れたr値であり、併せてその面内異方性も小さく、
冷延消費エネルギーも少なくて良いことが分かる。H−
1,I−1,J−1,H−2は441MPa級の本発明
範囲の実施例である。M−1はC量が本発明範囲外の実
施例であり、0−1はTi,Nb量が本発明範囲外の実
施例である。いずれも本発明範囲内の441MPa級の
実施例に比較してr値が低く、面内異方性の指標である
Δrの絶対値が大きい。
E-1, F-1, G-1, E-2. F-2
Is an example within the scope of the present invention in the 392 MPaKg class. Three
N- which is an example in which the C content in the 92 MPa class is outside the range of the present invention.
1 and Ti and Nb contents are excellent r values as compared with P-1 outside the range of the present invention, and the in-plane anisotropy is also small,
It can be seen that the cold rolling energy consumption is also small. H-
1, I-1, J-1, and H-2 are examples of the scope of the present invention in the 441 MPa class. M-1 is an example in which the amount of C is outside the range of the present invention, and 0-1 is an example in which the amounts of Ti and Nb are outside the range of the present invention. In each case, the r value is low and the absolute value of Δr, which is an index of in-plane anisotropy, is large as compared with the examples of the 441 MPa class within the scope of the present invention.

【0021】[0021]

【表3】 [Table 3]

【0022】[0022]

【表4】 [Table 4]

【0023】[0023]

【発明の効果】本発明によりr値が高く、Δrの絶対値
が小さい優れた深絞り性を備えた鋼板を冷延の消費エネ
ルギーを多量に使うことなく製造できる。
According to the present invention, a steel sheet having a high r value and a small absolute value of Δr and having excellent deep drawability can be manufactured without using a large amount of energy consumed for cold rolling.

【図面の簡単な説明】[Brief description of drawings]

【図1】C量とr値、Δrの関係を示したグラフ、FIG. 1 is a graph showing the relationship between C amount, r value, and Δr,

【図2】C量と熱延板の引張強度の関係を示したグラ
フ、
FIG. 2 is a graph showing the relationship between the C content and the tensile strength of the hot rolled sheet,

【図3】Ti量とr値、Δrの関係を示したグラフであ
る。
FIG. 3 is a graph showing the relationship between Ti amount, r value, and Δr.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西村 邦男 福岡県北九州市戸畑区飛幡町1番1号 新 日本製鐵株式会社八幡製鐵所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kunio Nishimura 1-1, Toibata-cho, Tobata-ku, Kitakyushu-shi, Fukuoka New Nippon Steel Corporation Yawata Works

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量%で C :0.0015%以下、 Si:0.70%以下、 Mn:0.40〜1.90%、 P :0.090%以下、 Al:0.015〜0.080%、 Ti:0.010〜0.060%、 B :0.0003〜0.0025%、 を含有する組成の鋼を、熱間圧延し、脱スケール後に6
5%以上の冷間圧延後、再結晶温度以上Ac3 変態点以
下の温度で連続焼鈍することを特徴とする面内異方性が
小さく深絞り性が優れた高強度冷延鋼板の製造方法。
1. C: 0.0015% or less by weight%, Si: 0.70% or less, Mn: 0.40 to 1.90%, P: 0.090% or less, Al: 0.015 to 0 0.080%, Ti: 0.010 to 0.060%, B: 0.0003 to 0.0025%, hot rolled steel having a composition of 6 after descaling.
A method for producing a high-strength cold-rolled steel sheet having small in-plane anisotropy and excellent deep drawability, which is characterized by performing continuous annealing at a temperature of not less than recrystallization temperature and not more than Ac 3 transformation point after cold rolling of 5% or more. .
【請求項2】 重量%で C :0.0015%以下、 Si:0.70%以下、 Mn:0.40〜1.90%、 P :0.090%以下、 Al:0.015〜0.080%、 Ti:0.010〜0.060%、 B :0.0003〜0.0025%、 Nb:0.020%以下、 を含有する組成の鋼を、熱間圧延し、脱スケール後に6
5%以上の冷間圧延後、再結晶温度以上Ac3 変態点以
下の温度で連続焼鈍することを特徴とする面内異方性が
小さく深絞り性が優れた高強度冷延鋼板の製造方法。
2. By weight%, C: 0.0015% or less, Si: 0.70% or less, Mn: 0.40 to 1.90%, P: 0.090% or less, Al: 0.015 to 0. 0.080%, Ti: 0.010 to 0.060%, B: 0.0003 to 0.0025%, Nb: 0.020% or less, the steel containing the composition is hot-rolled, and after descaling. 6
A method for producing a high-strength cold-rolled steel sheet having small in-plane anisotropy and excellent deep drawability, which is characterized by performing continuous annealing at a temperature of not less than recrystallization temperature and not more than Ac 3 transformation point after cold rolling of 5% or more. .
JP13426493A 1993-06-04 1993-06-04 Production of high strength cold rolled steel sheet good in plane anisotropy and excellent in deep drawability Withdrawn JPH06346149A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13426493A JPH06346149A (en) 1993-06-04 1993-06-04 Production of high strength cold rolled steel sheet good in plane anisotropy and excellent in deep drawability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13426493A JPH06346149A (en) 1993-06-04 1993-06-04 Production of high strength cold rolled steel sheet good in plane anisotropy and excellent in deep drawability

