JP5877807B2 - Composite container manufacturing method and composite container manufacturing system - Google Patents

Composite container manufacturing method and composite container manufacturing system Download PDF

Info

Publication number
JP5877807B2
JP5877807B2 JP2013049693A JP2013049693A JP5877807B2 JP 5877807 B2 JP5877807 B2 JP 5877807B2 JP 2013049693 A JP2013049693 A JP 2013049693A JP 2013049693 A JP2013049693 A JP 2013049693A JP 5877807 B2 JP5877807 B2 JP 5877807B2
Authority
JP
Japan
Prior art keywords
temperature
curing
container
curing furnace
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013049693A
Other languages
Japanese (ja)
Other versions
JP2014172375A (en
Inventor
愛 蓑田
愛 蓑田
幸次郎 中川
幸次郎 中川
順二 岡崎
順二 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
JXTG Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JXTG Nippon Oil and Energy Corp filed Critical JXTG Nippon Oil and Energy Corp
Priority to JP2013049693A priority Critical patent/JP5877807B2/en
Publication of JP2014172375A publication Critical patent/JP2014172375A/en
Application granted granted Critical
Publication of JP5877807B2 publication Critical patent/JP5877807B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Description

本発明は、複合容器の製造方法、及び複合容器の製造システムに関する。   The present invention relates to a composite container manufacturing method and a composite container manufacturing system.

従来、例えば特許文献1に記載されているように、強化層を備えた複合容器を製造する製造方法が知られている。このような製造方法では、熱硬化性樹脂が含浸された繊維束をライナに巻き付けて容器中間体を形成し、この容器中間体を硬化炉で加熱して繊維束の熱硬化性樹脂を硬化させている。   Conventionally, as described in Patent Document 1, for example, a manufacturing method for manufacturing a composite container provided with a reinforcing layer is known. In such a manufacturing method, a fiber bundle impregnated with a thermosetting resin is wound around a liner to form a container intermediate, and the container intermediate is heated in a curing furnace to cure the thermosetting resin of the fiber bundle. ing.

特開2008−304038号公報JP 2008-304038 A

ところで、上述したような従来技術においては、硬化炉で容器中間体を加熱する際、熱硬化性樹脂が自己発熱し、容器中間体の温度が一時的に急上昇する過昇温現象が生じることが見出される。そのため、硬化炉温度を最終硬化温度として加熱する前に、最終硬化温度よりも低い中間硬化温度で硬化炉温度を所定時間保持する工程を設け、この工程の間に過昇温現象を生じさせることによって当該過昇温現象のピークを抑制する場合が考えられる。   By the way, in the prior art as described above, when the container intermediate is heated in the curing furnace, the thermosetting resin self-heats, and an excessive temperature rise phenomenon in which the temperature of the container intermediate temporarily rises may occur. Found. Therefore, before heating the curing furnace temperature as the final curing temperature, a process for holding the curing furnace temperature for a predetermined time at an intermediate curing temperature lower than the final curing temperature is provided, and an excessive temperature rise phenomenon occurs during this process. It is conceivable that the peak of the excessive temperature rise phenomenon is suppressed by.

この場合、どのタイミングでどのように過昇温現象が生じるかを予め把握するのは容易でないことから、通常、硬化炉温度を中間硬化温度で保持する保持時間(以下、単に「保持時間」という)として、安全を期すために比較的長い時間が設定される。そのため、生産性が低下するおそれがあり、ひいては、製造コストが悪化してしまうおそれがある。   In this case, since it is not easy to know in advance at what timing and how the overheating phenomenon occurs, normally, the holding time for holding the curing furnace temperature at the intermediate curing temperature (hereinafter simply referred to as “holding time”) ), A relatively long time is set for safety. For this reason, productivity may be reduced, and as a result, manufacturing cost may be deteriorated.

本発明は、上記実情に鑑みてなされたものであり、生産性を向上させることができる複合容器の製造方法及び複合容器の製造システムを提供することを課題とする。   This invention is made | formed in view of the said situation, and makes it a subject to provide the manufacturing method of a composite container and the manufacturing system of a composite container which can improve productivity.

上記課題を解決するため、本発明に係る複合容器の製造方法は、強化層を備えた複合容器を製造する製造方法であって、熱硬化性樹脂が含浸された繊維束がライナの外面側に巻き付けられて形成された容器中間体を硬化炉で加熱することにより、繊維束の熱硬化性樹脂を硬化させる硬化工程を含み、硬化工程は、硬化炉の硬化炉温度を所定の硬化温度に設定して保持する第1工程と、容器中間体で生じた過昇温現象の開始を、容器中間体の温度に基づいて検出する第2工程と、第2工程にて過昇温現象の開始を検出したタイミングに基づいて、硬化炉温度を低下させる第3工程と、過昇温現象による温度上昇の終了を、容器中間体の温度に基づいて検出する第4工程と、第4工程にて過昇温現象による温度上昇の終了を検出したタイミングに基づいて、硬化炉温度を最終硬化温度に設定する第5工程と、を含んでいる。   In order to solve the above problems, a manufacturing method of a composite container according to the present invention is a manufacturing method of manufacturing a composite container having a reinforcing layer, and a fiber bundle impregnated with a thermosetting resin is disposed on the outer surface side of the liner. It includes a curing step of curing the thermosetting resin of the fiber bundle by heating the wound container intermediate body in a curing furnace, and the curing step sets the curing furnace temperature of the curing furnace to a predetermined curing temperature The first step to be held, the second step for detecting the start of the overheating phenomenon occurring in the container intermediate based on the temperature of the container intermediate, and the start of the overheating phenomenon in the second step Based on the detected timing, the third step of lowering the curing furnace temperature, the fourth step of detecting the end of the temperature rise due to the excessive temperature rise phenomenon based on the temperature of the container intermediate, and the fourth step At the timing of detecting the end of temperature rise due to temperature rise phenomenon And Zui includes a fifth step of setting a curing oven temperature to a final cure temperature, the.

また、本発明に係る複合容器の製造システムは、強化層を備えた複合容器を製造する製造システムであって、熱硬化性樹脂が含浸された繊維束がライナの外面側に巻き付けられて形成された容器中間体を加熱し、繊維束の熱硬化性樹脂を硬化させる硬化炉と、容器中間体の温度を検出する検出部と、硬化炉の硬化炉温度を制御するためのコントローラと、を備え、コントローラは、硬化炉の硬化炉温度を所定の硬化温度に設定して保持する第1処理と、容器中間体で生じた過昇温現象の開始を、容器中間体の温度に基づいて検出する第2処理と、第2処理にて過昇温現象の開始を検出したタイミングに基づいて、硬化炉温度を低下させる第3処理と、過昇温現象による温度上昇の終了を、容器中間体の温度に基づいて検出する第4処理と、第4処理にて過昇温現象による温度上昇の終了を検出したタイミングに基づいて、硬化炉温度を最終硬化温度に設定する第5処理と、を実行する。   The composite container manufacturing system according to the present invention is a manufacturing system for manufacturing a composite container having a reinforcing layer, and is formed by winding a fiber bundle impregnated with a thermosetting resin around the outer surface side of a liner. A curing furnace for heating the container intermediate to cure the thermosetting resin of the fiber bundle, a detection unit for detecting the temperature of the container intermediate, and a controller for controlling the curing furnace temperature of the curing furnace. The controller detects, based on the temperature of the container intermediate, the first process of setting and maintaining the curing furnace temperature of the curing furnace at a predetermined curing temperature, and the start of the excessive temperature rise phenomenon that has occurred in the container intermediate. Based on the second process, the timing at which the start of the excessive temperature rise phenomenon is detected in the second process, the third process for lowering the curing furnace temperature, and the end of the temperature increase due to the excessive temperature increase phenomenon, A fourth process for detecting based on the temperature; Process based on the timing of detecting the end of the temperature rise due to excessive temperature rise phenomenon at executes a fifth process of setting the curing oven temperature to a final cure temperature, the.

これら本発明では、硬化炉で容器中間体を加熱する際、硬化炉温度を所定の硬化温度に設定する一方、過昇温現象の開始を検出したタイミングに基づいて、硬化炉温度を低下させる。これによって、所定の硬化温度として高い温度を設定しておくことにより、容器中間体の容器温度を速やかに上げることができると共に、過昇温現象によって温度が上昇しているときは硬化炉温度を低くしておくことで、安全性を確保することができる。また、過昇温現象による温度上昇の終了を検出したタイミングに基づいて、硬化炉温度を最終硬化温度に設定することによって、過昇温現象による容器中間体へのダメージのおそれが無くなった後に、速やかに熱硬化樹脂を硬化させることができる。その結果、生産性を向上させることができ、製造コストを低下させることが可能となる。   In these inventions, when the container intermediate is heated in the curing furnace, the curing furnace temperature is set to a predetermined curing temperature, while the curing furnace temperature is lowered based on the timing at which the start of the excessive temperature rise phenomenon is detected. As a result, by setting a high temperature as the predetermined curing temperature, the container temperature of the container intermediate can be quickly raised, and when the temperature is rising due to an excessive temperature rise phenomenon, the curing furnace temperature is set. By keeping it low, safety can be ensured. In addition, by setting the curing furnace temperature to the final curing temperature based on the timing at which the end of the temperature increase due to the excessive temperature rise phenomenon is detected, after the risk of damage to the container intermediate due to the excessive temperature increase phenomenon is eliminated, The thermosetting resin can be quickly cured. As a result, productivity can be improved and manufacturing costs can be reduced.

また、第3工程では、硬化炉での加熱を停止してもよい。これによって、過昇温現象による容器中間体へのダメージを確実に回避することができる。   In the third step, heating in the curing furnace may be stopped. This can reliably avoid damage to the container intermediate due to the excessive temperature rise phenomenon.

また、第1工程では、所定の硬化温度として、最終硬化温度を設定してよい。これによって、速やかに容器中間体の温度を上げることができる。   In the first step, the final curing temperature may be set as the predetermined curing temperature. As a result, the temperature of the container intermediate can be quickly increased.

また、第2工程では、容器中間体の温度上昇率の変化割合が1よりも大きくなったとき、過昇温現象の開始を検出してもよい。この場合、過昇温現象の開始を好適に検出することが可能となる。   Further, in the second step, when the rate of change in the rate of temperature rise of the container intermediate becomes greater than 1, the start of the excessive temperature rise phenomenon may be detected. In this case, it is possible to suitably detect the start of the excessive temperature rise phenomenon.

本発明によれば、生産性を向上させることができる複合容器の製造方法及び複合容器の製造システムを提供することが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to provide the manufacturing method of a composite container which can improve productivity, and the manufacturing system of a composite container.

一実施形態に係る複合容器を示す一部断面図である。It is a partial cross section figure which shows the composite container which concerns on one Embodiment. 一実施形態に係る複合容器の製造システムを示す概略構成図である。It is a schematic block diagram which shows the manufacturing system of the composite container which concerns on one Embodiment. 一実施形態に係る硬化工程を示すフローチャートである。It is a flowchart which shows the hardening process which concerns on one Embodiment. 一実施形態に係る硬化炉の温度状況の例を示すグラフである。It is a graph which shows the example of the temperature condition of the hardening furnace which concerns on one Embodiment. 容器中間体の温度上昇率と加熱時間との関係を示すグラフである。It is a graph which shows the relationship between the temperature rise rate of a container intermediate body, and heating time. 従来の硬化炉の温度状況の例を示すグラフである。It is a graph which shows the example of the temperature condition of the conventional hardening furnace. 従来の硬化炉の温度状況の例を示すグラフである。It is a graph which shows the example of the temperature condition of the conventional hardening furnace.

以下、本発明の好適な実施形態について、図面を参照して詳細に説明する。なお、以下の説明において同一又は相当部分には同一符号を付し、重複する説明を省略する。   DESCRIPTION OF EMBODIMENTS Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In the following description, the same or corresponding parts are denoted by the same reference numerals, and redundant description is omitted.

図1は、本実施形態に係る製造方法及び製造システムにより製造される複合容器を示す一部断面図である。図1に示すように、複合容器1は、例えば水素や天然ガス等の燃料ガスを高圧で貯蔵するための容器である。この複合容器1は、例えば、全長が2〜4m、直径が40〜60mm程度に設定され、使用時には、20〜90MPa程度の圧力に耐えることが可能とされている。複合容器1は、その用途が限定されるものではなく、種々の用途で用いることができる。また、複合容器1は、据置き型として用いられてもよく、移動体に搭載されて用いられてもよい。   FIG. 1 is a partial cross-sectional view showing a composite container manufactured by a manufacturing method and a manufacturing system according to the present embodiment. As shown in FIG. 1, the composite container 1 is a container for storing fuel gas such as hydrogen or natural gas at a high pressure. The composite container 1 has, for example, a total length of 2 to 4 m and a diameter of about 40 to 60 mm, and can withstand a pressure of about 20 to 90 MPa when used. The use of the composite container 1 is not limited and can be used for various purposes. In addition, the composite container 1 may be used as a stationary type or may be used by being mounted on a moving body.

この複合容器1は、円筒状のライナ2と、ライナ2の外面側を覆うように設けられた強化層3と、を備えている。ライナ2の両端部2aはドーム状に形成されており、当該両端部2aの先端には、口金4が取り付けられている。   The composite container 1 includes a cylindrical liner 2 and a reinforcing layer 3 provided so as to cover the outer surface side of the liner 2. Both end portions 2a of the liner 2 are formed in a dome shape, and a base 4 is attached to the tips of the both end portions 2a.

ライナ2の材料は特に限定されるものではないが、用途によっては、樹脂製又は金属製が選択される。樹脂製のライナ2としては、高密度ポリエチレン等の熱可塑性樹脂を回転成形やブロー成形にて容器形状に賦形したものに、金属製の口金4を付けたものが挙げられる。金属製のライナ2としては、例えば、アルミニウム合金製や鋼鉄製等からなるパイプ形状や板形状をスピニング加工等にて容器形状に形成したものに、口金4の形状を形成したものが挙げられる。   The material of the liner 2 is not particularly limited, but resin or metal is selected depending on the application. Examples of the resin liner 2 include a resin obtained by shaping a thermoplastic resin such as high-density polyethylene into a container shape by rotational molding or blow molding and a metal base 4. As the metal liner 2, for example, a pipe shape or plate shape made of an aluminum alloy, steel, or the like is formed into a container shape by spinning or the like, and the shape of the base 4 is formed.

強化層3は、ライナ2の外面側(外周面側)に熱硬化性樹脂が含浸された繊維束10を巻き付け、当該繊維束10を硬化炉で加熱し硬化させることによって形成される。熱硬化性樹脂の種類としては、フェノール樹脂、尿素樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂、ポリイミド樹脂、ビスマレイミド樹脂、ポリイミド樹脂、ポリウレタン樹脂、ジアリルフタレート樹脂、エポキシ樹脂、メラミン樹脂又はアリル樹脂等が挙げられるが、これらに限定されるものではない。   The reinforcing layer 3 is formed by winding a fiber bundle 10 impregnated with a thermosetting resin around the outer surface side (outer peripheral surface side) of the liner 2 and heating and curing the fiber bundle 10 in a curing furnace. Types of thermosetting resins include phenolic resin, urea resin, unsaturated polyester resin, vinyl ester resin, polyimide resin, bismaleimide resin, polyimide resin, polyurethane resin, diallyl phthalate resin, epoxy resin, melamine resin or allyl resin However, it is not limited to these.

また、繊維束10としては、例えば、炭素繊維、ガラス繊維、アラミド繊維、ボロン繊維、ポリエチレン繊維、スチール繊維、ザイロン繊維又はビニロン繊維等を用いることができ、ここでは、高強度で高弾性率且つ軽量な炭素繊維を用いている。また、本実施形態の繊維束10の繊維数(フィラメント)は、特に制限されるものではないが、1000〜50000フィラメント、好ましくは3000〜30000フィラメントの範囲とされ、ここでは、24000フィラメントとされている。   Further, as the fiber bundle 10, for example, carbon fiber, glass fiber, aramid fiber, boron fiber, polyethylene fiber, steel fiber, Zylon fiber, or vinylon fiber can be used. Lightweight carbon fiber is used. In addition, the number of fibers (filament) of the fiber bundle 10 of the present embodiment is not particularly limited, but is in the range of 1000 to 50000 filaments, preferably 3000 to 30000 filaments, and here, 24,000 filaments. Yes.

以上のように構成された複合容器1を製造する場合、まず、ライナ2の外面側に繊維束10を巻き付けることにより、ライナ2の外面側に複数層の繊維束層(繊維強化プラスチック層)を形成し、これにより、容器中間体を得る(巻付け工程)。形成する複数の繊維束層には、ライナ2に対して繊維束10を周方向に巻き付けてなるフープ層と、ライナ2に対して繊維束10を傾斜させた状態で周方向に取り囲むように巻き付けてなるヘリカル層と、が含まれている。   When manufacturing the composite container 1 configured as described above, first, the fiber bundle 10 is wound around the outer surface side of the liner 2, so that a plurality of fiber bundle layers (fiber reinforced plastic layers) are formed on the outer surface side of the liner 2. Forming, thereby obtaining a container intermediate (winding step). A plurality of fiber bundle layers to be formed are wound so as to surround a hoop layer in which the fiber bundle 10 is wound around the liner 2 in the circumferential direction and the fiber bundle 10 in the circumferential direction while being inclined with respect to the liner 2. And a helical layer.

なお、容器中間体とは、製造過程における複合容器1を意図しており、ここでは、繊維束10の熱硬化性樹脂が熱硬化する前の状態のものを意図している(以下、同じ)。また、巻付け工程における巻付け方法は特に限定されないが、例えば、FW(フィラメントワインディング)法を採用することができる。FW法としては、予め熱硬化性樹脂が含浸された繊維束(トウプリプレグ)を用意し、これをライナ2に巻き付けて成形する方法(いわゆるDry法)や、繊維束を熱硬化性樹脂に含浸させながら供給し、これをライナ2に巻き付けて成形する方法(いわゆるWet法)が挙げられる。   In addition, the container intermediate is intended for the composite container 1 in the manufacturing process, and here, is intended for the state before the thermosetting resin of the fiber bundle 10 is thermoset (hereinafter the same). . Further, the winding method in the winding step is not particularly limited, but for example, an FW (filament winding) method can be adopted. As the FW method, a fiber bundle (tow prepreg) preliminarily impregnated with a thermosetting resin is prepared and wound around the liner 2 (so-called Dry method), or the fiber bundle is impregnated with a thermosetting resin. For example, there is a method (so-called wet method) in which the material is supplied while being wound, and is wound around the liner 2 to be molded.

そして、上記巻付け工程の後、容器中間体を硬化炉で加熱することにより繊維束10の熱硬化性樹脂を硬化させる(硬化工程)。ここで、図2〜5を参照して、本実施形態の硬化工程を詳説する。   And after the said winding process, the thermosetting resin of the fiber bundle 10 is hardened by heating a container intermediate body with a hardening furnace (hardening process). Here, with reference to FIGS. 2-5, the hardening process of this embodiment is explained in full detail.

図2は、本実施形態に係る製造システムを示す概略構成図である。図2に示すように、本実施形態の製造システム100は、上記複合容器1を製造するものであって、硬化工程で用いられる。この製造システム100は、硬化炉20と、容器温度検出部(検出部)30と、コントローラ40と、を少なくとも備えている。   FIG. 2 is a schematic configuration diagram illustrating the manufacturing system according to the present embodiment. As shown in FIG. 2, the manufacturing system 100 of this embodiment manufactures the said composite container 1, Comprising: It is used at a hardening process. The manufacturing system 100 includes at least a curing furnace 20, a container temperature detection unit (detection unit) 30, and a controller 40.

硬化炉20は、繊維束10がライナ2(図1参照)の外面側に巻き付けられて形成された容器中間体1aを収容して加熱し、繊維束10の熱硬化性樹脂を硬化させる。この硬化炉20の内部には、硬化炉20の熱源としてのヒータ21と、硬化炉温度(炉内温度)を検出する硬化炉温度センサ22と、が設けられている。ヒータ21は、コントローラ40に接続されており、これにより、ヒータ21の動作がコントローラ40で制御されて硬化炉温度が制御される。硬化炉温度センサ22は、コントローラ40に接続されており、検出した硬化炉温度をコントローラ40へ出力する。   The curing furnace 20 accommodates and heats the container intermediate 1a formed by winding the fiber bundle 10 around the outer surface of the liner 2 (see FIG. 1), and cures the thermosetting resin of the fiber bundle 10. Inside the curing furnace 20, a heater 21 as a heat source of the curing furnace 20 and a curing furnace temperature sensor 22 for detecting the curing furnace temperature (in-furnace temperature) are provided. The heater 21 is connected to the controller 40, whereby the operation of the heater 21 is controlled by the controller 40 and the curing furnace temperature is controlled. The curing furnace temperature sensor 22 is connected to the controller 40 and outputs the detected curing furnace temperature to the controller 40.

容器温度検出部30は、容器中間体1aの温度(以下、「容器温度」という)を検出するものであり、硬化炉20に取り付けられている。ここでの容器温度検出部30は、例えばサーモグラフィや放射温度等の非接触温度計測器が用いられ、容器中間体1aの表面温度を容器温度として検出する。一例として、容器温度検出部30は、非接触の赤外線温度計が用いられており、例えば硬化炉20に設けられた覗き窓から容器中間体1aの表面温度を測定する。容器温度検出部30は、コントローラ40に接続されており、検出した容器温度をコントローラ40へ出力する。なお、ヒータ21は強化層3を完全に覆っておらず、ヒータ21の個数は一つであってもよく、複数であってもよい。また、ヒータ21が複数の場合は分割されてヒータ21間に間隔が設けられていてよく、複数のヒータ21の大きさ及び形状が不均一であってもよい。容器温度検出部30は、ヒータ21から容器中間体1aを覗いた時に、容器中間体1aがヒータ21に遮られない場所から測定する。   The container temperature detection unit 30 detects the temperature of the container intermediate 1 a (hereinafter referred to as “container temperature”) and is attached to the curing furnace 20. The container temperature detection unit 30 here uses, for example, a non-contact temperature measuring instrument such as thermography or radiation temperature, and detects the surface temperature of the container intermediate 1a as the container temperature. As an example, the non-contact infrared thermometer is used for the container temperature detection part 30, for example, measures the surface temperature of the container intermediate body 1a from the observation window provided in the curing furnace 20. The container temperature detection unit 30 is connected to the controller 40 and outputs the detected container temperature to the controller 40. The heater 21 does not completely cover the reinforcing layer 3, and the number of heaters 21 may be one or plural. Moreover, when there are a plurality of heaters 21, the heaters 21 may be divided and spaced between the heaters 21, and the sizes and shapes of the plurality of heaters 21 may be non-uniform. The container temperature detection unit 30 measures from a place where the container intermediate body 1 a is not obstructed by the heater 21 when looking into the container intermediate body 1 a from the heater 21.

コントローラ40は、硬化炉20の硬化炉温度を制御するためのものであり、CPU(CentralProcessing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)等を含むコンピュータで構成されている。このコントローラ40は、容器温度検出部30及び硬化炉温度センサ22からの出力に基づいて、硬化炉温度を設定すると共に当該設定した硬化炉温度となるようにