JPH06344510A - Vulcanization molding of thick-walled unvulcanized rubber composite - Google Patents
Vulcanization molding of thick-walled unvulcanized rubber compositeInfo
- Publication number
- JPH06344510A JPH06344510A JP13443893A JP13443893A JPH06344510A JP H06344510 A JPH06344510 A JP H06344510A JP 13443893 A JP13443893 A JP 13443893A JP 13443893 A JP13443893 A JP 13443893A JP H06344510 A JPH06344510 A JP H06344510A
- Authority
- JP
- Japan
- Prior art keywords
- thick
- rubber
- unvulcanized rubber
- unvulcanized
- walled
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C35/00—Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
- B29C35/02—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
- B29C35/08—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
- B29C35/0805—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
- B29C2035/0811—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using induction
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2030/00—Pneumatic or solid tyres or parts thereof
- B29L2030/006—Solid tyres
Landscapes
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Laminated Bodies (AREA)
- Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は、複数種の未加硫ゴム
を互いに接合一体化した厚肉複合体を高周波誘電加熱に
よりその後の加硫成形に対し有利に予備加熱した後加硫
成形する方法に関し、特に各未加硫ゴム相互間でその比
誘電率εと誘電体損失角tanδとの積ε・tanδで
あらわされる損失係数の値に大きな較差を有する厚肉複
合体に適合し、その加硫成形後におけるゴム製品が所期
の十分な性能を発揮すると同時に、高温短時間による高
能率な加硫成形を可能としてこの工程全般にわたる生産
性を大幅に向上させることに寄与する厚肉未加硫ゴム複
合体の加硫成形方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thick-walled composite in which a plurality of unvulcanized rubbers are joined and integrated with each other, and is preferably preheated by high-frequency dielectric heating for subsequent vulcanization and then vulcanization-molded. The method is particularly suitable for thick-walled composites having a large difference in the value of the loss coefficient represented by the product ε · tan δ of the relative permittivity ε and the dielectric loss angle tan δ between each unvulcanized rubber, After the vulcanization molding, the rubber product will exhibit the desired sufficient performance, and at the same time, it will enable the vulcanization molding with high efficiency at high temperature and in a short time, which will contribute to the significant improvement in the productivity in the whole process. The present invention relates to a vulcanization molding method for a vulcanized rubber composite.
【0002】[0002]
【従来の技術】厚肉複合体をその表面部からの熱伝導の
みに依存して加硫成形する従来一般の方法では、加熱さ
れる表面から内部へ行くに従って、ゴム特有の著しく小
さい熱伝導率のため表面部に比し温度上昇が大幅に遅れ
るが、慣例としてこの難昇温部が適正加硫度(期待し得
る最も望ましい物性を示す加硫の度合)に達するまで加
硫成形のための加熱を継続する必要があった。2. Description of the Related Art In the conventional general method of vulcanizing and molding a thick-walled composite material by relying only on heat conduction from its surface portion, a remarkably low thermal conductivity peculiar to rubber increases from the surface to be heated to the inside. Because of this, the temperature rise will be significantly delayed compared to the surface part, but as a convention, this difficult temperature rising part will be vulcanized until the proper vulcanization degree (vulcanization degree showing the most desirable physical properties that can be expected) is reached. It was necessary to continue heating.
【0003】その場合、難昇温部から表面部に向うにつ
れ次第に加硫度が増加するので、表面部により近い部分
ほど著しい過加硫状態を示し、これに伴うゴム物性の劣
化により製品性能低下の不利は免れず、またこの性能低
下を最小限に止めるには低温長時間の加硫成形が余儀な
くされるため生産性が著しく損なわれる問題が生じ、よ
ってこれらの同時改善が従来から強く求められてきた。In this case, the degree of vulcanization gradually increases from the difficult-to-heat-up portion to the surface portion, so that a portion closer to the surface portion shows a significantly over-vulcanized state, and deterioration of the physical properties of the rubber results in deterioration of product performance. However, the vulcanization molding at low temperature for a long time is unavoidable in order to minimize this deterioration of performance, which causes a problem that productivity is significantly impaired.Therefore, simultaneous improvement of these is strongly demanded. Came.
【0004】この改善の最も簡便な手段として、室温よ
りは高いが加硫温度に比し大幅に低い雰囲気温度とした
予備加熱室内にて、厚肉複合体を全体にわたりほぼ均一
な温度に達するまで加熱する方法が採られた。しかしこ
の方法は、加熱の設定温度を高め過ぎると厚肉複合体の
表面部の加硫が進行し過ぎる不具合を招くため低く抑え
る必要があり、その結果難昇温部を所定の温度レベルま
で高めるには長時間を要するうえ加熱の度合も低く、結
局加硫成形工程全般にわたる生産性改善が不十分となる
のは止むを得ず、加えて過加硫問題の解決には至らなか
った。The simplest means for this improvement is to reach a substantially uniform temperature throughout the thick composite in a preheating chamber in which the ambient temperature is higher than room temperature but significantly lower than the vulcanization temperature. The method of heating was adopted. However, this method needs to be kept low because the vulcanization of the surface part of the thick-walled composite will proceed too much if the set temperature of heating is raised too high, and as a result, the difficult temperature rising part is raised to a predetermined temperature level. It takes a long time and the degree of heating is low, and in the end, the improvement of productivity over the entire vulcanization molding process is unavoidable, and in addition, the problem of overvulcanization cannot be solved.
【0005】[0005]
【発明が解決しようとする課題】そこでさらに一層有効
な方法として高周波誘電加熱、なかでもマイクロ波加熱
が試みられた。しかしこの方法にしても、単一の配合ゴ
ム組成になる厚肉体の場合又は厚肉複合体では各未加硫
ゴム相互間の配合組成が近似している場合に限り、この
被加熱体回りのマイクロ波電界を均一にすることにより
短時間で難昇温部を所望温度まで加熱し得るに過ぎない
という、実用上利用可能なゴム製品が著しく限定される
不利な点を有している。Therefore, high-frequency dielectric heating, especially microwave heating, has been attempted as an even more effective method. However, even with this method, only in the case of a thick body having a single compounded rubber composition or in a thick-walled composite, when the compounded composition between each unvulcanized rubber is similar, There is a disadvantage that the practically usable rubber product is significantly limited, that is, the difficult temperature rising portion can be heated to the desired temperature in a short time by making the microwave electric field uniform.