Publications (1)

Publication Number Publication Date
JPH06346149A true JPH06346149A (en) 1994-12-20

Family

ID=15124238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13426493A Withdrawn JPH06346149A (en) 1993-06-04 1993-06-04 Production of high strength cold rolled steel sheet good in plane anisotropy and excellent in deep drawability

Country Status (1)

Country Link
JP (1) JPH06346149A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015101776A (en) * 2013-11-27 2015-06-04 新日鐵住金株式会社 Cold rolled steel sheet, electrogalvanized cold rolled steel sheet, hot-dip galvanized cold rolled steel sheet and alloyed hot-dip galvanized cold rolled steel sheet each having high young modulus and excellent in workability and production methods of them

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015101776A (en) * 2013-11-27 2015-06-04 新日鐵住金株式会社 Cold rolled steel sheet, electrogalvanized cold rolled steel sheet, hot-dip galvanized cold rolled steel sheet and alloyed hot-dip galvanized cold rolled steel sheet each having high young modulus and excellent in workability and production methods of them

Similar Documents

Publication Publication Date Title
JPH032224B2 (en)
US4908073A (en) Method of producing a cold rolled steel sheet having a good ageing resistance and small anisotropy and adapted for deep drawing
JPH06102816B2 (en) Cold rolled steel sheet with a composite structure having excellent workability, non-aging at room temperature, and bake hardenability, and a method for producing the same
JP4177477B2 (en) Manufacturing method of cold-rolled steel sheet and hot-dip galvanized steel sheet with excellent room temperature aging resistance and panel characteristics
JPH06145891A (en) High strength cold rolled steel sheet excellent in ductility and delayed fracture resistance and its production
JP2800541B2 (en) Manufacturing method of high strength hot-dip galvanized steel sheet for deep drawing
CN112400033B (en) Hot-rolled plated steel sheet having high strength, high formability, and excellent bake hardenability, and method for producing same
JPH02163318A (en) Production of high-tension cold rolled steel sheet having excellent press formability
JP2621744B2 (en) Ultra-high tensile cold rolled steel sheet and method for producing the same
JP3299287B2 (en) High strength steel sheet for forming and its manufacturing method
JP3282887B2 (en) Thin steel sheet excellent in deep drawability and weldability and method for producing the same
JPH06104862B2 (en) Manufacturing method of cold-rolled steel sheet for work excellent in bake hardenability and non-aging at room temperature
JPH06346149A (en) Production of high strength cold rolled steel sheet good in plane anisotropy and excellent in deep drawability
JP2004131754A (en) Cold rolled steel sheet excellent in workability and shape fixability and its manufacturing method
JP2004131771A (en) Method for manufacturing cold rolled steel sheet having excellent shape fixability
JP3110624B2 (en) Method for producing high strength cold rolled steel sheet for deep drawing with excellent dent resistance and no stretcher strain
JP3911075B2 (en) Manufacturing method of steel sheet for ultra deep drawing with excellent bake hardenability
JPH0321611B2 (en)
JP3204101B2 (en) Deep drawing steel sheet and method for producing the same
JP2608508B2 (en) Manufacturing method of cold rolled steel sheet with excellent deep drawability
JPH04120243A (en) High tensile strength cold rolled steel sheet and its production
JPS6036624A (en) Production of cold rolled steel sheet for deep drawing
JP3309396B2 (en) High-strength cold-rolled steel sheet for deep drawing having age hardening property excellent in secondary work brittleness resistance and method for producing the same
JP4218598B2 (en) High tensile alloyed hot dip galvanized steel sheet with excellent plating characteristics
JP2705437B2 (en) High-strength cold-rolled steel sheet for deep drawing with bake hardenability and its manufacturing method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000905