JP2013064429A - Method and apparatus for manufacturing high-pressure gas tank - Google Patents

Method and apparatus for manufacturing high-pressure gas tank Download PDF

Info

Publication number
JP2013064429A
JP2013064429A JP2011202597A JP2011202597A JP2013064429A JP 2013064429 A JP2013064429 A JP 2013064429A JP 2011202597 A JP2011202597 A JP 2011202597A JP 2011202597 A JP2011202597 A JP 2011202597A JP 2013064429 A JP2013064429 A JP 2013064429A
Authority
JP
Japan
Prior art keywords
resin layer
temperature
induction heating
fiber reinforced
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011202597A
Other languages
Japanese (ja)
Other versions
JP5825000B2 (en
Inventor
Akira Shimizu
安起良 志水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2011202597A priority Critical patent/JP5825000B2/en
Publication of JP2013064429A publication Critical patent/JP2013064429A/en
Application granted granted Critical
Publication of JP5825000B2 publication Critical patent/JP5825000B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Abstract

PROBLEM TO BE SOLVED: To provide a new method for manufacturing a tank to suppress the variation in a volume fraction of fiber (Vf) in thickness direction of a fiber reinforced resin layer formed on the outer periphery of a liner.SOLUTION: The fiber reinforced resin layer 20 formed on the outer periphery of the liner 10 is subjected to high frequency induction heating in an induction heating coil 220. The induction heating is induced by energization of a high-frequency current to the induction heating coil 220, and in respective resin layer parts in the thickness of the fiber reinforced resin layer 20, rather than the outermost layer part (layer number 1) on an outside surface side of the fiber reinforced resin layer 20, a temperature of a resin layer part (layer number 2) inside the outermost layer part is the highest. As a result, the energization is controlled so that the highest temperature and the temperature of the resin layer part (layer number 2) become the upper limit temperature in the case when the energization by the high-frequency current to the induction heating coil 220 is controlled.

Description

本発明は、高圧ガスタンクの製造方法と製造装置に関する。   The present invention relates to a manufacturing method and a manufacturing apparatus for a high-pressure gas tank.

近年では、燃料ガスの燃焼エネルギーや、燃料ガスの電気化学反応によって発電された電気エネルギーによって駆動する車両が開発されており、高圧ガスタンクには、天然ガスや水素等の燃料ガスが貯蔵され、車両に搭載される場合がある。このため、高圧ガスタンクの軽量化が求められており、カーボン繊維強化プラスチックや、ガラス繊維強化プラスチック(以下、これらを総称して、繊維強化樹脂層と呼ぶ)で中空のライナーを被覆したFRP(Fiber Reinforced Plastics : 繊維強化プラスチック)製の高圧ガスタンク(以下、単に高圧ガスタンクと称する)の採用が進んでいる。ライナーとしては、軽量化の観点から、通常、ガスバリア性を有する樹脂製の中空容器が用いられる。   In recent years, vehicles that are driven by combustion energy of fuel gas or electric energy generated by electrochemical reaction of fuel gas have been developed. Fuel gas such as natural gas or hydrogen is stored in the high-pressure gas tank, and the vehicle May be installed. For this reason, there is a demand for weight reduction of high-pressure gas tanks, and FRP (Fiber) in which a hollow liner is covered with carbon fiber reinforced plastic or glass fiber reinforced plastic (hereinafter collectively referred to as a fiber reinforced resin layer). The adoption of high-pressure gas tanks (hereinafter simply referred to as high-pressure gas tanks) made of Reinforced Plastics (fiber reinforced plastics) is advancing. As the liner, a resin hollow container having gas barrier properties is usually used from the viewpoint of weight reduction.

一般に、こうした高圧ガスタンクの製造に際しては、フィラメントワインディング法(以下、FW法)が採用され、このFW法により、エポキシ樹脂等の熱硬化性樹脂を含浸した繊維をライナーの外周に繰り返し巻回して繊維強化樹脂層とする。そして、その後に、当該樹脂層に含まれる熱硬化樹脂を加熱して熱硬化させることで、ライナーを繊維強化樹脂層で被覆・補強した高圧ガスタンクが製造される。熱硬化樹脂の加熱とその熱硬化には、温風吹き付けや電熱ヒーターによる加熱、或いは高周波誘導加熱等、種々の加熱方式が採用可能であるが、熱硬化性樹脂の速やかな昇温が可能な高周波誘導加熱を誘起する誘導加熱コイルを用いて誘導加熱する手法が提案されている(例えば、特許文献1)。   In general, when manufacturing such a high-pressure gas tank, a filament winding method (hereinafter referred to as FW method) is adopted. By this FW method, a fiber impregnated with a thermosetting resin such as an epoxy resin is repeatedly wound around the outer periphery of a liner. A reinforced resin layer is used. After that, the thermosetting resin contained in the resin layer is heated and thermoset to produce a high-pressure gas tank in which the liner is covered and reinforced with the fiber reinforced resin layer. Various heating methods such as hot air blowing, heating with an electric heater, or high-frequency induction heating can be used for heating and thermosetting the thermosetting resin, but it is possible to quickly raise the temperature of the thermosetting resin. A technique of induction heating using an induction heating coil that induces high frequency induction heating has been proposed (for example, Patent Document 1).

特開平6−335973号公報JP-A-6-335773

FW法にて得られた高圧ガスタンクの強度や耐久性等のタンク性能は、ライナー外周の硬化済み繊維強化樹脂層における繊維体積含有率(以下、Vf)に依存することが知られている。このVfは、繊維強化樹脂層の単位体積に占める繊維の割合であり、熱硬化前の繊維強化樹脂層からの樹脂の染み出しが増えるとVfは高くなる。そして、Vfが高いと、繊維の割合が増えるために強度は増すものの、繊維同士を接着硬化する樹脂が少なくなるため、耐久性の低下を来すことが危惧される。このため、高圧ガスタンクとしての実用に耐える強度と耐久性の両立を図る上で、高Vfとなることを抑制しつつVfを所定の範囲で達成することが望ましい。   It is known that the tank performance such as strength and durability of the high-pressure gas tank obtained by the FW method depends on the fiber volume content (hereinafter referred to as Vf) in the cured fiber reinforced resin layer on the outer periphery of the liner. This Vf is the ratio of the fiber to the unit volume of the fiber reinforced resin layer, and the Vf increases as the amount of the resin oozing out from the fiber reinforced resin layer before thermosetting increases. And if Vf is high, although the strength increases because the proportion of fibers increases, the amount of resin that bonds and cures the fibers decreases, and there is a concern that the durability may be lowered. For this reason, it is desirable to achieve Vf within a predetermined range while suppressing high Vf in order to achieve both strength and durability that can withstand practical use as a high-pressure gas tank.

Vfに影響を及ぼす樹脂の染み出しは、誘導加熱コイルを用いた繊維強化樹脂層の誘導加熱の際に、樹脂の低粘度化に伴って顕著となり得る。つまり、上記した公報で提案された高周波誘導加熱手法では、他の加熱方式に比べて高い効率で短時間の内に加熱できることから、繊維強化樹脂層は急速に昇温して、樹脂の粘度も大きく低下しかねない。しかも、高周波誘導加熱は、誘導加熱コイルに最も近い樹脂最外層で顕著に誘起されるので、繊維強化樹脂層の厚み方向で昇温状況が相違する。そして、こうした繊維強化樹脂層の厚み方向での昇温状況の相違は、繊維強化樹脂層の厚み方向での粘度低下の相違をもたらし得るので、繊維強化樹脂層の厚み方向でのVfのバラツキを招きかねない。上記した特許文献では、こうした熱硬化の過程における樹脂挙動についての配慮がないことから、繊維強化樹脂層の厚み方向でのVfのバラツキの抑制を図る手法が要請されるに到った。   The seepage of the resin that affects Vf can become significant as the viscosity of the resin decreases during induction heating of the fiber reinforced resin layer using the induction heating coil. In other words, the high frequency induction heating method proposed in the above publication can be heated in a short time with higher efficiency than other heating methods, so that the fiber reinforced resin layer is rapidly heated and the viscosity of the resin is also increased. It can be greatly reduced. In addition, since high frequency induction heating is significantly induced in the outermost resin layer closest to the induction heating coil, the temperature rise situation differs in the thickness direction of the fiber reinforced resin layer. And since the difference in the temperature rise state in the thickness direction of the fiber reinforced resin layer can cause a difference in viscosity decrease in the thickness direction of the fiber reinforced resin layer, the variation in Vf in the thickness direction of the fiber reinforced resin layer can be reduced. I could invite you. In the above-mentioned patent document, since there is no consideration about the resin behavior in the process of thermosetting, a method for suppressing the variation in Vf in the thickness direction of the fiber reinforced resin layer has been requested.

本発明は、上記した課題を踏まえ、ライナー外周に形成した繊維強化樹脂層の厚み方向でのVfのバラツキの抑制をもたらす新たなタンク製造手法を提供することを目的とする。   In view of the above-described problems, an object of the present invention is to provide a new tank manufacturing method that can suppress variation in Vf in the thickness direction of a fiber reinforced resin layer formed on the outer periphery of a liner.

上記した目的の少なくとも一部を達成するために、本発明は、以下の適用例として実施することができる。   In order to achieve at least a part of the above object, the present invention can be implemented as the following application examples.

[適用例1:高圧ガスタンクの製造方法]
高圧ガスタンクの製造方法であって、
タンク容器となる中空のライナーの外周に、熱硬化性樹脂を含浸した繊維を巻回して形成された繊維強化樹脂層を有するタンク中間生成品を準備する工程(a)と、
前記タンク中間生成品をタンク軸回りに回転させつつ、高周波誘導加熱を誘起する誘導加熱コイルを用いて前記タンク中間生成品の前記繊維強化樹脂層を誘導加熱して熱硬化させる工程(b)とを備え、
前記工程(b)では、
前記誘導加熱を受けて昇温する前記繊維強化樹脂層の層厚み方向における樹脂層部位についての温度分布の存在を前提に、前記誘導加熱コイルへの高周波電流の通電を制御する
ことを要旨とする。
[Application Example 1: Manufacturing method of high-pressure gas tank]
A method for manufacturing a high-pressure gas tank, comprising:
A step (a) of preparing a tank intermediate product having a fiber reinforced resin layer formed by winding a fiber impregnated with a thermosetting resin around the outer periphery of a hollow liner serving as a tank container;
(B) a step of inductively heating and thermally curing the fiber reinforced resin layer of the tank intermediate product using an induction heating coil for inducing high-frequency induction heating while rotating the tank intermediate product around the tank axis; With
In the step (b),
The gist is to control energization of the high-frequency current to the induction heating coil on the premise of the presence of a temperature distribution in the resin layer portion in the layer thickness direction of the fiber reinforced resin layer that is heated by receiving the induction heating. .

この適用例1の高圧ガスタンクの製造方法では、工程(a)、工程(b)を経て高圧ガスタンクを製造する当たり、高周波誘導加熱を誘起する誘導加熱コイルを用いて繊維強化樹脂層を誘導加熱して熱硬化させる工程(b)では、誘導加熱コイルへの高周波電流の通電を制御する。前記繊維強化樹脂層が前記誘導加熱を受けて昇温する際、繊維強化樹脂層の外表側の最外層部位は、誘導加熱コイルに最も近いことから、誘導加熱コイルによる高周波誘導加熱がより進む。この外表側の最外層部位より内側の樹脂層部位は、当該樹脂層部位での誘導加熱コイルによる高周波誘導加熱に加えて最外層部位からの熱伝播を受ける。そして、最外層部位は、誘導加熱コイルによる高周波誘導加熱がより進むとはいえ、その層表面からの放熱と内側の樹脂層部位への熱伝播の影響を受ける。このため、層厚み方向における樹脂層部位では温度分布が起きる。上記の適用例1の高圧ガスタンクの製造方法では、温度分布の存在を前提に、誘導加熱コイルへの高周波電流の通電を制御するので、例えば、繊維強化樹脂層が誘導加熱を受けて昇温する際に最大の温度となる樹脂層部位の温度を通電制御の際の上限温度に設定できることになる。   In the manufacturing method of the high-pressure gas tank of Application Example 1, when the high-pressure gas tank is manufactured through the steps (a) and (b), the fiber reinforced resin layer is induction-heated using an induction heating coil that induces high-frequency induction heating. In the step (b) of thermosetting, the application of high-frequency current to the induction heating coil is controlled. When the temperature of the fiber reinforced resin layer is increased by receiving the induction heating, the outermost layer portion on the outer surface side of the fiber reinforced resin layer is closest to the induction heating coil, so that the high frequency induction heating by the induction heating coil further proceeds. The resin layer part inside the outermost layer part on the outer surface side receives heat propagation from the outermost layer part in addition to the high frequency induction heating by the induction heating coil in the resin layer part. And although the high frequency induction heating by an induction heating coil progresses more, the outermost layer part is influenced by the heat radiation from the layer surface and the heat propagation to the inner resin layer part. For this reason, temperature distribution occurs in the resin layer portion in the layer thickness direction. In the manufacturing method of the high-pressure gas tank of Application Example 1 described above, energization of the high-frequency current to the induction heating coil is controlled on the premise of the presence of the temperature distribution. For example, the fiber reinforced resin layer is heated by induction heating. In this case, the temperature of the resin layer portion that becomes the maximum temperature can be set to the upper limit temperature in the energization control.