【0006】この点は、例えばフォークリフトなどの使
途に適合するソリッドタイヤ用の厚肉複合体のように、
その各未加硫ゴムが各々異なる要求特性に適合するよう
に配合設計され、各未加硫ゴム相互間で配合組成に著し
い相違を有する場合、これに高周波加熱、なかでも加熱
効率に優れるマイクロ波加熱を施した際、実際上難昇温
部の温度が損失係数の値が高い未加硫ゴムの、例えば表
面部分のそれに比し大幅に低い結果がもたらされ、引続
く加硫成形に不都合をきたすことにほかならない。[0006] In this respect, for example, a thick-walled composite body for a solid tire suitable for use in a forklift truck,
When each unvulcanized rubber is compounded and designed to meet different required characteristics, and there is a significant difference in compounded composition between each unvulcanized rubber, microwaves with high heating efficiency When heating is applied, the temperature of the difficult-to-heat-up portion is substantially lower than that of unvulcanized rubber with a high loss coefficient value, for example, the result of the surface portion is significantly lower, which is not suitable for subsequent vulcanization molding. It is nothing but a cause.
【0007】なお加硫成形前のタイヤにマイクロ波加熱
を施す方法として特公昭57−42501号公報は、タ
イヤのトレッドゴムに予めマイクロ波加熱を施し加熱し
た後、組立て成型する点につき開示しているが、この組
立て成型から加硫成形に至る間に、予備加熱を施さない
他の接合部材に対する熱伝導により、特にトレッドゴム
の他の接合部材との接合面近傍にて著しく温度が低下
し、またこれを回避するため複数ゴム部材を同時に加熱
しようとすれば、その部材数に見合う台数のマイクロ波
加熱装置を必要とするなど、実用上の大きな不利を伴
う。As a method of subjecting a tire before vulcanization molding to microwave heating, Japanese Patent Publication No. 57-42501 discloses that the tread rubber of the tire is subjected to microwave heating in advance and then assembled and molded. However, during this assembly molding to vulcanization molding, due to heat conduction to other joining members that are not subjected to preheating, the temperature decreases significantly near the joining surface of the other joining members of the tread rubber, Further, if it is attempted to heat a plurality of rubber members at the same time in order to avoid this, a large number of microwave heating devices corresponding to the number of the members are required, which is a great practical disadvantage.
【0008】そこで複数種の互いに大きく相違する配合
組成からなる各未加硫ゴムを含む厚肉複合体に高周波誘
電加熱、特にマイクロ波加熱を施して、厚肉複合体の難
昇温部の温度を表面部のそれ以上の望ましい温度まで高
めた後これを加硫成形することにより、製品がその全体
にわたる適正なゴムの加硫度の下で要求性能に対し充足
した所期のゴム物性を発揮すること並びに加硫成形工程
全般にわたる生産性を大幅に向上させることが可能な厚
肉未加硫ゴム複合体の加硫成形方法を提案するのがこの
発明の目的である。Therefore, high-frequency dielectric heating, in particular microwave heating, is applied to a thick-walled composite containing unvulcanized rubbers having a plurality of types of compounding compositions which are largely different from each other, and the temperature of the difficult-to-heat-up portion of the thick-walled composite is increased. By vulcanization and molding after raising the temperature to a desired temperature above the surface, the product exhibits the desired rubber physical properties satisfying the required performance under the appropriate degree of vulcanization of the rubber throughout the product. It is an object of the present invention to propose a vulcanization molding method for a thick unvulcanized rubber composite which is capable of significantly improving the productivity over the entire vulcanization molding process.
【0009】[0009]
【課題を解決するための手段】各未加硫ゴムの比誘電率
εと誘電体損失角tanδとの積であらわされる損失係
数ε・tanδに着目することにより、上記目的を達成
することが可能であることを見出してこの発明を完成さ
せるに至った。すなわちこの発明の厚肉未加硫ゴム複合
体の加硫成形方法は、複数種の未加硫ゴムを互いに接合
一体化した厚肉複合体を、予め高周波誘電加熱により加
熱した後加硫成形するにあたり、各未加硫ゴムのうち、
その比誘電率(ε)と誘電体損失角(tanδ)との積
ε・tanδであらわされる損失係数の値の小さい未加
硫ゴムの成分組成中に予め少量の導電性カーボンブラッ
クを添加配合して、各未加硫ゴム相互間における損失係
数の較差を縮小することを特徴とする。The above object can be achieved by paying attention to the loss coefficient ε · tan δ represented by the product of the relative permittivity ε of each unvulcanized rubber and the dielectric loss angle tan δ. That is, the present invention has been completed. That is, the method for vulcanizing and molding the thick unvulcanized rubber composite of the present invention is to vulcanize and mold a thick composite in which a plurality of types of unvulcanized rubbers are joined and integrated with each other by heating them in advance by high-frequency dielectric heating. Of each unvulcanized rubber,
A small amount of conductive carbon black is added and blended in advance to the component composition of the unvulcanized rubber having a small loss coefficient value represented by the product ε · tan δ of the relative permittivity (ε) and the dielectric loss angle (tan δ). Thus, the difference in the loss coefficient between the unvulcanized rubbers is reduced.
【0010】以下この発明を図2及び図3に基づき一層
詳細に説明する。図2(a)、(b)及び図3(a)、
(b)は厚肉未加硫ゴム複合体の一例として加硫成形後
にソリッドタイヤとなる環状の厚肉複合体1を示し、図
2は二種の未加硫ゴムを、図3では三種の未加硫ゴムを
互いに接合一体化した例を示す。なお図2(a)、図3
(a)は斜め上から見た厚肉複合体1のありさまを、図
2(b)、図3(b)にはそれぞれA−A線に沿う断面
を示し、図中Bは難昇温部をあらわす。The present invention will be described in more detail below with reference to FIGS. 2 and 3. 2 (a), (b) and FIG. 3 (a),
(B) shows an annular thick composite 1 that becomes a solid tire after vulcanization molding as an example of the thick unvulcanized rubber composite. FIG. 2 shows two kinds of unvulcanized rubber, and FIG. 3 shows three kinds of unvulcanized rubber. An example in which unvulcanized rubbers are joined and integrated with each other is shown. 2 (a) and 3
(A) shows the state of the thick composite body 1 when viewed obliquely from above, and FIG. 2 (b) and FIG. 3 (b) show cross sections taken along the line A-A, respectively, where B is the temperature rise that is difficult to heat up. Represents a part.
【0011】図2、図3において環状の厚肉複合体1
は、その半径方向で最も内側の未加硫ゴム1−1と、こ
のゴムとは配合組成が大幅に相違する最も外側の未加硫
ゴム1−2とを、図3に示す例ではこれらゴムの中間
に、やはりいずれのゴムとも配合組成を異にする未加硫
ゴム1−3を、それぞれ互いに接合一体化してなる。2 and 3, the annular thick composite body 1 is shown.
Is the innermost unvulcanized rubber 1-1 in the radial direction and the outermost unvulcanized rubber 1-2 whose compounding composition is significantly different from this rubber. In the example shown in FIG. In the middle of the above, unvulcanized rubbers 1-3, which also have different compounding compositions from any rubber, are joined and integrated with each other.
【0012】上記の厚肉複合体1を予め高周波誘電加熱
により加熱した後加硫成形するのに先立ち、各未加硫ゴ
ム1−1、1−2、1−3のうち損失係数ε・tanδ
の値が小さい未加硫ゴム、例えば最内側の未加硫ゴム1
−1及び中間の未加硫ゴム1−3の成分組成中に予め少
量の導電性カーボンブラックを添加配合するものとし、
これにより各未加硫ゴム1−1、1−2及び1−3相互
間における損失係数の較差を縮小する。Prior to vulcanization molding after heating the above-mentioned thick composite 1 by high frequency dielectric heating in advance, loss coefficient ε · tan δ of unvulcanized rubber 1-1, 1-2, 1-3.
Unvulcanized rubber having a small value of, for example, the innermost unvulcanized rubber 1
-1, and an intermediate unvulcanized rubber 1-3, in which a small amount of conductive carbon black is added and blended in advance in the component composition,
This reduces the difference in loss coefficient among the unvulcanized rubbers 1-1, 1-2 and 1-3.
【0013】ここに少量の導電性カーボンブラックの少
量とは、製品ソリッドタイヤにおける所期の適正なゴム
物性を保持し得る範囲内の量を意味し、好ましくはゴム
100重量部に対し20重量部以内とする。これは反面
下記に例示するように、少量の添加配合であっても上記
の損失係数の較差縮小に十分寄与し得る性質を備えてい
る導電性カーボンブラックの適用が好都合であることに
ほかならない。Here, a small amount of a small amount of conductive carbon black means an amount within a range capable of maintaining desired proper rubber physical properties in a product solid tire, preferably 20 parts by weight with respect to 100 parts by weight of rubber. Within On the other hand, however, as exemplified below, it is nothing but the application of conductive carbon black, which has the property of sufficiently contributing to the reduction of the difference in the above-mentioned loss factors, even with a small amount of additive compounding.
【0014】すなわち導電性カーボンブラックには、例
えば、ケッチェンEC、ケッチェン600JD(ライオ
ン(株))、バルカンXC−72、バルカンSC、バル
カンC(米、CABOT社)、プリンテックスXE2
(独、DEGUSSA社)などの導電性ファーネスブラ
ック、またデンカブラック(電化(株))の導電性アセ
チレンブラックなどが適合し、さらにこれら以外のカー
ボンブラックであっても上述の特性を有するものであれ
ば適用を可とする。That is, for the conductive carbon black, for example, Ketjen EC, Ketjen 600JD (Lion Co., Ltd.), Vulcan XC-72, Vulcan SC, Vulcan C (CABOT Co., USA), Printex XE2.
A conductive furnace black such as (DEGUSSA, Germany) or a conductive acetylene black such as Denka Black (Denka Co., Ltd.) is suitable, and carbon black other than these is also suitable as long as it has the above-mentioned characteristics. If applicable.
【0015】かくして各未加硫ゴム1−1、1−2、1
−3の損失係数の較差を予め縮小した厚肉複合体1とし
たうえで、これに高周波加熱を施して予備加熱すること
により、厚肉複合体1の難昇温部から表面部に至る全域
にわたる各部を所望の温度まで高めた後加硫成形を行う
ものである。なお厚肉未加硫ゴム複合体の予備加熱に
は、高周波のなかでもマイクロ波の照射が好ましい。ま
た加熱される度合は後述するように実際上未加硫ゴムの
損失係数に応じて定まる。Thus, each unvulcanized rubber 1-1, 1-2, 1
-3 is made into the thick-walled composite body 1 in which the difference in the loss coefficient is reduced in advance, and then this is subjected to high-frequency heating to be pre-heated, so that the thick-walled composite body 1 has a whole area from the difficult temperature rising portion to the surface portion. The vulcanization molding is performed after raising the temperature of each part to a desired temperature. For preheating the thick unvulcanized rubber composite, microwave irradiation is preferable among high frequencies. The degree of heating is actually determined by the loss coefficient of the unvulcanized rubber, as will be described later.
【0016】上記は加硫成形によりソリッドタイヤとな
る厚肉複合体1を例として説明したが、その他の厚肉ゴ
ムタイヤ全般及びそれ以外の厚肉ゴム物品における厚肉
複合体にも適用することができる。Although the thick-walled composite 1 which is made into a solid tire by vulcanization molding has been described above as an example, it can be applied to other thick-walled rubber tires in general and thick-walled composites in other thick-walled rubber articles. it can.
【0017】[0017]
【作用】一般に上記厚肉複合体1は、加硫成形後のゴム
製品、例えばタイヤとして各部分が異種の要求性能に対
応する必要上、複数種の未加硫ゴム1−1、1−2、1
−3は各々配合設計が大きく異なり、従って各未加硫ゴ
ム組成は互いに大きく相違するのが通例である。また、
しばしば製造工程に対する配慮からの要求に応えるため
同様な相違が生じる。In general, the thick-walled composite 1 is a rubber product after vulcanization molding, for example, as a tire, it is necessary for each part to correspond to different required performances. Therefore, a plurality of types of unvulcanized rubbers 1-1 and 1-2 are required. 1
-3 has a greatly different compounding design, and thus the unvulcanized rubber compositions are generally greatly different from each other. Also,
Similar differences often occur to meet demands from manufacturing considerations.
【0018】各未加硫ゴム1−1、1−2、1−3の配
合組成が大きく相違すれば、高周波電界内における損失
係数ε・tanδの値もまた各未加硫ゴム相互間で大き
な較差が生じるのが通例である。そこでこれらのゴムを
互いに接合一体化した厚肉複合体1に高周波、なかでも
マイクロ波を照射して加熱すると、マイクロ波の電力ロ
スは厚肉複合体1内における損失係数の値が大きい未加
硫ゴム部分に選択的に集中する結果、この未加硫ゴム部
分が主に加熱されて他の部分に比し著しく高温となる現
象を呈する。If the compounding compositions of the unvulcanized rubbers 1-1, 1-2, and 1-3 are greatly different, the loss coefficient ε · tan δ in the high frequency electric field is also large among the unvulcanized rubbers. It is customary for differences to occur. Therefore, when the thick composite body 1 in which these rubbers are bonded and integrated to each other is irradiated with a high frequency wave, in particular, by being irradiated with microwaves, the power loss of the microwave has a large loss coefficient in the thick composite body 1. As a result of selectively concentrating on the vulcanized rubber portion, the unvulcanized rubber portion is heated mainly and becomes extremely hot as compared with other portions.
【0019】これは、未加硫ゴム1−1、1−2、1−
3にて消費するマイクロ波電力ロスPが、These are unvulcanized rubbers 1-1, 1-2, 1-
The microwave power loss P consumed in 3 is
【数1】 P=(1/1.8)fv2 ×ε・tanδ×10-10 (W/m3 ) ただしf;発振周波数(Hz)、 v;電界の大きさ(V/m)、 にて与えられ、ここに上式の右辺中、発振周波数fは被
加熱物である厚肉複合体1に対し最適となるように固定
するのが合理的であり、電界の大きさvについては、厚
肉複合体1が各未加硫ゴム相互間で損失係数の値に大き
な較差を有する場合、過大な加熱部分が生じるうれいを
回避するため所定の限度以内に抑える必要があり、結局
未加硫ゴム1−1、1−2、1−3にて消費されるマイ
クロ波電力ロス、すなわち発生する熱量は損失係数ε・
tanδに比例するからである。## EQU1 ## P = (1 / 1.8) fv 2 × ε · tan δ × 10 -10 (W / m 3 ) where f: oscillation frequency (Hz), v: electric field magnitude (V / m), In the right side of the above equation, it is rational to fix the oscillation frequency f to be optimum for the thick composite body 1 as the object to be heated. If the thick composite 1 has a large difference in the value of the loss coefficient between the unvulcanized rubbers, it is necessary to suppress the loss within a predetermined limit in order to avoid grazing caused by an excessively heated portion. The microwave power loss consumed by the vulcanized rubbers 1-1, 1-2, and 1-3, that is, the amount of heat generated is the loss factor ε.
This is because it is proportional to tan δ.
【0020】上に述べたところは、例えば従来の厚肉複
合体1にマイクロ波加熱を施した直後における各未加硫
ゴム1−1(損失係数0.2)、1−2(損失係数1.
05)、1−3(損失係数0.1)の表面部及び内部の
温度を計測した例を図4(a)、(b)に示すとおり、
損失係数の値が最も大きい未加硫ゴム1−2の内部温度
が他の未加硫ゴム1−1、1−3に比し著しく高い温度
を示すことから明らかである。As described above, for example, each unvulcanized rubber 1-1 (loss factor 0.2) and 1-2 (loss factor 1 immediately after subjecting the conventional thick composite body 1 to microwave heating are used. .
05) An example of measuring the temperature of the surface portion of 1-3 (loss factor 0.1) and the inside is as shown in FIGS.
It is clear from the fact that the internal temperature of the unvulcanized rubber 1-2 having the largest value of the loss coefficient shows a remarkably higher temperature than the other unvulcanized rubbers 1-1 and 1-3.
【0021】よって冒頭で述べた従来のマイクロ波加熱
を可能とする対象が、単一の配合ゴム組成になる厚肉体
又はこれに類似した、各未加硫ゴム相互間の配合組成が
近似した厚肉複合体に限定されるのは上記理由による。Therefore, the object which enables the conventional microwave heating described at the beginning is a thick body having a single compounded rubber composition or similar thicknesses in which the compounded compositions between unvulcanized rubbers are similar to each other. The reason for being limited to the meat complex is the above reason.
【0022】そこで、配合組成が互いに大きく相違する
未加硫ゴム1−1、1−2、1−3のうち、損失係数の
値が小さい未加硫ゴム組成、例えば未加硫ゴム1−1、
1−3に上述したような特性を有する導電性カーボンブ
ラックを少量添加配合することにより、これらの損失係
数の値を大きくすることができる。Therefore, among the unvulcanized rubbers 1-1, 1-2, and 1-3 whose compounding compositions greatly differ from each other, an unvulcanized rubber composition having a small loss coefficient, for example, unvulcanized rubber 1-1. ,
By adding a small amount of conductive carbon black having the above-mentioned characteristics to 1-3, and blending them, the values of these loss coefficients can be increased.
【0023】これは、実施例にて詳述するように上記従
来例の厚肉複合体1の未加硫ゴム1−1(損失係数0.
2)及び1−3(損失係数0.1)に前掲の各種導電性
カーボンブラックを1.5〜8.0重量部数添加配合す
ることにより、これらの損失係数の値が共に1.00ま
で高まることを見出した結果に基づく知見である。This is because the unvulcanized rubber 1-1 (loss factor of 0.
By adding 1.5 to 8.0 parts by weight of the above-mentioned various conductive carbon blacks to 2) and 1-3 (loss factor 0.1), both of these loss factors increase to 1.00. This is a finding based on the finding of this.
【0024】さらに上記の損失係数の値を1.00とし
た未加硫ゴム1−1、1−3と従来例と同じ未加硫ゴム
1−2(損失係数1.05)との各種厚肉複合体1に、
従来例と同一照射条件の下でマイクロ波加熱を施した直
後における計測温度を図5(a)〜(d)及び図6
(a)、(b)に示すが、これらは何れも従来例の図4
(a)、(b)にて特に難昇温部B又はその近傍部分が
示していた低い温度が、表面部に比しより高温度を示す
まで顕著に上昇することをあらわしている。なお図4〜
図6は、図2(b)、図3(b)に示す環状厚肉複合体
1の断面を図で上下に2分して難昇温部Bを通る線上の
各点にて測定した温度をプロットした温度分布グラフを
示す。Further, various thicknesses of unvulcanized rubber 1-1 and 1-3 whose loss coefficient value is 1.00 and unvulcanized rubber 1-2 (loss coefficient 1.05) which is the same as the conventional example. To meat complex 1,
The measured temperature immediately after the microwave heating is performed under the same irradiation condition as that of the conventional example is shown in FIG.
As shown in FIGS. 4A and 4B, these are all shown in FIG.
It is shown that the low temperature, which is particularly exhibited in the difficult temperature rising portion B or the vicinity thereof in (a) and (b), is remarkably increased until it is higher than the surface portion. 4 to
FIG. 6 shows the temperature measured at each point on the line passing through the difficult temperature rising portion B by dividing the cross-section of the annular thick composite body 1 shown in FIGS. 2 (b) and 3 (b) into upper and lower parts in the figure. The temperature distribution graph which plotted is shown.
【0025】ここに一般には単一の配合組成になる未加
硫ゴムなどの誘電体に対するマイクロ波の浸透深さは発
振周波数fに反比例するとされているが、この図5、図
6に例示するような昇温現象は、例えば厚肉体の形状、
大きさ、ゴム配合組成などに応じ難昇温部B近傍にてマ
イクロ波を重複作用させ得るようなマイクロ波周波数f
を適宜選択することにより得られる。なお図5、図6に
示す例ではこの周波数fを915MHzとしたものであ
り、ちなみにこの周波数fを2450MHzとしたとこ
ろ難昇温部Bの温度が表面部のそれに比し大幅に低い結
果を示した。Here, it is generally said that the penetration depth of microwaves into a dielectric material such as unvulcanized rubber having a single composition is inversely proportional to the oscillation frequency f, but this is illustrated in FIGS. 5 and 6. Such a temperature increase phenomenon is caused by, for example, the shape of a thick body,
Microwave frequency f that allows microwaves to overlap in the vicinity of the difficult temperature rising portion B depending on the size, rubber composition, etc.
Can be obtained by selecting appropriately. In the examples shown in FIGS. 5 and 6, the frequency f is set to 915 MHz. By the way, when the frequency f is set to 2450 MHz, the temperature of the difficult temperature rising portion B is significantly lower than that of the surface portion. It was
【0026】さらに上述の作用と、導電性カーボンブラ
ックの添加量又はその種類とを適宜組合わせることによ
り、厚肉複合体1の難昇温部Bから表面部に至る間の温
度分布のありさまを所望の形態とすることが可能とな
る。Further, by appropriately combining the above-described action with the amount or type of the conductive carbon black added, the temperature distribution of the thick composite body 1 from the difficult temperature rising portion B to the surface portion can be improved. Can be formed into a desired form.
【0027】かくして厚肉複合体1の未加硫ゴム1−
1、1−2、1−3相互間における損失係数の較差を縮
小することにより、この厚肉複合体1に高周波誘電加
熱、とりわけマイクロ波加熱を施した際、難昇温部B及
びその近傍を所望の温度まで、表面部の温度以上に高め
ることができる。Thus, the unvulcanized rubber 1 of the thick-walled composite 1
By reducing the difference in loss coefficient among 1, 1-2, and 1-3, when the thick composite 1 is subjected to high-frequency dielectric heating, particularly microwave heating, the difficult-to-heat-up portion B and its vicinity Can be raised to the desired temperature above the surface temperature.
【0028】その場合、被加熱体である厚肉複合体1の
各未加硫ゴムの配合組成、形状、寸法などに応じて、最
適なマイクロ波の周波数fの他に、出力電力又は被加熱
体回りの電界の大きさv、照射時間などの諸条件を設定
して予備加熱を実施するのは勿論であり、かくして準備
した厚肉複合体1に、望ましくは引続いて慣例に従い金
型を用いた加硫成形を施せば、高温短時間で厚肉複合体
1の各部における加硫度を適正に保ったゴム製品が得ら
れる。In this case, in addition to the optimum microwave frequency f, the output power or the heated object is heated depending on the compounding composition, shape, size and the like of each unvulcanized rubber of the thick composite body 1 which is the object to be heated. It goes without saying that preheating is performed by setting various conditions such as the magnitude v of the electric field around the body and the irradiation time, and the thick-walled composite body 1 thus prepared is preferably followed by a mold according to a customary manner. When the vulcanization molding used is performed, a rubber product in which the degree of vulcanization in each part of the thick-walled composite 1 is appropriately maintained can be obtained in a short time at high temperature.
【0029】これにより厚肉複合体1の加硫成形後にお
けるゴム製品は、その各部に加硫の過不足がなく、しか
も少量の導電性カーボンブラックの添加配合で足りるの
で要求性能の発揮に適うゴム物性を保持することができ
る。同時に高温短時間条件下での高能率な加硫成形が可
能となるのでこの工程全般にわたる生産性を大幅に向上
することに寄与する。さらにマイクロ波などの高周波出
力電力を一層高めることも可能となり照射時間の短縮も
可能となる。As a result, the rubber product after the vulcanization molding of the thick composite body 1 has no excess or deficiency of vulcanization in each part, and the addition of a small amount of conductive carbon black is sufficient, so that the required performance can be exhibited. Rubber properties can be retained. At the same time, high-efficiency vulcanization molding under high-temperature and short-time conditions is possible, which contributes to a significant improvement in productivity over the entire process. Further, it is possible to further increase the high frequency output power of microwaves and the like, and it is possible to shorten the irradiation time.
【0030】[0030]
【実施例】まず後述する実施例1、2及び比較例1、2
に共通するマイクロ波加熱の例につき図1を用いて説明
する。図1は厚肉複合体1にマイクロ波加熱を施す装置
を模式で示し、2はマイクロ波発生装置、3はマイクロ
波の導波管、4は厚肉複合体1にマイクロ波照射を施す
アプリケータ、5はアプリケータ内のマイクロ波を反射
攪拌するスターラ(回転翼)、6は好ましくはマイクロ
波を透過するポリプロピレンなどの合成樹脂からなる回
転支持台である。EXAMPLES First, Examples 1 and 2 and Comparative Examples 1 and 2 which will be described later.
An example of microwave heating common to the above will be described with reference to FIG. FIG. 1 schematically shows an apparatus for applying microwave heating to the thick composite 1, 2 is a microwave generator, 3 is a microwave waveguide, and 4 is an application for applying microwave to the thick composite 1. 5 is a stirrer (rotary blade) that reflects and stirs the microwaves in the applicator, and 6 is a rotary support base preferably made of a synthetic resin such as polypropylene that transmits microwaves.
【0031】[実施例1]加硫成形後にソリッドタイヤ
となる円環状厚肉複合体1は図2(a)、(b)に従
い、A−A線に沿う総厚さtを10cmとし、最内側未
加硫ゴム1−1は通常のゴムに短繊維を均して分散混入
したゴムであり、厚さt/2は5cm、その損失係数が
0.2であり、最外側未加硫ゴム1−2は表1に示す配
合組成になり、厚さt/2が5cm、その損失係数は
1.05である。なおこの例における難昇温部は両ゴム
1−1と1−2との接合面のほぼ中央周線上Bにあり、
容積は約17500cm3とした。[Example 1] The annular thick composite body 1 which becomes a solid tire after vulcanization molding has a total thickness t along the line AA of 10 cm according to FIGS. 2 (a) and 2 (b). The inner unvulcanized rubber 1-1 is a rubber in which short fibers are evenly dispersed and mixed in a normal rubber, the thickness t / 2 is 5 cm, and the loss coefficient thereof is 0.2. 1-2 had the composition shown in Table 1, the thickness t / 2 was 5 cm, and the loss coefficient thereof was 1.05. The difficult temperature rising portion in this example is located on the center circumferential line B of the joint surface between the rubbers 1-1 and 1-2.
The volume was about 17500 cm 3 .
【0032】[0032]
【表1】 [Table 1]
【0033】上記の厚肉複合体1を比較例1として用
い、最内側未加硫ゴム1−1に下記導電性カーボンブラ
ックを添加配合した(A)〜(D)の厚肉複合体1を、
各未加硫ゴム1−1に添字a〜dを付し、実施例1とし
て準備した。 (A)1−1a;ケッチェンECを1.5重量部添加、 (B)1−1b;プリンテックスXE2を1.5重量部
添加、 (C)1−1c;バルカンXC−72を6重量部添加、 (D)1−1d;アセチレンブラックを8重量部を添
加、 なお上記(A)〜(D)の損失係数は1.00に揃え
た。Using the above thick composite 1 as Comparative Example 1, the thick composite 1 of (A) to (D) was prepared by adding the following conductive carbon black to the innermost unvulcanized rubber 1-1. ,
Each unvulcanized rubber 1-1 was provided with subscripts a to d and prepared as Example 1. (A) 1-1a; 1.5 parts by weight of Ketjen EC, (B) 1-1b; 1.5 parts by weight of Printex XE2, (C) 1-1c; 6 parts by weight of Vulcan XC-72. Addition, (D) 1-1d; 8 parts by weight of acetylene black was added, and the loss factors of (A) to (D) above were adjusted to 1.00.
【0034】(A)〜(D)の各実施例1と比較例1と
に、それぞれ別個に図1に例示する装置にてマイクロ波
加熱を施した。なおマイクロ波の周波数fを915MH
z、出力電力は3KW、照射時間を約10分とした。Microwave heating was applied to each of Example 1 (A) to (D) and Comparative Example 1 separately by the apparatus illustrated in FIG. The frequency f of the microwave is 915 MH
z, output power was 3 kW, and irradiation time was about 10 minutes.
【0035】マイクロ波加熱を施した後引続き各厚肉複
合体1の各部温度を測定した結果を、比較例1は図4
(a)、実施例1の(A)〜(D)を図5(a)〜
(d)に示す。なお図5(a)は(A)、図5(b)は
(B)、図5(c)は(C)、図5(d)は(D)に対
応する。なお各図において横軸は厚さt(cm)を示
す。図4(a)、図5から明らかなように、実施例1の
各厚肉複合体1は難昇温部B近傍の温度が表面部より高
く、引続く加硫成形に対し好ましい温度分布を示し、比
較例1の温度分布に対し大幅に改善されている。After the microwave heating, the temperature of each part of each thick composite body 1 was continuously measured.
(A), (A) to (D) of Example 1 are shown in FIG.
It shows in (d). 5 (a) corresponds to (A), FIG. 5 (b) corresponds to (B), FIG. 5 (c) corresponds to (C), and FIG. 5 (d) corresponds to (D). In each figure, the horizontal axis represents the thickness t (cm). As is clear from FIGS. 4 (a) and 5, each thick composite body 1 of Example 1 has a temperature in the vicinity of the difficult temperature rising portion B higher than that of the surface portion, and has a preferable temperature distribution for subsequent vulcanization molding. The temperature distribution of Comparative Example 1 is significantly improved.
【0036】上記各厚肉複合体1を金型により加硫成形
してソリッドタイヤとした後、各ソリッドタイヤの各部
の加硫度を図4〜図6における温度測定位置近傍で測定
したところ、冒頭にて述べた適正加硫度を100とする
指数にてあらわせば、比較例1は100〜440にわた
る範囲の分布を有し、これに対し実施例1の(A)〜
(D)は100〜170の範囲内に収まり、かつゴムの
基本物性に変化は見出せず製品性能は確保されている。After each thick composite body 1 was vulcanized and molded into a solid tire by a mold, the vulcanization degree of each portion of each solid tire was measured in the vicinity of the temperature measurement position in FIGS. 4 to 6, When expressed by an index in which the proper vulcanization degree is 100 described at the beginning, Comparative Example 1 has a distribution in the range of 100 to 440, while (A) to Example 1 of Example 1
(D) falls within the range of 100 to 170, and no change is found in the basic physical properties of rubber, and product performance is secured.
【0037】なお試みに各実施例1が示す加硫度の範囲
内に収まるように比較例1に低温加硫成形を施してみよ
うとしても不可能であった。 [実施例2]同様にソリッドタイヤとなる厚肉複合体1
は図3(a)、(b)に従い、A−A線に沿う総厚さt
を10cmとし、最内側未加硫ゴム1−1は実施例1と
同じ損失係数が0.2の短繊維混入ゴムとし、厚さt/
2は5cmであり、最外側未加硫ゴム1−2は表1に示
す実施例1と同一配合の損失係数が1.05で、厚さを
t/4の2.5cmとし、中間未加硫ゴム1−3は表1
に示す配合組成とし、その損失係数は0.1で、厚さt
/4は2.5cmである。なおこの例においても難昇温
部は最内側未加硫ゴム1−1と中間未加硫ゴム1−3と
の接合面のほぼ中央周線上Bにあり、容積は約1750
0cm3とした。It was impossible to attempt low-temperature vulcanization molding of Comparative Example 1 so that it would fall within the range of the vulcanization degree shown in each Example 1. [Example 2] A thick-walled composite body 1 which similarly becomes a solid tire
Is the total thickness t along the line AA according to FIGS. 3 (a) and 3 (b).
Is 10 cm, the innermost unvulcanized rubber 1-1 is a short fiber mixed rubber having the same loss coefficient of 0.2 as in Example 1, and the thickness t /
2 is 5 cm, and the outermost unvulcanized rubber 1-2 has the same composition as in Example 1 shown in Table 1 with a loss factor of 1.05 and a thickness of t / 4 of 2.5 cm. Sulfur rubber 1-3 is shown in Table 1.
The loss factor is 0.1 and the thickness t is
/ 4 is 2.5 cm. In this example as well, the difficult-to-heat-up portion is located almost on the center line B of the joint surface between the innermost unvulcanized rubber 1-1 and the intermediate unvulcanized rubber 1-3, and the volume is about 1750.
It was set to 0 cm 3 .
【0038】この厚肉複合体1を比較例2として用い、
最内側未加硫ゴム1−1及び中間未加硫ゴム1−3に下
記導電性カーボンブラックを添加配合した(E)、
(F)を実施例2として準備した。なお添字e、fは実
施例1と同様である。 (E)1−1e;プリンテックスXE2を1.5重量部
添加、 1−3e;プリンテックスXE2を5.0重量部添加、 (F)1−1f;バルカンXC−72を6.0重量部添
加、 1−3f;プリンテックスXE2を5.0重量部を添
加、 なお(E)、(F)の最内側及び中間の各未加硫ゴムの
損失係数は1.00に揃えた。Using this thick-walled composite 1 as Comparative Example 2,
The following conductive carbon black was added and blended to the innermost unvulcanized rubber 1-1 and the intermediate unvulcanized rubber 1-3 (E),
(F) was prepared as Example 2. The subscripts e and f are the same as those in the first embodiment. (E) 1-1e; 1.5 parts by weight of Printex XE2 added; 1-3e; 5.0 parts by weight of Printex XE2; (F) 1-1f; 6.0 parts by weight of Vulcan XC-72 Addition, 1-3f; 5.0 parts by weight of Printex XE2 was added, and the loss factors of the innermost and middle unvulcanized rubbers of (E) and (F) were adjusted to 1.00.
【0039】実施例(E)、(F)と比較例2とに、そ
れぞれ別個に図1に例示する装置にてマイクロ波加熱を
施した。なおマイクロ波の周波数fを915MHz、出
力電力は3KW、照射時間は約10分とした。Microwave heating was applied to Examples (E) and (F) and Comparative Example 2 separately by the apparatus illustrated in FIG. The microwave frequency f was 915 MHz, the output power was 3 KW, and the irradiation time was about 10 minutes.
【0040】マイクロ波加熱を施した後引続き各厚肉複
合体1の各部温度を測定した結果を、比較例2は図4
(b)、実施例2の(E)、(F)を図6(a)、
(b)に示す。なお図6(a)は(E)に、図6(b)
は(F)に対応し、各図の横軸は厚さtを示す。図4
(b)、図6から明らかなように、実施例2においても
各厚肉複合体1は難昇温部B近傍の温度が表面部より高
く、引続く加硫成形に対し好ましい温度分布を示し、比
較例2の温度分布に比しより大幅に改善されている。After the microwave heating, the temperature of each part of each thick composite body 1 was continuously measured.
(B), (E) and (F) of Example 2 are shown in FIG.
It shows in (b). Note that FIG. 6A is shown in FIG. 6E and FIG.
Corresponds to (F), and the horizontal axis of each figure indicates the thickness t. Figure 4
(B) As is apparent from FIG. 6, in Example 2 also, each thick-walled composite body 1 has a temperature in the vicinity of the difficult temperature rising portion B higher than that in the surface portion, and shows a preferable temperature distribution for subsequent vulcanization molding. Compared to the temperature distribution of Comparative Example 2, it is significantly improved.
【0041】上記各厚肉複合体1をやはり金型により加
硫成形してソリッドタイヤとした後、それらの各部の加
硫度を図4〜図6の温度測定位置近傍で測定し、その結
果を適正加硫度を100とする指数にてあらわしたとこ
ろやはり比較例2は100〜550にわたる範囲の分布
を有し、これに対し実施例2の(E)、(F)は100
〜180の範囲内に収まり、かつゴムの基本物性に変化
は見出せず製品性能が確保されている。After each thick composite body 1 was vulcanized and molded into a solid tire by using a mold, the vulcanization degree of each portion was measured in the vicinity of the temperature measurement position shown in FIGS. 4 to 6, and the result was obtained. Is expressed by an index with an appropriate degree of vulcanization being 100, Comparative Example 2 also has a distribution in the range of 100 to 550, while (E) and (F) of Example 2 are 100.
Within the range of up to 180, no change is found in the basic physical properties of the rubber, and product performance is secured.
【0042】また試みに各実施例2の加硫度の範囲内に
収まるように比較例2のソリッドタイヤに低温加硫成形
を施してみようとしてもやはり不可能であった。Further, even if an attempt was made to perform low temperature vulcanization molding on the solid tire of Comparative Example 2 so that it would fall within the range of the vulcanization degree of each Example 2, it was still impossible.
【0043】[0043]
【発明の効果】この発明によれば、複数種の互いに大き
く相違する配合組成からなる未加硫ゴムを含む厚肉複合
体に対し、高周波誘電加熱、なかでもマイクロ波加熱を
施して難昇温部の温度を表面部のそれに比しより一層高
温度まで高める予備加熱を可能とし、これにより、その
後の加硫成形後における製品が要求性能に対し十分対応
できる適正なゴム物性を備えることができ、同時に加硫
成形工程全般にわたる生産性を大幅に向上することを可
能とする厚肉未加硫ゴム複合体の加硫成形方法を提供す
ることができる。According to the present invention, high temperature dielectric heating, particularly microwave heating, is applied to a thick-walled composite containing unvulcanized rubber having a plurality of types of compounding compositions which are greatly different from each other, thereby making it difficult to raise the temperature. It enables preheating to raise the temperature of the part to a higher temperature than that of the surface part, which allows the product after vulcanization molding to have appropriate rubber physical properties that can sufficiently meet the required performance. At the same time, it is possible to provide a vulcanization molding method for a thick unvulcanized rubber composite that can significantly improve the productivity over the entire vulcanization molding process.
【図1】この発明のマイクロ波加熱の装置の一例を示
す。FIG. 1 shows an example of a microwave heating apparatus of the present invention.
【図2】厚肉複合体の一例を示す。FIG. 2 shows an example of a thick composite.
【図3】別の厚肉複合体の例を示す。FIG. 3 shows an example of another thick composite.
【図4】従来の厚肉複合体の高周波加熱による温度分布
を示す。FIG. 4 shows a temperature distribution of a conventional thick composite by high frequency heating.
【図5】この発明による厚肉複合体の温度分布を示す。FIG. 5 shows the temperature distribution of a thick composite according to the present invention.
【図6】この発明による別の厚肉複合体の温度分布を示
す。FIG. 6 shows the temperature distribution of another thick composite according to the present invention.
1 厚肉複合体 1−1 未加硫ゴム 1−2 未加硫ゴム 1 Thick Composite 1-1 Unvulcanized Rubber 1-2 Unvulcanized Rubber
Claims (1)
した厚肉複合体を、予め高周波誘電加熱により加熱した
後加硫成形するにあたり、 各未加硫ゴムのうち、その比誘電率(ε)と誘電体損失
角(tanδ)との積ε・tanδであらわされる損失
係数の値の小さい未加硫ゴムの成分組成中に予め少量の
導電性カーボンブラックを添加配合して、各未加硫ゴム
相互間における損失係数の較差を縮小することを特徴と
する厚肉未加硫ゴム複合体の加硫成形方法。1. A relative permittivity of each unvulcanized rubber when a thick composite in which a plurality of unvulcanized rubbers are joined and integrated with each other is preheated by high-frequency dielectric heating and then vulcanized and molded. (Ε) and dielectric loss angle (tan δ), which is a product of ε · tan δ and has a small loss coefficient represented by ε · tan δ. A method for vulcanizing and molding a thick unvulcanized rubber composite, which comprises reducing the difference in loss coefficient between vulcanized rubbers.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13443893A JPH06344510A (en) | 1993-06-04 | 1993-06-04 | Vulcanization molding of thick-walled unvulcanized rubber composite |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13443893A JPH06344510A (en) | 1993-06-04 | 1993-06-04 | Vulcanization molding of thick-walled unvulcanized rubber composite |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06344510A true JPH06344510A (en) | 1994-12-20 |
Family
ID=15128369
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13443893A Pending JPH06344510A (en) | 1993-06-04 | 1993-06-04 | Vulcanization molding of thick-walled unvulcanized rubber composite |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06344510A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008018421A1 (en) | 2006-08-07 | 2008-02-14 | Toray Industries, Inc. | Prepreg and carbon fiber-reinforced composite material |
US7520057B2 (en) | 2005-02-14 | 2009-04-21 | Canon Kasei Kabushiki Kaisha | Process for producing conductive rubber roller, and roller for electrophotographic apparatus |
JP2013064429A (en) * | 2011-09-16 | 2013-04-11 | Toyota Motor Corp | Method and apparatus for manufacturing high-pressure gas tank |
WO2024024486A1 (en) * | 2022-07-27 | 2024-02-01 | 株式会社ブリヂストン | Method for vulcanizing tire rubber laminate, and method for manufacturing retreaded tire |
WO2024024531A1 (en) * | 2022-07-27 | 2024-02-01 | 株式会社ブリヂストン | Method for vulcanizing rubber laminate for tire and method for manufacturing retreaded tire |
-
1993
- 1993-06-04 JP JP13443893A patent/JPH06344510A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7520057B2 (en) | 2005-02-14 | 2009-04-21 | Canon Kasei Kabushiki Kaisha | Process for producing conductive rubber roller, and roller for electrophotographic apparatus |
US8037607B2 (en) | 2005-02-14 | 2011-10-18 | Canon Kasei Kabushiki Kaisha | Process for producing conductive rubber roller, and roller for electrophotographic apparatus |
US8533953B2 (en) | 2005-02-14 | 2013-09-17 | Canon Kasei Kabushiki Kaisha | Process for producing conductive rubber roller, and roller for electrophotographic apparatus |
US8998786B2 (en) | 2005-02-14 | 2015-04-07 | Canon Kabushiki Kaisha | Process for producing conductive rubber roller, and roller for electrophotographic apparatus |
WO2008018421A1 (en) | 2006-08-07 | 2008-02-14 | Toray Industries, Inc. | Prepreg and carbon fiber-reinforced composite material |
JP2013064429A (en) * | 2011-09-16 | 2013-04-11 | Toyota Motor Corp | Method and apparatus for manufacturing high-pressure gas tank |
WO2024024486A1 (en) * | 2022-07-27 | 2024-02-01 | 株式会社ブリヂストン | Method for vulcanizing tire rubber laminate, and method for manufacturing retreaded tire |
WO2024024531A1 (en) * | 2022-07-27 | 2024-02-01 | 株式会社ブリヂストン | Method for vulcanizing rubber laminate for tire and method for manufacturing retreaded tire |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2280771A (en) | Method of baking or vulcanizing india-rubber or similar materials | |
EP0339493B1 (en) | Method and apparatus for bonding a cured fiber reinforced plastic part to a reinforcement member | |
JPH0257324A (en) | Method and device for bonding fiber-reinforced plastic part | |
JPH06344510A (en) | Vulcanization molding of thick-walled unvulcanized rubber composite | |
JP2021195544A (en) | Vulcanization method and vulcanized rubber composition for tire | |
US2626428A (en) | Heat transfer corrector for electronic molds | |
JP4220963B2 (en) | Tire manufacturing method and toroidal support for carrying out such a method | |
EP1109664B1 (en) | Induction curable tire components and methods of selectively curing such components | |
JPH10309725A (en) | Vulcanization molding method of wall-thickened multi-layer structural rubber article | |
US2604666A (en) | Manufacture of cellular rubber | |
JP3542843B2 (en) | Manufacturing method of retreaded tire | |
US6660122B1 (en) | Induction curable tire components and methods of selectively curing such components | |
JP3764366B2 (en) | Tire manufacturing method | |
EP4025015B1 (en) | Phase-gate hybrid coating crisp plate | |
JPH10202670A (en) | Method for vulcanizing and molding thick-walled unvulcanized rubber composite | |
US2703436A (en) | Method of vulcanizing rubber sheet material | |
US1888762A (en) | Electrical element and method of producing the same | |
JPH07118399A (en) | Steel cord/rubber composite for high-frequency dielectric heating and pneumatic radial tire | |
JPS6424732A (en) | Preparation of radial tire for passenger car | |
CA1336969C (en) | Process for the production of rubber products | |
WO2024024486A1 (en) | Method for vulcanizing tire rubber laminate, and method for manufacturing retreaded tire | |
GB1592661A (en) | Method of making tyres | |
JPH05301231A (en) | Method for heating rubber article having double-layered structure by microwave | |
WO2024024487A1 (en) | Method for vulcanizing tire rubber composition and method for producing retread tire | |
JPH05301232A (en) | Method for heating rubber article having double layered structure by microwave |