こうした通電制御を行う上記の適用例1の高圧ガスタンクの製造方法は、繊維強化樹脂層が誘導加熱を受けて昇温する際に層厚み方向における樹脂層部位では温度分布が起きるという新たな知見を得て、最大の温度となる樹脂層部位の温度が誘導加熱コイルへの高周波電流通電を制御する際の上限温度になるまで、繊維強化樹脂層を誘導加熱できる。仮に、この最大の温度となる樹脂層部位以外の樹脂層部位の温度が上限温度となるように通電制御すれば、最大の温度となる樹脂層部位は、上限温度より高くなって樹脂の粘度低下やこれに伴う染み出しが顕著となって高Vfとなりかねない。ところが、上記の適用例1の高圧ガスタンクの製造方法によれば、繊維強化樹脂層が誘導加熱を受けて昇温する際に最大の温度となる樹脂層部位を上限温度とできるので、Vfについては、この上限温度に対応した範囲に留めることができ、Vfのバラツキの抑制も可能となる。   The manufacturing method of the high-pressure gas tank of Application Example 1 that performs such energization control has a new finding that when the fiber reinforced resin layer is heated by induction heating, temperature distribution occurs in the resin layer portion in the layer thickness direction. Thus, the fiber-reinforced resin layer can be induction-heated until the temperature of the resin layer portion that is the maximum temperature reaches the upper limit temperature when the high-frequency current conduction to the induction heating coil is controlled. If energization control is performed so that the temperature of the resin layer part other than the resin layer part at which the maximum temperature is reached becomes the upper limit temperature, the resin layer part at the maximum temperature becomes higher than the upper limit temperature and the viscosity of the resin decreases. In addition, the seepage associated with this may become noticeable and the Vf may be high. However, according to the manufacturing method of the high-pressure gas tank of Application Example 1 described above, the resin layer portion that has the maximum temperature when the fiber reinforced resin layer is heated by induction heating can be set to the upper limit temperature. Thus, it can be kept within the range corresponding to the upper limit temperature, and the variation in Vf can also be suppressed.

上記した適用例1の高圧ガスタンクの製造方法は、次のような態様とすることができる。例えば、前記工程(b)では、前記層厚み方向における樹脂層部位のうちで最大の温度となる最大温度樹脂層部位の温度が、前記熱硬化性樹脂の性状を含む条件で定まる加熱上限温度を超えないように、前記誘導加熱コイルへの高周波電流の通電を制御する。熱硬化性樹脂の性状を含む条件で定まる加熱上限温度は、樹脂の粘度低下やこれに伴う染み出しを抑制し得る上記の通電制御の際の上限温度と同等であることから、上記の態様によれば、最大温度樹脂層部位を加熱上限温度を超えないようにすることで、Vfをこの加熱上限温度に対応した範囲に留めることができ、Vfのバラツキの抑制が可能となる。   The manufacturing method of the high-pressure gas tank according to Application Example 1 described above can be configured as follows. For example, in the step (b), the heating upper limit temperature determined by the conditions including the properties of the thermosetting resin is set so that the temperature of the maximum temperature resin layer portion that is the maximum temperature among the resin layer portions in the layer thickness direction is determined. The energization of the high-frequency current to the induction heating coil is controlled so as not to exceed. Since the heating upper limit temperature determined by the conditions including the properties of the thermosetting resin is equivalent to the upper limit temperature in the energization control that can suppress the decrease in the viscosity of the resin and the seepage associated therewith, Accordingly, by preventing the maximum temperature resin layer portion from exceeding the heating upper limit temperature, Vf can be kept in a range corresponding to the heating upper limit temperature, and variation in Vf can be suppressed.

また、前記工程(b)では、前記繊維強化樹脂層が前記誘導加熱を受けて昇温する際の昇温状況を前記繊維強化樹脂層の層厚み方向における樹脂層部位ごとに対応付けた対応関係に基づいて、最大温度樹脂層部位を前記繊維強化樹脂層の外表側の最外層部位より内側の樹脂層部位とする。つまり、既述したように、繊維強化樹脂層の外表側の最外層部位は、誘導加熱コイルによる高周波誘導加熱がより進むものの、その内側の樹脂層部位に熱を伝播する等の理由から、内側の樹脂層部位が最大温度樹脂層部位となる。上記の態様では、最大温度樹脂層部位を内側の樹脂層部位とするので、この内側の樹脂層部位の温度を前記上限温度に設定したり加熱上限温度を超えないようにできる。そして、最大温度樹脂層部位を内側の樹脂層部位とする上で必要な対応関係を、タンク製造、詳しくは、繊維強化樹脂層の誘導加熱に先だって、実験或いはシミュレーション等の手法で予め把握しておくことで、Vfのバラツキが抑制された高圧ガスタンクを容易、且つ確実に製造できる。   Further, in the step (b), the correspondence relationship in which the temperature rise state when the fiber reinforced resin layer is heated by receiving the induction heating is associated with each resin layer portion in the layer thickness direction of the fiber reinforced resin layer. Based on the above, the maximum temperature resin layer part is defined as the resin layer part inside the outermost layer part on the outer surface side of the fiber reinforced resin layer. In other words, as described above, the outermost layer portion on the outer surface side of the fiber reinforced resin layer has a higher frequency induction heating by the induction heating coil, but for the reason of transmitting heat to the inner resin layer portion, etc. The resin layer portion is the maximum temperature resin layer portion. In the above aspect, since the maximum temperature resin layer portion is the inner resin layer portion, the temperature of the inner resin layer portion can be set to the upper limit temperature or not to exceed the heating upper limit temperature. Then, the correspondence necessary for setting the maximum temperature resin layer part as the inner resin layer part is grasped in advance by a method such as an experiment or a simulation prior to the tank manufacturing, specifically, induction heating of the fiber reinforced resin layer. Thus, a high-pressure gas tank in which variations in Vf are suppressed can be easily and reliably manufactured.

また、前記工程(b)では、前記誘導加熱を受けて前記繊維強化樹脂層が昇温する際に、前記対応関係を用いて前記内側の樹脂層部位の温度を求め、該求めた前記内側の樹脂層部位の温度に応じて前記誘導加熱コイルへの高周波電流の通電を制御したり、前記内側の樹脂層部位の温度と前記対応関係に倣って対応する他の樹脂層部位の温度を求め、該求めた前記他の樹脂層部位の温度を前記内側の樹脂層部位の温度に代用して前記誘導加熱コイルへの高周波電流の通電を制御したりできる。こうすれば、繊維強化樹脂層が実際に昇温する際に、その昇温状況に合わせた通電制御が可能となるので、Vfのバラツキ抑制の実効性が高まる。   Further, in the step (b), when the fiber reinforced resin layer is heated by receiving the induction heating, the temperature of the inner resin layer portion is obtained using the correspondence relationship, and the obtained inner resin is obtained. Depending on the temperature of the resin layer part, control the energization of the high-frequency current to the induction heating coil, or obtain the temperature of the other resin layer part corresponding to the temperature of the inner resin layer part and the corresponding relationship, The temperature of the other resin layer portion thus determined can be substituted for the temperature of the inner resin layer portion to control the application of a high-frequency current to the induction heating coil. In this way, when the temperature of the fiber reinforced resin layer is actually raised, it is possible to perform energization control in accordance with the temperature rise state, so that the effectiveness of suppressing variation in Vf is enhanced.

また、前記工程(b)において、前記繊維強化樹脂層の前記最外層部位からの放熱を図りつつ前記誘導加熱コイルにて前記繊維強化樹脂層を誘導加熱するようにできる。こうすれば、最外層部位からの放熱を通して繊維強化樹脂層の厚み方向での温度分布を抑制できることから、Vfのバラツキ抑制の実効性が高まる。   Further, in the step (b), the fiber reinforced resin layer can be induction heated by the induction heating coil while radiating heat from the outermost layer portion of the fiber reinforced resin layer. By doing so, the temperature distribution in the thickness direction of the fiber reinforced resin layer can be suppressed through heat radiation from the outermost layer portion, and therefore the effectiveness of suppressing the variation in Vf is enhanced.

[適用例2:高圧ガスタンクの製造装置]
タンク容器となる中空のライナーの外周に熱硬化性樹脂を含浸して熱硬化した繊維強化樹脂層を有する高圧ガスタンクの製造に用いる装置であって、
熱硬化前の前記熱硬化性樹脂を含浸した繊維を前記ライナーの外周に巻回して前記繊維強化樹脂層を形成し、タンク中間生成品を得る繊維巻回手段と、
前記タンク中間生成品をタンク軸回りに回転させつつ、高周波誘導加熱を誘起する誘導加熱コイルを用いて前記回転する前記タンク中間生成品の前記繊維強化樹脂層を誘導加熱して熱硬化させる熱硬化手段とを備え、
前記熱硬化手段は、
前記誘導加熱を受けて前記繊維強化樹脂層が昇温する際の昇温状況を前記繊維強化樹脂層の層厚み方向における樹脂層部位ごとに対応付けた対応関係を記憶する記憶部と、
前記繊維強化樹脂層が昇温する際に前記樹脂層部位のうちで最大の温度となる最大温度樹脂層部位を前記対応関係に基づいて定め、該定めた前記最大温度樹脂層部位の温度が、前記熱硬化性樹脂の性状を含む条件で定まる加熱上限温度を超えないように、前記誘導加熱コイルへの高周波電流の通電を制御する制御部とを有する
ことを要旨とする。
[Application Example 2: High-pressure gas tank manufacturing equipment]
An apparatus used for manufacturing a high-pressure gas tank having a fiber-reinforced resin layer that is thermoset by impregnating a thermosetting resin on the outer periphery of a hollow liner serving as a tank container,
A fiber winding means for winding the fiber impregnated with the thermosetting resin before thermosetting around the outer periphery of the liner to form the fiber reinforced resin layer, and obtaining a tank intermediate product;
Thermosetting in which the fiber reinforced resin layer of the rotating tank intermediate product is induction-heated and thermoset using an induction heating coil that induces high-frequency induction heating while rotating the tank intermediate product around the tank axis. Means and
The thermosetting means is
A storage unit that stores a correspondence relationship for each resin layer part in the layer thickness direction of the fiber reinforced resin layer, when the temperature of the fiber reinforced resin layer is increased by receiving the induction heating,
Based on the correspondence relationship, the maximum temperature resin layer part that becomes the maximum temperature among the resin layer parts when the fiber reinforced resin layer is heated, the temperature of the determined maximum temperature resin layer part is, And a control unit that controls energization of a high-frequency current to the induction heating coil so as not to exceed a heating upper limit temperature determined by conditions including properties of the thermosetting resin.

上記した適用例2の高圧ガスタンクの製造装置は、ライナー外周に形成した繊維強化樹脂層の厚み方向でのVfのバラツキを抑制可能な新たなタンク製造装置となる。   The manufacturing apparatus of the high-pressure gas tank of Application Example 2 described above is a new tank manufacturing apparatus that can suppress the variation in Vf in the thickness direction of the fiber reinforced resin layer formed on the outer periphery of the liner.

本発明の一実施例としての高圧ガスタンクの製造工程を模式的に示す説明図である。It is explanatory drawing which shows typically the manufacturing process of the high pressure gas tank as one Example of this invention. この製造工程に用いるFW装置100の構成を概略的に示す説明図である。It is explanatory drawing which shows roughly the structure of FW apparatus 100 used for this manufacturing process. 繊維強化樹脂層の形成の様子を模式的に示す説明図である。It is explanatory drawing which shows typically the mode of formation of a fiber reinforced resin layer. 得られた中間生成品タンク12における繊維強化樹脂層20の内外の樹脂層部位を樹脂含浸カーボン繊維Wの巻回の様子と合わせて示す説明図である。It is explanatory drawing which shows the inner and outer resin layer site | parts of the fiber reinforced resin layer 20 in the obtained intermediate product tank 12 with the mode of winding of the resin impregnated carbon fiber W. 図1(c)に示した熱硬化炉200の概略構成を誘導加熱コイル220の配置構成を含めて示す説明図である。It is explanatory drawing which shows schematic structure of the thermosetting furnace 200 shown in FIG.1 (c) including the arrangement configuration of the induction heating coil 220. FIG. 本実施例の熱硬化炉200における繊維強化樹脂層20の厚み方向の各樹脂層部位ごとの昇温の様子をその測定の様子と併せて示す説明図である。It is explanatory drawing which shows the mode of temperature rising for every resin layer site | part of the thickness direction of the fiber reinforced resin layer 20 in the thermosetting furnace 200 of a present Example with the mode of the measurement. 誘導加熱コイル220への高周波電流の通電制御を説明するフローチャートである。5 is a flowchart for explaining energization control of a high-frequency current to induction heating coil 220. 変形例の熱硬化炉200の概略構成を示しつつ繊維強化樹脂層20の各樹脂層部位の温度分布の様子を示す説明図である。It is explanatory drawing which shows the mode of the temperature distribution of each resin layer site | part of the fiber reinforced resin layer 20, showing the schematic structure of the thermosetting furnace 200 of a modification.

以下、本発明の実施の形態について、その実施例を図面に基づき説明する。図1は本発明の一実施例としての高圧ガスタンクの製造工程を模式的に示す説明図、図2はこの製造工程に用いるFW装置100の構成を概略的に示す説明図、図3は繊維強化樹脂層の形成の様子を模式的に示す説明図である。本実施例では、高圧ガスタンクを、高圧水素を貯蔵する高圧水素タンクとした。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is an explanatory view schematically showing a manufacturing process of a high-pressure gas tank as an embodiment of the present invention, FIG. 2 is an explanatory view schematically showing a configuration of an FW device 100 used in the manufacturing process, and FIG. It is explanatory drawing which shows the mode of formation of a resin layer typically. In this embodiment, the high-pressure gas tank is a high-pressure hydrogen tank that stores high-pressure hydrogen.

本実施例のタンク製造工程では、まず、図1(a)に示したように、水素ガスに対するガスバリア性を有する樹脂製容器をライナー10として用意する。ライナー10は、半径が均一である略円筒形状のシリンダー部10aと、シリンダー部両端に設けられた凸曲面形状のドーム部10bを有する。ドーム部10bは、等張力曲面によって構成されており、その頂点に、外部配管等と接続するための口金14を有する。本実施例では、樹脂容器として、ナイロン系樹脂からなる樹脂製容器を用いるものとした。樹脂容器として、水素ガスに対するガスバリア性を有すれば、他の樹脂からなる樹脂容器を用いるものとしてもよい。   In the tank manufacturing process of the present embodiment, first, as shown in FIG. 1A, a resin container having a gas barrier property against hydrogen gas is prepared as a liner 10. The liner 10 includes a substantially cylindrical cylinder portion 10a having a uniform radius, and convex dome portions 10b provided at both ends of the cylinder portion. The dome portion 10b is configured by an isotonic curved surface, and has a base 14 for connecting to an external pipe or the like at the apex thereof. In this embodiment, a resin container made of a nylon resin is used as the resin container. A resin container made of another resin may be used as long as it has a gas barrier property against hydrogen gas.

次に、図1(b)に示したように、ライナー10の外周に繊維強化樹脂層20を形成する(繊維強化樹脂層形成工程)。本実施例では、繊維強化樹脂層形成工程として、図2に示すFW装置100を用いる。このFW装置100は、ライナー10の外周に、熱硬化性樹脂としてのエポキシ樹脂を含浸したカーボン繊維を繰り返し巻回することにより、繊維強化樹脂層20としてのカーボン繊維層を形成する。これにより、ライナー10の外周に樹脂硬化前の繊維強化樹脂層20を有する中間生成品タンク12が得られる。FW装置100の構成と当該装置による繊維巻回の様子については、後述する。   Next, as shown in FIG.1 (b), the fiber reinforced resin layer 20 is formed in the outer periphery of the liner 10 (fiber reinforced resin layer formation process). In this embodiment, the FW device 100 shown in FIG. 2 is used as the fiber reinforced resin layer forming step. The FW device 100 forms a carbon fiber layer as the fiber reinforced resin layer 20 by repeatedly winding a carbon fiber impregnated with an epoxy resin as a thermosetting resin on the outer periphery of the liner 10. Thereby, the intermediate product tank 12 which has the fiber reinforced resin layer 20 before resin hardening on the outer periphery of the liner 10 is obtained. The configuration of the FW device 100 and the state of fiber winding by the device will be described later.

繊維強化樹脂層20の形成に続いては、熱硬化を行う。熱硬化工程では、図1(c)に示す熱硬化炉200を用いる。この熱硬化炉200は、高周波誘導加熱炉として構成され、図示しない架台に、タンク両端のタンク軸支シャフト212を介して中間生成品タンク12を回転可能に軸支し、図示しないモーターにて中間生成品タンク12を加熱の過程において回転させる。この他、熱硬化炉200は、誘導加熱コイル220を有する。誘導加熱コイル220は、軸支した中間生成品タンク12をタンク長手方向に沿ってタンク軸周囲にて取り囲むよう配設され、そのコイル巻き軌跡をタンク軸に対して傾斜させている。誘導加熱コイル220は、高周波電流生成電源240と接続され、制御機器230による高周波電流生成電源240の制御を経て高周波電流の通電を受けて磁束を形成し、中間生成品タンク12の繊維強化樹脂層20におけるカーボン繊維(樹脂含浸カーボン繊維W)を導体として繊維強化樹脂層20を誘導加熱する。   Subsequent to the formation of the fiber reinforced resin layer 20, thermosetting is performed. In the thermosetting process, a thermosetting furnace 200 shown in FIG. The thermosetting furnace 200 is configured as a high-frequency induction heating furnace, and supports an intermediate product tank 12 rotatably on a gantry (not shown) via tank pivot shafts 212 at both ends of the tank. The product tank 12 is rotated in the course of heating. In addition, the thermosetting furnace 200 has an induction heating coil 220. The induction heating coil 220 is disposed so as to surround the intermediate product tank 12 that is pivotally supported around the tank axis along the tank longitudinal direction, and the coil winding locus is inclined with respect to the tank axis. The induction heating coil 220 is connected to the high-frequency current generation power source 240, receives a high-frequency current through the control of the high-frequency current generation power source 240 by the control device 230, forms a magnetic flux, and the fiber reinforced resin layer of the intermediate product tank 12. The fiber reinforced resin layer 20 is induction-heated using the carbon fibers 20 (resin-impregnated carbon fibers W) as conductors.

図1(c)に示す上記の熱硬化炉200を用いた熱硬化工程では、熱硬化炉200への中間生成品タンク12の搬入に先だち、繊維強化樹脂層20を形成済みの中間生成品タンク12にタンク軸支シャフト212を装着する。タンク軸支シャフト212は、中間生成品タンク12の両端の口金14に挿入され、タンク両端からシャフトを出した状態で、中間生成品タンク12を水平に軸支する。こうして中間生成品タンク12を軸支した後、熱硬化炉200は、中間生成品タンク12を熱硬化工程に処する。この熱硬化工程では、中間生成品タンク12をタンク軸支シャフト212ごと定速で回転させ、その回転を熱硬化工程の間に亘って維持する。タンク回転と同時に、或いは、定速回転となると、熱硬化炉200は、繊維強化樹脂層20の形成に用いた上記の熱硬化樹脂(例えば、エポキシ樹脂)の熱硬化が起きるよう、制御機器230にて誘導加熱コイル220に高周波電流生成電源240から高周波電流を通電して繊維強化樹脂層20を誘導加熱する。これにより、中間生成品タンク12では、ライナー10の外周に形成された繊維強化樹脂層20における熱硬化樹脂の熱硬化が起きる。誘導加熱の様子については後述する。   In the thermosetting process using the thermosetting furnace 200 shown in FIG. 1C, the intermediate product tank 20 in which the fiber reinforced resin layer 20 has been formed prior to the intermediate product tank 12 being carried into the thermosetting furnace 200. 12 is mounted with a tank shaft 212. The tank support shafts 212 are inserted into the caps 14 at both ends of the intermediate product tank 12, and support the intermediate product tank 12 horizontally with the shafts extending from both ends of the tank. After the intermediate product tank 12 is pivotally supported in this way, the thermosetting furnace 200 processes the intermediate product tank 12 in a thermosetting process. In this thermosetting process, the intermediate product tank 12 is rotated at a constant speed together with the tank shaft 212, and the rotation is maintained during the thermosetting process. At the same time as the tank rotation or at a constant speed rotation, the thermosetting furnace 200 controls the control device 230 so that the thermosetting resin (for example, epoxy resin) used for forming the fiber reinforced resin layer 20 is cured. In the induction heating coil 220, a high-frequency current is supplied from the high-frequency current generating power supply 240 to inductively heat the fiber reinforced resin layer 20. Thereby, in the intermediate product tank 12, thermosetting of the thermosetting resin in the fiber reinforced resin layer 20 formed on the outer periphery of the liner 10 occurs. The state of induction heating will be described later.

熱硬化炉200による上記した樹脂の熱硬化後には、加熱を受けた中間生成品タンク12は、冷却養生に処される。そして、この冷却養生を経ることで、ライナー10の外周にエポキシ樹脂を含浸して熱硬化した繊維強化樹脂層20を有する高圧水素タンク30が得られる。   After the above-described heat curing of the resin by the heat curing furnace 200, the intermediate product tank 12 that has been heated is subjected to cooling curing. Then, through this cooling curing, a high-pressure hydrogen tank 30 having a fiber reinforced resin layer 20 impregnated with an epoxy resin on the outer periphery of the liner 10 and thermally cured is obtained.

ここで、FW装置100による繊維強化樹脂層20の形成の様子(図1(b))と、その後の熱硬化炉200による繊維強化樹脂層20の熱硬化(図1(c))について順を追って説明する。図2に示すように、本実施例のFW装置100は、クリールスタンド110と、巻取部130と、クリールスタンド110と巻取部130とを結ぶ経路部120と、制御部150とを備える。   Here, the order of the formation of the fiber reinforced resin layer 20 by the FW device 100 (FIG. 1B) and the subsequent heat curing of the fiber reinforced resin layer 20 by the thermosetting furnace 200 (FIG. 1C) are performed in order. I will explain later. As illustrated in FIG. 2, the FW device 100 according to the present embodiment includes a creel stand 110, a winding unit 130, a path unit 120 that connects the creel stand 110 and the winding unit 130, and a control unit 150.

クリールスタンド110は、熱硬化樹脂としてのエポキシ樹脂を含浸済みのカーボン繊維(以下、樹脂含浸カーボン繊維Wと称する)を巻きつけた複数のボビン112を備え、固定滑車114等を用いて各ボビン112から所定の方向に樹脂含浸カーボン繊維Wを繰り出す機能を有する。本実施例では、熱硬化性樹脂を含浸済みのいわゆるプリプレグの樹脂含浸カーボン繊維Wとしたが、ボビン112にはカーボン繊維のみを巻き取って備え、クリールスタンド110からの繊維繰り出し経路途中で、その繰り出されるカーボン繊維に熱硬化性樹脂を含浸させるようにすることもできる。なお、カーボン繊維に代えて、適当な強度と導電性を有するフィラメントワインディングに適した他の材料の繊維とすることもできる。また、エポキシ樹脂に代えて、熱硬化により適当な接合強度を有するフィラメントワインディングに適した熱硬化性樹脂、例えばポリエステル樹脂やポリアミド樹脂等の熱硬化性樹脂とすることもできる。   The creel stand 110 includes a plurality of bobbins 112 around which carbon fibers impregnated with an epoxy resin as a thermosetting resin (hereinafter referred to as resin-impregnated carbon fibers W) are wound, and each bobbin 112 using a fixed pulley 114 or the like. The resin-impregnated carbon fiber W is fed out in a predetermined direction. In this embodiment, the resin-impregnated carbon fiber W of a so-called prepreg that has been impregnated with a thermosetting resin is used. The drawn carbon fiber may be impregnated with a thermosetting resin. In addition, it can replace with carbon fiber and can also be used as the fiber of the other material suitable for the filament winding which has appropriate intensity | strength and electroconductivity. In place of the epoxy resin, a thermosetting resin suitable for filament winding having an appropriate bonding strength by thermosetting, for example, a thermosetting resin such as a polyester resin or a polyamide resin can be used.

各ボビン112からは、巻取部130の働きにより樹脂含浸カーボン繊維Wがそれぞれ引き出され、各樹脂含浸カーボン繊維Wは経路部120を介して巻取部130へ導かれる。   From each bobbin 112, the resin-impregnated carbon fiber W is drawn out by the action of the winding part 130, and each resin-impregnated carbon fiber W is guided to the winding part 130 via the path part 120.

経路部120は、ローラーやガイド等を備え、クリールスタンド110から巻取部130への樹脂含浸カーボン繊維Wへの経路を構成する。   The path portion 120 includes a roller, a guide, and the like, and constitutes a path from the creel stand 110 to the resin-impregnated carbon fiber W from the winding portion 130.

巻取部130は、アイクチガイド132と、ライナー10がセットされる回転駆動装置134とを備える。回転駆動装置134は、ライナー10を軸支してそのタンク軸周りにライナー10を回転駆動させる。   The winding unit 130 includes an ikuchi guide 132 and a rotation driving device 134 on which the liner 10 is set. The rotational drive device 134 pivotally supports the liner 10 and rotationally drives the liner 10 around its tank axis.

アイクチガイド132は、ライナー10の外周に樹脂含浸カーボン繊維Wを供給しつつ、ライナー10に樹脂含浸カーボン繊維Wが巻回される際の巻回張力を調整する。また、樹脂含浸カーボン繊維Wのフープ巻きとヘリカル巻きの使い分けにも関与する。つまり、アイクチガイド132は、ライナー10の長軸方向であるx軸、x軸に垂直なy軸、x軸およびy軸に垂直なz軸の3次元で移動して、経路部120から供給された複数本の樹脂含浸カーボン繊維Wを束ねてライナー10に向かって供給する。制御部150による制御を経たアイクチガイド132の3次元方向への移動と回転駆動装置134によるライナー10の回転とにより、樹脂含浸カーボン繊維Wは、ライナー10の外周に繰り返し巻回されることになる。詳細には、図3に示すように、フープ巻きとヘリカル巻きとが交互に使い分けられて、樹脂含浸カーボン繊維Wは、ライナー両端のドーム部10bと円筒状のシリンダー部10aとの外周に繰り返し巻回される。図示するように、まず、ライナー10の略円筒状のシリンダー部10aの領域をフープ巻きにて樹脂含浸カーボン繊維Wを巻回し、その後に、シリンダー部両端のドーム部10bに掛け渡るよう、その折り返し位置に応じた角度のヘリカル巻きにて樹脂含浸カーボン繊維Wを巻回する。   The ikuchi guide 132 adjusts the winding tension when the resin-impregnated carbon fiber W is wound around the liner 10 while supplying the resin-impregnated carbon fiber W to the outer periphery of the liner 10. Further, it is also involved in properly using hoop winding and helical winding of the resin-impregnated carbon fiber W. In other words, the ikuchi guide 132 is supplied from the path unit 120 by moving in three dimensions: the x-axis which is the major axis direction of the liner 10, the y-axis perpendicular to the x-axis, the z-axis perpendicular to the x-axis and the y-axis. The plurality of resin-impregnated carbon fibers W are bundled and supplied toward the liner 10. The resin-impregnated carbon fiber W is repeatedly wound around the outer circumference of the liner 10 by the movement of the ikuchi guide 132 controlled by the control unit 150 in the three-dimensional direction and the rotation of the liner 10 by the rotation driving device 134. Become. Specifically, as shown in FIG. 3, hoop winding and helical winding are used alternately, and the resin-impregnated carbon fiber W is repeatedly wound around the outer periphery of the dome portion 10b and the cylindrical cylinder portion 10a at both ends of the liner. Turned. As shown in the figure, first, the resin-impregnated carbon fiber W is wound around the region of the substantially cylindrical cylinder portion 10a of the liner 10 by hoop winding, and then folded over the dome portions 10b at both ends of the cylinder portion. The resin-impregnated carbon fiber W is wound by helical winding at an angle corresponding to the position.

図3(A)に示すように、シリンダー部10aにおいては、フープ巻きをシリンダー部両端で折り返しつつ繰り返すことで、繊維強化樹脂層20のライナー外周側の内側樹脂層を形成する。つまり、ライナー10をタンク中心軸AXの回りで回転させつつ、樹脂含浸カーボン繊維Wの供給元であるアイクチガイド132をタンク中心軸AXに沿って所定速度で往復動させることで、繊維強化樹脂層20における内側樹脂層が樹脂含浸カーボン繊維Wにて巻回形成される。このフープ巻きでは、アイクチガイド132からの樹脂含浸カーボン繊維Wが、シリンダー部10aのタンク中心軸AXに対してほぼ垂直に近い巻き角度(繊維角α0:例えば約89°)をなすようにされる。そして、ライナー回転速度とアイクチガイド132の往復動速度を調整した上で、タンク中心軸AX方向に沿ってアイクチガイド132を往復移動させて、樹脂含浸カーボン繊維Wをシリンダー部10aに繰り返し巻回する。   As shown in FIG. 3A, in the cylinder portion 10a, the inner resin layer on the outer periphery side of the liner of the fiber reinforced resin layer 20 is formed by repeating the hoop winding while turning back both ends of the cylinder portion. That is, by rotating the liner 10 around the tank center axis AX and reciprocating the ikuchi guide 132 that is a supply source of the resin-impregnated carbon fiber W along the tank center axis AX at a predetermined speed, the fiber reinforced resin The inner resin layer in the layer 20 is formed by winding with resin-impregnated carbon fibers W. In this hoop winding, the resin-impregnated carbon fiber W from the ikuchi guide 132 forms a winding angle (fiber angle α0: for example, about 89 °) that is almost perpendicular to the tank center axis AX of the cylinder portion 10a. The Then, after adjusting the liner rotational speed and the reciprocating speed of the ikuchi guide 132, the ikuchi guide 132 is reciprocated along the tank center axis AX direction, and the resin-impregnated carbon fiber W is repeatedly wound around the cylinder portion 10a. Turn.

こうしたフープ巻きを所定の工程繰り返した後、図3(B)に示す低角度のヘリカル巻きに切り換えて樹脂含浸カーボン繊維Wを繰り返し巻回する。低角度のヘリカル巻きでは、ドーム部10bの湾曲外表面領域とフープ巻き済みのシリンダー部10aを繊維巻回対象とし、ライナー10をタンク中心軸AXの回りで回転させつつ、アイクチガイド132から延びた樹脂含浸カーボン繊維Wをタンク中心軸AXに対して低角度の繊維角αLH(例えば、約11〜25°)で交差させた状態を保持し、ライナー回転速度とアイクチガイド132の往復動速度を調整する。その上で、タンク中心軸AX方向に沿ってアイクチガイド132を往復移動させて、樹脂含浸カーボン繊維Wをシリンダー部10aの両端のドーム部10bに掛け渡るよう螺旋状に繰り返し巻回する。この場合、両側のドーム部10bでは、アイクチガイド132の往路・復路の切換に伴って繊維の巻き付け方向が折り返されると共に、タンク中心軸AXからの折り返し位置も調整される。ドーム部10bにおける巻き付け方向の折り返しを何度も繰り返すことにより、ライナー10の外表面には、低角度の繊維角αLHで樹脂含浸カーボン繊維Wが網目状に張り渡された繊維巻回層が形成される。なお、上記した低角度のヘリカル巻きを行う前に、タンク中心軸AXに対して高角度の繊維角(例えば、約30〜60°)で樹脂含浸カーボン繊維Wを巻回する高角度のヘリカル巻きを組み込むこともできる。   After such hoop winding is repeated for a predetermined step, the resin-impregnated carbon fiber W is wound repeatedly by switching to the low-angle helical winding shown in FIG. In the low-angle helical winding, the curved outer surface region of the dome portion 10b and the hoop-wound cylinder portion 10a are targets for fiber winding, and the liner 10 extends from the ikuchi guide 132 while rotating around the tank center axis AX. The resin-impregnated carbon fiber W is kept crossed at a low fiber angle αLH (for example, about 11 to 25 °) with respect to the tank center axis AX, and the liner rotational speed and the reciprocating speed of the ikuchi guide 132 are maintained. Adjust. Then, the ikuchi guide 132 is reciprocated along the tank center axis AX direction, and the resin-impregnated carbon fiber W is repeatedly wound spirally so as to hang over the dome portions 10b at both ends of the cylinder portion 10a. In this case, in the dome portions 10b on both sides, the fiber winding direction is turned back and the turn-back position from the tank center axis AX is adjusted in accordance with switching between the forward path and the return path of the ikuchi guide 132. By repeating the wrapping in the winding direction in the dome portion 10b many times, a fiber wound layer in which the resin-impregnated carbon fibers W are stretched in a mesh shape with a low angle fiber angle αLH is formed on the outer surface of the liner 10. Is done. In addition, before performing the above-described low-angle helical winding, the high-angle helical winding in which the resin-impregnated carbon fiber W is wound at a high-angle fiber angle (for example, about 30 to 60 °) with respect to the tank center axis AX. Can also be incorporated.

こうしたヘリカル巻きを所定の工程繰り返した後、再度、既述したフープ巻きによる樹脂含浸カーボン繊維Wの巻回と、ヘリカル巻きによる樹脂含浸カーボン繊維Wの巻回とを交互に繰り返すことで、繊維強化樹脂層20が巻回形成される。この場合、ヘリカル巻きが最後となれば、ヘリカル巻きによる樹脂層が繊維強化樹脂層20における外表面側の最外層側樹脂層となる。上記したフープ巻きおよびヘリカル巻きにおいて、制御部150は、ライナー10の回転速度制御やアイクチガイド132での巻回張力調整等を行うが、本発明の要旨と直接関係しないので、その説明については省略する。   After repeating the helical winding for a predetermined step, fiber reinforced by repeating the winding of the resin-impregnated carbon fiber W by the hoop winding described above and the winding of the resin-impregnated carbon fiber W by the helical winding alternately. The resin layer 20 is formed by winding. In this case, if the helical winding is the last, the resin layer by the helical winding becomes the outermost layer side resin layer on the outer surface side in the fiber reinforced resin layer 20. In the above-described hoop winding and helical winding, the control unit 150 performs the rotation speed control of the liner 10 and the winding tension adjustment with the ikuchi guide 132, but is not directly related to the gist of the present invention. Omitted.

こうして樹脂含浸カーボン繊維Wのフープ巻きおよびヘリカル巻きが交互に使い分けてなされることで、樹脂含浸カーボン繊維Wがライナー10の外周に層状に重なった繊維強化樹脂層20が形成される。そして、樹脂含浸カーボン繊維WのFW法による巻回を経て、ライナー10の外周に繊維強化樹脂層20を形成した中間生成品タンク12が得られる(図1(b)参照)。図4は得られた中間生成品タンク12における繊維強化樹脂層20の内外の樹脂層部位を樹脂含浸カーボン繊維Wの巻回の様子と合わせて示す説明図である。   In this way, the hoop winding and the helical winding of the resin-impregnated carbon fiber W are alternately used, whereby the fiber-reinforced resin layer 20 in which the resin-impregnated carbon fiber W is layered on the outer periphery of the liner 10 is formed. And the intermediate product tank 12 which formed the fiber reinforced resin layer 20 in the outer periphery of the liner 10 is obtained through winding of the resin impregnation carbon fiber W by FW method (refer FIG.1 (b)). FIG. 4 is an explanatory view showing the inner and outer resin layer portions of the fiber reinforced resin layer 20 in the obtained intermediate product tank 12 together with the winding state of the resin-impregnated carbon fiber W.

図示するように、ライナー10の外表面に形成された繊維強化樹脂層20は、ライナー10の外周側から、フープ巻きによる樹脂含浸カーボン繊維Wの樹脂層部位とヘリカル巻きによる樹脂含浸カーボン繊維Wの樹脂層部位とが交互に積層される。図においては、図示の都合から、各樹脂層部位は単一の樹脂含浸カーボン繊維Wを含むようにされているが、各樹脂層では、既述したようにフープ巻きとヘリカル巻きでの樹脂含浸カーボン繊維Wの巻回により、複数の樹脂含浸カーボン繊維Wがフープ巻きとヘリカル巻きで重なることになる。そして、既述したフープ巻きとヘリカル巻きの交互切換により、ライナー10の外周側の最内層の樹脂層部位では、図3(A)に示したフープ巻きによる繊維巻回層となり、繊維の配向は既述した約89°となる。その外側の樹脂層部位は、フープ巻きから低角度のヘリカル巻きに切り換えられていることから、図3(B)に示した低角度のヘリカル巻きによる繊維巻回層となり、繊維の配向は既述した約11〜25°となる。以下、層ごとに上記の繊維の配向が切り換わる。   As shown in the drawing, the fiber reinforced resin layer 20 formed on the outer surface of the liner 10 includes a resin layer portion of the resin-impregnated carbon fiber W by hoop winding and a resin-impregnated carbon fiber W by helical winding from the outer peripheral side of the liner 10. Resin layer portions are alternately laminated. In the figure, for the sake of illustration, each resin layer portion includes a single resin-impregnated carbon fiber W. However, as described above, each resin layer is impregnated with hoop winding and helical winding. By winding the carbon fiber W, the plurality of resin-impregnated carbon fibers W are overlapped by hoop winding and helical winding. Then, by alternately switching between the hoop winding and the helical winding described above, the innermost resin layer portion on the outer peripheral side of the liner 10 becomes a fiber winding layer by the hoop winding shown in FIG. It is about 89 ° as described above. Since the outer resin layer portion is switched from the hoop winding to the low-angle helical winding, the fiber winding layer is formed by the low-angle helical winding shown in FIG. It becomes about 11-25 degrees. Hereinafter, the orientation of the fiber is switched for each layer.

図4では、タンク中心軸AXを含んでタンクを長手方向に断面視していることから、繊維の配向がフープ巻きに基づいた約89°の各樹脂層部位では、樹脂含浸カーボン繊維Wは繊維と交差するよう切断したほぼ円形に断面視される。その一方、繊維の配向が低角度のヘリカル巻きに基づいた約11〜25°の各樹脂層部位では、樹脂含浸カーボン繊維Wは繊維長手方向に沿って切断した矩形状に断面視される。本実施例では、フープ巻きによる繊維巻回層とこれに重なるヘリカル巻きによる繊維巻回層を一つの樹脂層部位と捉えたので、図4では、繊維強化樹脂層20は、外表面側の最外層部位からライナー外周側まで5層の樹脂層部位が示されていることになる。   In FIG. 4, since the tank including the tank center axis AX is viewed in a longitudinal section, the resin-impregnated carbon fiber W is a fiber in each resin layer portion where the fiber orientation is about 89 ° based on hoop winding. The cross-sectional view is a substantially circular shape cut so as to intersect. On the other hand, the resin-impregnated carbon fibers W are viewed in cross-section in a rectangular shape cut along the fiber longitudinal direction at each resin layer portion of about 11 to 25 degrees based on helical winding with a low angle of fiber orientation. In the present embodiment, the fiber wound layer by hoop winding and the fiber wound layer by helical winding that overlaps with this are regarded as one resin layer portion. Therefore, in FIG. 4, the fiber reinforced resin layer 20 is the outermost surface on the outer surface side. The five resin layer parts are shown from the outer layer part to the liner outer peripheral side.

次に、図4で示したような樹脂層構成の繊維強化樹脂層20の熱硬化炉200による熱硬化について説明する。図5は図1(c)に示した熱硬化炉200の概略構成を誘導加熱コイル220の配置構成を含めて示す説明図である。   Next, the thermal curing of the fiber reinforced resin layer 20 having the resin layer configuration as shown in FIG. FIG. 5 is an explanatory diagram showing a schematic configuration of the thermosetting furnace 200 shown in FIG. 1C including the arrangement configuration of the induction heating coil 220.

図示するように、本実施例の熱硬化炉200では、誘導加熱コイル220を既述したように中間生成品タンク12をタンク長手方向に沿ってタンク軸周囲にて取り囲むに当たり、図5の平面視方向から見て、繊維強化樹脂層20の外表面からの距離がシリンダー部10aとドーム部10bにおいてほぼ同じとなるよう巻かれている。この際、誘導加熱コイル220は、中間生成品タンク12を軸支するタンク軸支シャフト212(図1参照)と干渉しないと共に、タンク軸に対して傾斜したコイル巻き軌跡とされている。   As shown in the figure, in the thermosetting furnace 200 of this embodiment, as described above, the intermediate product tank 12 is surrounded around the tank axis along the tank longitudinal direction as described above, and the plan view of FIG. It is wound so that the distance from the outer surface of the fiber reinforced resin layer 20 is substantially the same in the cylinder portion 10a and the dome portion 10b when viewed from the direction. At this time, the induction heating coil 220 does not interfere with a tank support shaft 212 (see FIG. 1) that supports the intermediate product tank 12 and has a coil winding locus inclined with respect to the tank shaft.

この他、熱硬化炉200は、制御機器230と温度センサー242とを有する。温度センサー242は、非接触で繊維強化樹脂層20の外表面温度を検出するよう構成され、その検出温度を制御機器230に出力する。制御機器230は、内部にCPU、RAM、ROMを備えるマイクロコンピュータとして構成されており、ROMに記憶されたコンピュータプログラムをRAMに展開して実行することで、高周波電流生成電源240から誘導加熱コイル220への高周波電流の通電を制御する。この通電制御は、熱硬化炉200の炉内への中間生成品タンク12のセット後のタンク定速回転に合わせて、制御機器230にてなされる。誘導加熱コイル220は、高周波電流生成電源240からの高周波電流の通電を受けると、水平に軸支されてタンク軸回りに回転する中間生成品タンク12の繊維強化樹脂層20を貫く磁束を発生する。繊維強化樹脂層20を構成する樹脂含浸カーボン繊維Wは、この誘導加熱コイル220による磁束と交差することから渦電流を誘起し、カーボン繊維固有の抵抗によって発熱して、繊維強化樹脂層20の熱硬化性樹脂を高周波誘導加熱する。この高周波誘導加熱は、図4に示した繊維強化樹脂層20の各樹脂層部位で起きる。   In addition, the thermosetting furnace 200 includes a control device 230 and a temperature sensor 242. The temperature sensor 242 is configured to detect the outer surface temperature of the fiber reinforced resin layer 20 in a non-contact manner, and outputs the detected temperature to the control device 230. The control device 230 is configured as a microcomputer including a CPU, a RAM, and a ROM therein, and the computer program stored in the ROM is expanded and executed in the RAM, so that the induction heating coil 220 is supplied from the high-frequency current generation power supply 240. Controls the application of high-frequency current to the. This energization control is performed by the control device 230 in accordance with the tank constant speed rotation after the intermediate product tank 12 is set in the thermosetting furnace 200. When the induction heating coil 220 is energized with a high-frequency current from the high-frequency current generation power supply 240, the induction heating coil 220 generates a magnetic flux that penetrates the fiber reinforced resin layer 20 of the intermediate product tank 12 that is horizontally supported and rotates around the tank axis. . Since the resin-impregnated carbon fiber W constituting the fiber reinforced resin layer 20 intersects with the magnetic flux generated by the induction heating coil 220, an eddy current is induced, and heat is generated due to the resistance inherent to the carbon fiber. High frequency induction heating of the curable resin. This high frequency induction heating occurs in each resin layer portion of the fiber reinforced resin layer 20 shown in FIG.

次に、制御機器230による通電制御の様子を、繊維強化樹脂層20の昇温の状況と併せて説明する。図6は本実施例の熱硬化炉200における繊維強化樹脂層20の厚み方向の各樹脂層部位ごとの昇温の様子をその測定の様子と併せて示す説明図である。   Next, the state of energization control by the control device 230 will be described together with the temperature rise state of the fiber reinforced resin layer 20. FIG. 6 is an explanatory view showing a state of temperature rise for each resin layer portion in the thickness direction of the fiber reinforced resin layer 20 in the thermosetting furnace 200 of the present embodiment, together with the state of the measurement.

まず、繊維強化樹脂層20の外表面側の最外層部位からライナー外周側まで5層の各樹脂層部位の昇温状況を測定するため、各層の樹脂層部位に熱電対を埋設した。図6では、この熱電対は、図中に四角で示されており、図3で説明したフープ巻きからヘリカル巻きへの切換の際に、熱電対を装着し、そのままヘリカル巻きを継続する。これにより、各樹脂層部位に熱電対を埋設した昇温状況測定用の中間生成品タンク12が得られる。次いで、この測定用の中間生成品タンク12を通常のタンク製造工程手順に従って、熱硬化炉200の高周波誘導加熱に処する。この熱硬化炉200による高周波誘導加熱は、熱硬化炉200の制御機器230が高周波電流生成電源240から誘導加熱コイル220に高周波電流を通電することで繊維強化樹脂層20の各樹脂層部位で既述したように起きる。そして、誘導加熱の間の各樹脂層部位の測定温度をプロットして、図6に示す加熱時間と各層ごとの昇温状況の関係と、層の深さと温度の関係とを得た。図6のグラフは、最終製品たる高圧水素タンク30を得る際の中間生成品タンク12に見られる温度状況を表している。   First, in order to measure the temperature rise state of each of the five resin layer portions from the outermost layer portion on the outer surface side of the fiber reinforced resin layer 20 to the liner outer peripheral side, a thermocouple was embedded in the resin layer portion of each layer. In FIG. 6, this thermocouple is indicated by a square in the figure, and when switching from the hoop winding to the helical winding described in FIG. 3, the thermocouple is mounted and the helical winding is continued as it is. Thereby, the intermediate product tank 12 for measuring the temperature rise state in which a thermocouple is embedded in each resin layer portion is obtained. Next, the intermediate product tank 12 for measurement is subjected to high-frequency induction heating in the thermosetting furnace 200 in accordance with a normal tank manufacturing process procedure. The high-frequency induction heating by the thermosetting furnace 200 is already performed at each resin layer portion of the fiber reinforced resin layer 20 when the control device 230 of the thermosetting furnace 200 supplies high-frequency current to the induction heating coil 220 from the high-frequency current generation power supply 240. It happens as described. And the measurement temperature of each resin layer site | part during induction heating was plotted, and the relationship between the heating time shown in FIG. 6 and the temperature rising condition for each layer, and the relationship between the layer depth and temperature were obtained. The graph of FIG. 6 represents the temperature situation seen in the intermediate product tank 12 when the high-pressure hydrogen tank 30 as the final product is obtained.

この図6から、最も温度が高くなるのは、図において層番号1で示される繊維強化樹脂層20の外表面側の最外層部位の内側の樹脂層部位(層番号2)であり、次いで高いのは層番号1の最外層部位となる。層番号3〜5の各樹脂層部位は、層の深さが深くなる順に、層番号1の最外層部位より温度が低下する。そして、ある時点、例えば図6において各層の温度が安定した時点での各樹脂層部位の温度分布は、上記の各層ごとの温度状況が反映し、繊維強化樹脂層20の最外層部位(層番号1)とその内側の樹脂層部位(層番号2)とでは、図中に白抜き矢印で示す温度差ΔTmが生じる。こうした現象は、次のように説明できる。   From FIG. 6, the highest temperature is the resin layer part (layer number 2) inside the outermost layer part on the outer surface side of the fiber reinforced resin layer 20 indicated by layer number 1 in the figure, and then the highest. Is the outermost layer portion of layer number 1. Each resin layer part of layer numbers 3 to 5 has a temperature lower than that of the outermost layer part of layer number 1 in the order of increasing depth of the layer. And the temperature distribution of each resin layer site | part when the temperature of each layer became stable in a certain time, for example in FIG. 6, reflects the temperature condition for each said layer, and the outermost layer site | part (layer number of the fiber reinforced resin layer 20) A temperature difference ΔTm indicated by a white arrow in the figure is generated between 1) and the resin layer portion (layer number 2) inside thereof. Such a phenomenon can be explained as follows.

図5の誘導加熱コイル220による高周波誘導加熱は、繊維強化樹脂層20の最外層部位(層番号1)とその内側の樹脂層部位(層番号2)およびその下層側の樹脂層部位(層番号3〜5)の各層で進むものの、各層での誘導加熱の状況は次のように相違する。繊維強化樹脂層20の最外層部位(層番号1)は、誘導加熱コイル220に最も近くて誘導加熱コイル220の発生した磁束の影響を受けやすく生じる渦電流も大きいことから、誘導加熱コイル220による高周波誘導加熱が最も進む。最外層部位(層番号1)より下層側の樹脂層部位(層番号2〜5)は、誘導加熱コイル220による誘導加熱を受けるとはいえ、当該コイルから離れることで磁束の影響を受けにくくなって生じる渦電流も小さくなるので、最外層部位(層番号1)ほど加熱は進まない。   The induction heating coil 220 in FIG. 5 performs high-frequency induction heating in the outermost layer portion (layer number 1) of the fiber reinforced resin layer 20, the inner resin layer portion (layer number 2), and the lower layer side resin layer portion (layer number). Although progress is made in each layer of 3 to 5), the state of induction heating in each layer is different as follows. Since the outermost layer portion (layer number 1) of the fiber reinforced resin layer 20 is closest to the induction heating coil 220 and is easily affected by the magnetic flux generated by the induction heating coil 220, the eddy current is large. High frequency induction heating is most advanced. Although the resin layer part (layer numbers 2 to 5) on the lower layer side from the outermost layer part (layer number 1) is subjected to induction heating by the induction heating coil 220, it is less likely to be affected by magnetic flux by separating from the coil. Therefore, the heating does not proceed as much as the outermost layer portion (layer number 1).

繊維強化樹脂層20の最外層部位(層番号1)より内側の樹脂層部位(層番号2)は、当該層部位での高周波誘導加熱に加え、誘導加熱コイル220による高周波誘導加熱が最も進む最外層部位(層番号1)からの熱伝播を受ける。その一方、最外層部位(層番号1)ではその層表面からの放熱が起きるので、図6のグラフに見られるように、内側の樹脂層部位(層番号2)の温度は最外層より高くなる。層番号2の樹脂層部位より下層側の樹脂層部位(層番号3〜5)では、各樹脂層部位での高周波誘導加熱と上層側の樹脂層部位からの熱伝搬とが起きるものの、これらは層番号2の樹脂層部位より進まないので、各層の温度は層番号2の樹脂層部位より低くなる。こうしたことを考慮して繊維強化樹脂層20の最外層部位(層番号1)より内側の樹脂層部位(層番号2)の温度が制御上限温度となるよう、熱硬化炉200は、その制御機器230により誘導加熱コイル220への高周波電流の通電を制御する。この場合の制御上限温度は、熱硬化性樹脂を加熱する際の加熱上限温度でもあり、ライナー10の源材料樹脂および繊維強化樹脂層20の形成のための熱硬化性樹脂の溶解温度等の性状や、樹脂含浸カーボン繊維Wの繊維表面に付着された薬剤、具体的には繊維と樹脂の馴染みを向上させる薬剤の耐性温度等から定まる。特に、熱硬化性樹脂にあっては、その性質上、その溶解温度に近い温度となると、粘度低下が顕著となるので、こうした点も制御上限温度の決定に考慮される。   In the resin layer part (layer number 2) inside the outermost layer part (layer number 1) of the fiber reinforced resin layer 20, in addition to the high-frequency induction heating in the layer part, the high-frequency induction heating by the induction heating coil 220 is most advanced. Receives heat propagation from the outer layer site (layer number 1). On the other hand, in the outermost layer portion (layer number 1), heat is released from the surface of the layer, so that the temperature of the inner resin layer portion (layer number 2) is higher than that of the outermost layer as seen in the graph of FIG. . In the resin layer part on the lower layer side (layer numbers 3 to 5) from the resin layer part of layer number 2, high-frequency induction heating in each resin layer part and heat propagation from the resin layer part on the upper layer side occur. Since it does not advance from the resin layer part of layer number 2, the temperature of each layer becomes lower than the resin layer part of layer number 2. Considering this, the thermosetting furnace 200 has its control device so that the temperature of the resin layer part (layer number 2) inside the outermost layer part (layer number 1) of the fiber reinforced resin layer 20 becomes the control upper limit temperature. 230 controls the high-frequency current to be supplied to the induction heating coil 220. The control upper limit temperature in this case is also the heating upper limit temperature when heating the thermosetting resin, and properties such as the melting temperature of the thermosetting resin for forming the source material resin of the liner 10 and the fiber reinforced resin layer 20. Further, the temperature is determined from the resistance temperature of the chemical adhered to the fiber surface of the resin-impregnated carbon fiber W, specifically, the chemical that improves the familiarity between the fiber and the resin. In particular, in the case of a thermosetting resin, when the temperature is close to the melting temperature due to its properties, the decrease in viscosity becomes significant, and this point is also taken into consideration in determining the control upper limit temperature.

本実施例の熱硬化炉200では、図5に示すように、制御機器230のメモリー領域に図6で示した各層部位ごとの温度状況を記憶し、これを参照しつつ上記した高周波電流の通電を制御する。こうして記憶された温度状況は、繊維強化樹脂層20の層厚み方向における樹脂層部位(層番号1〜5)ごとに対応付けられており、製造対象となる高圧水素タンク30ごとに用意される。例えば、高圧水素タンク30のサイズや、繊維強化樹脂層20を構成する熱硬化性樹脂が異なれば、それぞれについての図6の各層部位ごとの温度状況が記憶されることになる。図7は誘導加熱コイル220への高周波電流の通電制御を説明するフローチャートである。   In the thermosetting furnace 200 of the present embodiment, as shown in FIG. 5, the temperature state of each layer portion shown in FIG. 6 is stored in the memory area of the control device 230, and the above-described high-frequency current is supplied with reference to this. To control. The temperature state thus stored is associated with each resin layer portion (layer numbers 1 to 5) in the layer thickness direction of the fiber reinforced resin layer 20, and is prepared for each high-pressure hydrogen tank 30 to be manufactured. For example, if the size of the high-pressure hydrogen tank 30 and the thermosetting resin constituting the fiber reinforced resin layer 20 are different, the temperature status of each layer portion in FIG. 6 is stored. FIG. 7 is a flowchart for explaining energization control of the high-frequency current to the induction heating coil 220.

図7に示す通電制御は、熱硬化炉200の炉内への中間生成品タンク12のセット、並びに軸回りの回転が定速となると開始され、制御機器230は、誘導加熱コイル220に高周波電流生成電源240から高周波電流を通電し、これを継続する(ステップS100)。次いで、制御機器230は、繊維強化樹脂層20の外表面温度を温度センサー242(図5参照)から入力し(ステップS110)、その入力温度、即ち図6に示した繊維強化樹脂層20の最外層部位(層番号1)の温度とメモリーに記憶済みの図6の温度状況を参照して、最外層部位(層番号1)より内側の樹脂層部位(層番号2)の温度を演算する(ステップS120)。こうした温度演算の対象となる内側の樹脂層部位(層番号2)は、繊維強化樹脂層20の層厚み方向における樹脂層部位(層番号1〜5)ごとに対応付けられた温度状況から、熱硬化の際に最大温度となる樹脂層部位として特定されることになる。   The energization control shown in FIG. 7 is started when the intermediate product tank 12 is set in the furnace of the thermosetting furnace 200 and the rotation around the axis becomes a constant speed, and the control device 230 applies a high-frequency current to the induction heating coil 220. A high-frequency current is supplied from the generation power supply 240, and this is continued (step S100). Next, the control device 230 inputs the outer surface temperature of the fiber reinforced resin layer 20 from the temperature sensor 242 (see FIG. 5) (step S110), and the input temperature, that is, the maximum temperature of the fiber reinforced resin layer 20 shown in FIG. With reference to the temperature of the outer layer part (layer number 1) and the temperature state of FIG. 6 stored in the memory, the temperature of the resin layer part (layer number 2) inside the outermost layer part (layer number 1) is calculated ( Step S120). The inner resin layer part (layer number 2) that is the target of such temperature calculation is the heat from the temperature state associated with each resin layer part (layer numbers 1 to 5) in the layer thickness direction of the fiber reinforced resin layer 20. It will be specified as the resin layer part which becomes the maximum temperature at the time of curing.

ステップS120での温度演算では、上記したような温度センサー242からの最外層部位(層番号1)の入力温度を用いることができるほか、誘導加熱コイル220への電流通電を開始してからの経過時間に基づいて最外層部位(層番号1)の温度を推定し、この推定温度を用いることもできる。また、図6に示した最外層部位(層番号1)とその内側の樹脂層部位(層番号2)の温度差ΔTmは、最外層部位の昇温状況に対応して加熱開始から求まるので、この温度差ΔTmを参照して演算することもできる。この他、最外層部位(層番号1)の温度を用いることなく、最外層部位(層番号1)より内側の樹脂層部位(層番号2)の温度を演算することもできる。つまり、図6の温度状況は、内側の樹脂層部位(層番号2)についての温度状況を含むので、通電開始後の経過時間により、内側の樹脂層部位(層番号2)の温度を演算してもよい。   In the temperature calculation in step S120, the input temperature of the outermost layer portion (layer number 1) from the temperature sensor 242 as described above can be used, and the process after the current energization to the induction heating coil 220 is started. It is also possible to estimate the temperature of the outermost layer portion (layer number 1) based on time and use this estimated temperature. Further, since the temperature difference ΔTm between the outermost layer portion (layer number 1) and the inner resin layer portion (layer number 2) shown in FIG. 6 can be obtained from the start of heating corresponding to the temperature rise situation of the outermost layer portion, It is also possible to calculate with reference to this temperature difference ΔTm. In addition, the temperature of the resin layer part (layer number 2) inside the outermost layer part (layer number 1) can be calculated without using the temperature of the outermost layer part (layer number 1). That is, since the temperature condition of FIG. 6 includes the temperature condition of the inner resin layer part (layer number 2), the temperature of the inner resin layer part (layer number 2) is calculated based on the elapsed time after the start of energization. May be.

次に、制御機器230は、上記演算した樹脂層部位(層番号2)の温度が既述した制御上限温度に達したか否かを判定し(ステップS130)、樹脂層部位(層番号2)の温度が制御上限温度に達するまでステップS100から処理を繰り返す。一方、ステップS130にて、樹脂層部位(層番号2)の温度が制御上限温度に達すると、制御機器230は、誘導加熱コイル220への高周波電流の通電を停止すると共に、繊維強化樹脂層20の冷却養生を図る(ステップS140)。これにより、繊維強化樹脂層20が硬化済みの高圧水素タンク30が得られる。   Next, the control device 230 determines whether or not the calculated temperature of the resin layer portion (layer number 2) has reached the control upper limit temperature described above (step S130), and the resin layer portion (layer number 2). The process is repeated from step S100 until the temperature reaches the control upper limit temperature. On the other hand, when the temperature of the resin layer portion (layer number 2) reaches the control upper limit temperature in step S130, the control device 230 stops energization of the high-frequency current to the induction heating coil 220 and the fiber reinforced resin layer 20. The cooling curing is aimed at (step S140). Thereby, the high pressure hydrogen tank 30 in which the fiber reinforced resin layer 20 is cured is obtained.

以上説明したように、本実施例では、熱硬化した繊維強化樹脂層20にて補強を図った高圧水素タンク30を製造するに当たり、繊維強化樹脂層20の熱硬化性樹脂の熱硬化に際し、繊維強化樹脂層20の最外層部位(層番号1:図6参照)より内側の樹脂層部位(層番号2)の温度を誘導加熱コイル220への高周波電流の通電を制御する際の制御上限温度に設定した。このため、誘導加熱コイル220による高周波誘導加熱を行う場合に昇温が最も進む層番号2の樹脂層部位を制御上限温度を超えないように加熱(誘導加熱)することができる。これに対し、誘導加熱コイル220に最も近くて当該コイルによる高周波誘導加熱が最も進む最外層部位(層番号1)の温度が制御上限温度となるように誘導加熱コイル220への高周波電流の通電を制御上限温度に設定すれば、最外層部位(層番号1)より内側の樹脂層部位(層番号2)を制御上限温度より高い温度まで加熱してしまうことになる。そして、このように樹脂層部位(層番号2)が制御上限温度より高温となれば、当該部位の熱硬化性樹脂の粘度低下やこれに伴う染み出しが顕著となってしまい、高Vfを招きかねない。ところが、本実施例の熱硬化炉200によれば、延いては、この熱硬化炉200を用いて中間生成品タンク12から高圧水素タンク30を製造する手法によれば、繊維強化樹脂層20の各樹脂層部位が誘導加熱を受けて昇温する際に最大の温度となる内側の樹脂層部位(層番号2)の温度を制御上限温度とするので、Vfについては、この上限温度に対応した範囲に留めることができ、Vfのバラツキを抑制できる。そして、繊維強化樹脂層20の熱硬化の際のVfのバラツキが抑制されることから、得られた高圧水素タンク30にあっては、実用に耐え得る高いタンク強度や耐久性を有するタンクとなる。   As described above, in the present embodiment, when the high-pressure hydrogen tank 30 reinforced with the thermoset fiber reinforced resin layer 20 is manufactured, the fiber in the thermosetting resin of the fiber reinforced resin layer 20 is subjected to thermosetting. The temperature of the resin layer portion (layer number 2) inside the outermost layer portion (layer number 1: see FIG. 6) of the reinforced resin layer 20 is set to the control upper limit temperature when the high-frequency current is supplied to the induction heating coil 220. Set. For this reason, when high-frequency induction heating is performed by the induction heating coil 220, the resin layer part of layer number 2 where the temperature rises most can be heated (induction heating) so as not to exceed the control upper limit temperature. On the other hand, the induction heating coil 220 is energized with a high-frequency current so that the temperature of the outermost layer portion (layer number 1) closest to the induction heating coil 220 and where the high-frequency induction heating by the coil proceeds most is the control upper limit temperature. If the control upper limit temperature is set, the resin layer part (layer number 2) inside the outermost layer part (layer number 1) is heated to a temperature higher than the control upper limit temperature. If the resin layer part (layer number 2) becomes higher than the control upper limit temperature in this way, the viscosity of the thermosetting resin in the part and the seepage associated therewith become remarkable, resulting in high Vf. It might be. However, according to the thermosetting furnace 200 of the present embodiment, according to the method of manufacturing the high-pressure hydrogen tank 30 from the intermediate product tank 12 using the thermosetting furnace 200, the fiber reinforced resin layer 20 is formed. Since the temperature of the inner resin layer part (layer number 2), which is the maximum temperature when each resin layer part is heated by induction heating, is set as the control upper limit temperature, Vf corresponds to this upper limit temperature. It can be kept within the range, and variation in Vf can be suppressed. And since the dispersion | variation in Vf at the time of thermosetting of the fiber reinforced resin layer 20 is suppressed, in the obtained high-pressure hydrogen tank 30, it becomes a tank which has high tank intensity | strength and durability which can be practically used. .

また、本実施例のタンク製造手法では、予め繊維強化樹脂層20の各樹脂層部位(層番号1〜5)が誘導加熱コイル220による誘導加熱を受けて昇温する際の昇温状況を各樹脂層部位ごとに予め対応付けて、その対応関係(図6のグラフ参照)を記憶する。そして、高周波誘導加熱が最も進む最外層部位(層番号1)について検出した温度と記憶済みの昇温状況とを参照しつつ、昇温が最も進む層番号2の樹脂層部位を制御上限温度を超えないように加熱(誘導加熱)するので、Vfのバラツキが抑制された高圧水素タンク30を容易、且つ確実に製造できる。   Moreover, in the tank manufacturing method of the present embodiment, each temperature increase state when each resin layer portion (layer numbers 1 to 5) of the fiber reinforced resin layer 20 is heated by induction heating by the induction heating coil 220 is previously set. The correspondence (see the graph of FIG. 6) is stored in association with each resin layer portion in advance. Then, referring to the temperature detected for the outermost layer portion (layer number 1) where the high-frequency induction heating is most advanced and the stored temperature rise state, the control upper limit temperature is set for the resin layer portion of the layer number 2 where the temperature rise is most advanced. Since heating (induction heating) is performed so as not to exceed, high-pressure hydrogen tank 30 in which variation in Vf is suppressed can be easily and reliably manufactured.

次に、熱硬化炉200の変形例について説明する。図8は変形例の熱硬化炉200の概略構成を示しつつ繊維強化樹脂層20の各樹脂層部位の温度分布の様子を示す説明図である。   Next, a modified example of the thermosetting furnace 200 will be described. FIG. 8 is an explanatory view showing a temperature distribution of each resin layer portion of the fiber reinforced resin layer 20 while showing a schematic configuration of a thermosetting furnace 200 of a modified example.

この変形例の熱硬化炉200は、繊維強化樹脂層20を誘導加熱する誘導加熱コイル220に加え、冷却機構を有する。この冷却機構は、繊維強化樹脂層20の外表側の最外層部位を冷却する構成を備え、例えば、冷風吹出ノズルを最外層部位に対向配置したり、冷却水等の冷媒の循環配管を最外層部位の表面近くに配設等して構成される。そして、この冷却機構は、繊維強化樹脂層20の外表側の最外層部位を冷却して当該層部位からの放熱を図る。この場合、繊維強化樹脂層20は、既述したように誘導加熱コイル220による高周波誘導加熱を受けていることから、この変形例では、繊維強化樹脂層20の外表側の最外層部位からの放熱を図りつつ誘導加熱コイル220にて繊維強化樹脂層20を誘導加熱することになる。そして、この変形例によれば、図8に示すように、最外層部位からの放熱を通して繊維強化樹脂層20の厚み方向での温度分布のバラツキを抑制できるので、Vfのバラツキを高い実効性で抑制できる。しかも、繊維強化樹脂層20の熱硬化の際の温度分布のバラツキ抑制により、樹脂の硬化収縮もばらつかないようにできることから、硬化収縮のバラツキに基づくクラックの発生も抑制できる。よって、得られた高圧水素タンク30は、高いタンク強度と耐久性を備えたものとなる。   The thermosetting furnace 200 of this modification has a cooling mechanism in addition to the induction heating coil 220 for induction heating the fiber reinforced resin layer 20. The cooling mechanism includes a configuration for cooling the outermost layer portion on the outer surface side of the fiber reinforced resin layer 20. For example, a cooling air blowing nozzle is disposed opposite to the outermost layer portion, or a circulation pipe for a coolant such as cooling water is provided on the outermost layer. It is configured by being arranged near the surface of the part. And this cooling mechanism cools the outermost layer site | part of the outer surface side of the fiber reinforced resin layer 20, and aims at the thermal radiation from the said layer site | part. In this case, since the fiber reinforced resin layer 20 is subjected to high frequency induction heating by the induction heating coil 220 as described above, in this modification, heat is radiated from the outermost layer portion on the outer surface side of the fiber reinforced resin layer 20. The fiber reinforced resin layer 20 is induction-heated by the induction heating coil 220 while aiming. And according to this modification, as shown in FIG. 8, since the variation in the temperature distribution in the thickness direction of the fiber reinforced resin layer 20 can be suppressed through the heat radiation from the outermost layer portion, the variation in Vf can be highly effective. Can be suppressed. In addition, since the dispersion of the curing shrinkage of the resin can be prevented by suppressing the variation in the temperature distribution during the thermosetting of the fiber reinforced resin layer 20, the occurrence of cracks based on the variation of the curing shrinkage can also be suppressed. Therefore, the obtained high-pressure hydrogen tank 30 has high tank strength and durability.

以上、本発明の実施の形態について説明したが、本発明はこのような実施の形態になんら限定されるものではなく、その要旨を逸脱しない範囲内において種々なる態様での実施が可能である。例えば、上記の実施例では、高圧ガスタンクは、高圧水素タンク30であるものとしたが、本発明は、これに限られない。例えば、天然ガス等、他の高圧ガスを貯蔵する高圧ガスタンクとしてもよい。   Although the embodiments of the present invention have been described above, the present invention is not limited to such embodiments, and can be implemented in various modes without departing from the scope of the present invention. For example, in the above embodiment, the high-pressure gas tank is the high-pressure hydrogen tank 30, but the present invention is not limited to this. For example, a high-pressure gas tank that stores other high-pressure gas such as natural gas may be used.

また、上記の実施例では、誘導加熱コイル220への通電停止を含む通電制御を行うに当たり(ステップS140)、記憶済みの温度状況(図6)の参照を経て最大温度となる内側の樹脂層部位(層番号2)の温度を演算したが、これに限らない。例えば、温度センサー242から得た繊維強化樹脂層20の外表面温度、即ち繊維強化樹脂層20の最外層部位(層番号1)の温度を、最大温度となる内側の樹脂層部位(層番号2)の温度に代用することもできる。これは、繊維強化樹脂層20の最外層部位(層番号1)の温度は、記憶済みの温度状況(図6)に倣って内側の樹脂層部位(層番号2)の温度に対応するので、繊維強化樹脂層20の最外層部位(層番号1)の温度を、最大温度となる内側の樹脂層部位(層番号2)の温度に代用し、この代用温度(最外層部位(層番号1)の温度)に基づいて、ステップS140の誘導加熱コイル220への通電停止を行うようにすることもできる。具体的には、温度センサー242から得た繊維強化樹脂層20の最外層部位(層番号1)の温度が、既述した制御上限温度より所定の温度差(図6のΔTm)だけ低い温度となると、ステップS140の誘導加熱コイル220への通電停止を行う。こうしても、最大温度となる内側の樹脂層部位(層番号2)については、その温度を制御上限温度を超えないようにでき、既述した効果を奏することができる。   Further, in the above-described embodiment, when performing energization control including stopping energization to the induction heating coil 220 (step S140), the inner resin layer portion that reaches the maximum temperature through reference to the stored temperature state (FIG. 6) Although the temperature of (layer number 2) was calculated, it is not restricted to this. For example, the outer surface temperature of the fiber reinforced resin layer 20 obtained from the temperature sensor 242, that is, the temperature of the outermost layer portion (layer number 1) of the fiber reinforced resin layer 20 is set to the inner resin layer portion (layer number 2) that becomes the maximum temperature. ) Temperature can be substituted. This is because the temperature of the outermost layer portion (layer number 1) of the fiber reinforced resin layer 20 corresponds to the temperature of the inner resin layer portion (layer number 2) following the stored temperature state (FIG. 6). The temperature of the outermost layer part (layer number 1) of the fiber reinforced resin layer 20 is substituted for the temperature of the inner resin layer part (layer number 2) that becomes the maximum temperature, and this substitute temperature (outermost layer part (layer number 1) Based on the temperature), it is also possible to stop energization of the induction heating coil 220 in step S140. Specifically, the temperature of the outermost layer portion (layer number 1) of the fiber reinforced resin layer 20 obtained from the temperature sensor 242 is lower than the control upper limit temperature described above by a predetermined temperature difference (ΔTm in FIG. 6). Then, the energization stop to the induction heating coil 220 in step S140 is performed. Even in this case, the temperature of the inner resin layer portion (layer number 2) that becomes the maximum temperature can be prevented from exceeding the control upper limit temperature, and the above-described effects can be achieved.

10…ライナー
10a…シリンダー部
10b…ドーム部
12…中間生成品タンク
14…口金
20…繊維強化樹脂層
30…高圧水素タンク
100…FW装置
110…クリールスタンド
112…ボビン
114…固定滑車
120…経路部
130…巻取部
132…アイクチガイド
134…回転駆動装置
150…制御部
200…熱硬化炉
212…タンク軸支シャフト
220…誘導加熱コイル
230…制御機器
240…高周波電流生成電源
242…温度センサー
W…樹脂含浸カーボン繊維
AX…タンク中心軸
DESCRIPTION OF SYMBOLS 10 ... Liner 10a ... Cylinder part 10b ... Dome part 12 ... Intermediate product tank 14 ... Base 20 ... Fiber reinforced resin layer 30 ... High pressure hydrogen tank 100 ... FW apparatus 110 ... Creel stand 112 ... Bobbin 114 ... Fixed pulley 120 ... Path part DESCRIPTION OF SYMBOLS 130 ... Winding part 132 ... Ikuchi guide 134 ... Rotation drive device 150 ... Control part 200 ... Thermosetting furnace 212 ... Tank axial support shaft 220 ... Induction heating coil 230 ... Control apparatus 240 ... High frequency current generation power supply 242 ... Temperature sensor W … Resin impregnated carbon fiber AX… tank center axis

Claims (7)

高圧ガスタンクの製造方法であって、
タンク容器となる中空のライナーの外周に、熱硬化性樹脂を含浸した繊維を巻回して形成された繊維強化樹脂層を有するタンク中間生成品を準備する工程(a)と、
前記タンク中間生成品をタンク軸回りに回転させつつ、高周波誘導加熱を誘起する誘導加熱コイルを用いて前記タンク中間生成品の前記繊維強化樹脂層を誘導加熱して熱硬化させる工程(b)とを備え、
前記工程(b)では、
前記誘導加熱を受けて昇温する前記繊維強化樹脂層の層厚み方向における樹脂層部位についての温度分布の存在を前提に、前記誘導加熱コイルへの高周波電流の通電を制御する
高圧ガスタンクの製造方法。
A method for manufacturing a high-pressure gas tank, comprising:
A step (a) of preparing a tank intermediate product having a fiber reinforced resin layer formed by winding a fiber impregnated with a thermosetting resin around the outer periphery of a hollow liner serving as a tank container;
(B) a step of inductively heating and thermally curing the fiber reinforced resin layer of the tank intermediate product using an induction heating coil for inducing high-frequency induction heating while rotating the tank intermediate product around the tank axis; With
In the step (b),
A method for manufacturing a high-pressure gas tank that controls the application of a high-frequency current to the induction heating coil on the premise of the presence of a temperature distribution in the resin layer portion in the layer thickness direction of the fiber reinforced resin layer that is heated by receiving the induction heating .
前記工程(b)では、前記層厚み方向における樹脂層部位のうちで最大の温度となる最大温度樹脂層部位の温度が、前記熱硬化性樹脂の性状を含む条件で定まる加熱上限温度を超えないように、前記誘導加熱コイルへの高周波電流の通電を制御する請求項1に記載の高圧ガスタンクの製造方法。   In the step (b), the temperature of the maximum temperature resin layer portion that is the maximum temperature among the resin layer portions in the layer thickness direction does not exceed the heating upper limit temperature determined by the conditions including the properties of the thermosetting resin. Thus, the manufacturing method of the high pressure gas tank of Claim 1 which controls electricity supply of the high frequency current to the said induction heating coil. 請求項2に記載の高圧ガスタンクの製造方法であって、
前記工程(b)では、
前記誘導加熱を受けて前記繊維強化樹脂層が昇温する際の昇温状況を前記層厚み方向における樹脂層部位ごとに対応付けた対応関係に基づいて、前記最大温度樹脂層部位を前記繊維強化樹脂層の外表側の最外層部位より内側の樹脂層部位とする
高圧ガスタンクの製造方法。
It is a manufacturing method of the high-pressure gas tank according to claim 2,
In the step (b),
Based on a correspondence relationship in which the temperature rising state when the fiber reinforced resin layer is heated by receiving the induction heating is associated with each resin layer portion in the layer thickness direction, the maximum temperature resin layer portion is set to the fiber reinforced. A method for producing a high-pressure gas tank, wherein the outermost layer portion on the outer surface side of the resin layer is the inner resin layer portion.
前記工程(b)では、前記誘導加熱を受けて前記繊維強化樹脂層が昇温する際に、前記対応関係を用いて前記内側の樹脂層部位の温度を求め、該求めた前記内側の樹脂層部位の温度に応じて前記誘導加熱コイルへの高周波電流の通電を制御する請求項2または請求項3に記載の高圧ガスタンクの製造方法。   In the step (b), when the fiber reinforced resin layer is heated by receiving the induction heating, the temperature of the inner resin layer portion is obtained using the correspondence relationship, and the obtained inner resin layer is obtained. The method for manufacturing a high-pressure gas tank according to claim 2 or 3, wherein energization of a high-frequency current to the induction heating coil is controlled in accordance with a temperature of the part. 前記工程(b)では、前記誘導加熱を受けて前記繊維強化樹脂層が昇温する際に、前記内側の樹脂層部位の温度と前記対応関係に倣って対応する他の樹脂層部位の温度を求め、該求めた前記他の樹脂層部位の温度を前記内側の樹脂層部位の温度に代用して前記誘導加熱コイルへの高周波電流の通電を制御する請求項4に記載の高圧ガスタンクの製造方法。   In the step (b), when the fiber reinforced resin layer is heated by receiving the induction heating, the temperature of the other resin layer portion corresponding to the temperature of the inner resin layer portion and the corresponding relationship is set. 5. The method for producing a high-pressure gas tank according to claim 4, wherein the flow of the high-frequency current to the induction heating coil is controlled by substituting the obtained temperature of the other resin layer portion with the temperature of the inner resin layer portion. . 前記工程(b)では、前記繊維強化樹脂層の外表側の最外層部位からの放熱を図りつつ前記誘導加熱コイルにて前記繊維強化樹脂層を誘導加熱する請求項1ないし請求項5のいずれかに記載の高圧ガスタンクの製造方法。   The said process (b) WHEREIN: The said fiber reinforced resin layer is induction-heated with the said induction heating coil, aiming at the thermal radiation from the outermost layer site | part of the outer surface side of the said fiber reinforced resin layer. A method for producing a high-pressure gas tank according to 1. タンク容器となる中空のライナーの外周に熱硬化性樹脂を含浸して熱硬化した繊維強化樹脂層を有する高圧ガスタンクの製造に用いる装置であって、
熱硬化前の前記熱硬化性樹脂を含浸した繊維を前記ライナーの外周に巻回して前記繊維強化樹脂層を形成し、タンク中間生成品を得る繊維巻回手段と、
前記タンク中間生成品をタンク軸回りに回転させつつ、高周波誘導加熱を誘起する誘導加熱コイルを用いて前記回転する前記タンク中間生成品の前記繊維強化樹脂層を誘導加熱して熱硬化させる熱硬化手段とを備え、
前記熱硬化手段は、
前記誘導加熱を受けて前記繊維強化樹脂層が昇温する際の昇温状況を前記繊維強化樹脂層の層厚み方向における樹脂層部位ごとに対応付けた対応関係を記憶する記憶部と、
前記繊維強化樹脂層が昇温する際に前記樹脂層部位のうちで最大の温度となる最大温度樹脂層部位を前記対応関係に基づいて定め、該定めた前記最大温度樹脂層部位の温度が、前記熱硬化性樹脂の性状を含む条件で定まる加熱上限温度を超えないように、前記誘導加熱コイルへの高周波電流の通電を制御する制御部とを有する
高圧ガスタンクの製造装置。
An apparatus used for manufacturing a high-pressure gas tank having a fiber-reinforced resin layer that is thermoset by impregnating a thermosetting resin on the outer periphery of a hollow liner serving as a tank container,
A fiber winding means for winding the fiber impregnated with the thermosetting resin before thermosetting around the outer periphery of the liner to form the fiber reinforced resin layer, and obtaining a tank intermediate product;
Thermosetting in which the fiber reinforced resin layer of the rotating tank intermediate product is induction-heated and thermoset using an induction heating coil that induces high-frequency induction heating while rotating the tank intermediate product around the tank axis. Means and
The thermosetting means is
A storage unit that stores a correspondence relationship for each resin layer part in the layer thickness direction of the fiber reinforced resin layer, when the temperature of the fiber reinforced resin layer is increased by receiving the induction heating,
Based on the correspondence relationship, the maximum temperature resin layer part that becomes the maximum temperature among the resin layer parts when the fiber reinforced resin layer is heated, the temperature of the determined maximum temperature resin layer part is, An apparatus for manufacturing a high-pressure gas tank, comprising: a control unit that controls energization of a high-frequency current to the induction heating coil so as not to exceed a heating upper limit temperature determined by conditions including properties of the thermosetting resin.
JP2011202597A 2011-09-16 2011-09-16 High pressure gas tank manufacturing method and manufacturing apparatus Active JP5825000B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011202597A JP5825000B2 (en) 2011-09-16 2011-09-16 High pressure gas tank manufacturing method and manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011202597A JP5825000B2 (en) 2011-09-16 2011-09-16 High pressure gas tank manufacturing method and manufacturing apparatus

Publications (2)

Publication Number Publication Date
JP2013064429A true JP2013064429A (en) 2013-04-11
JP5825000B2 JP5825000B2 (en) 2015-12-02

Family

ID=48188117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011202597A Active JP5825000B2 (en) 2011-09-16 2011-09-16 High pressure gas tank manufacturing method and manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP5825000B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013163305A (en) * 2012-02-10 2013-08-22 Toyota Motor Corp Induction heating method and apparatus for the same, and method of manufacturing high pressure gas tank

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06344510A (en) * 1993-06-04 1994-12-20 Bridgestone Corp Vulcanization molding of thick-walled unvulcanized rubber composite
JPH10309725A (en) * 1997-05-13 1998-11-24 Bridgestone Corp Vulcanization molding method of wall-thickened multi-layer structural rubber article
JP2010120347A (en) * 2008-11-21 2010-06-03 Toyota Industries Corp Process for manufacturing fiber-reinforced resin molding
JP2010274565A (en) * 2009-05-29 2010-12-09 Toyota Motor Corp Production process of high pressure tank for vehicle loading
JP2011027218A (en) * 2009-07-28 2011-02-10 Toyota Motor Corp Method of manufacturing pressure vessel and pressure vessel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06344510A (en) * 1993-06-04 1994-12-20 Bridgestone Corp Vulcanization molding of thick-walled unvulcanized rubber composite
JPH10309725A (en) * 1997-05-13 1998-11-24 Bridgestone Corp Vulcanization molding method of wall-thickened multi-layer structural rubber article
JP2010120347A (en) * 2008-11-21 2010-06-03 Toyota Industries Corp Process for manufacturing fiber-reinforced resin molding
JP2010274565A (en) * 2009-05-29 2010-12-09 Toyota Motor Corp Production process of high pressure tank for vehicle loading
JP2011027218A (en) * 2009-07-28 2011-02-10 Toyota Motor Corp Method of manufacturing pressure vessel and pressure vessel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013163305A (en) * 2012-02-10 2013-08-22 Toyota Motor Corp Induction heating method and apparatus for the same, and method of manufacturing high pressure gas tank

Also Published As

Publication number Publication date
JP5825000B2 (en) 2015-12-02

Similar Documents

Publication Publication Date Title
JP5531040B2 (en) Manufacturing method of high-pressure gas tank
JP5468418B2 (en) High pressure tank manufacturing apparatus and manufacturing method
US10507999B2 (en) Manufacturing method of tank and tank manufacturing apparatus
JP5737047B2 (en) High pressure gas tank manufacturing method and manufacturing apparatus
JP5796508B2 (en) Induction heating method and apparatus, and high pressure gas tank manufacturing method
JP2014113755A (en) Production method of composite container
JP5630614B2 (en) Gas tank manufacturing method
JP6215678B2 (en) Composite container manufacturing system and composite container manufacturing method
WO2012160640A1 (en) Method for manufacturing gas tank
JP6337398B2 (en) Manufacturing method of composite container and composite container
JP6240841B2 (en) Composite container manufacturing system and composite container manufacturing method
JP2013161610A (en) Induction heating apparatus, and method of manufacturing high-pressure gas tank
US9868253B2 (en) Method of manufacturing tank, heat curing method and heat curing apparatus
JP5825000B2 (en) High pressure gas tank manufacturing method and manufacturing apparatus
JP2013064430A (en) Device and method for manufacturing high-pressure gas tank
JP2009012341A (en) Manufacturing method of frp molding and heater
CN111664348B (en) Method for manufacturing can
JP2013103395A (en) Method and apparatus for manufacturing high pressure gas tank
JP2009028961A (en) Manufacturing process and manufacturing system of frp molding
JP7159882B2 (en) High-pressure tank manufacturing method
JP2008307791A (en) Manufacturing method of frp container
JP5877807B2 (en) Composite container manufacturing method and composite container manufacturing system
JP2012218221A (en) Method of manufacturing gas tank and thermosetting apparatus
JP6939538B2 (en) How to make a tank
JP2011230398A (en) Method and equipment for manufacturing high pressure gas tank

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141125

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150807

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150915

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150928

R151 Written notification of patent or utility model registration

Ref document number: 5825000

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151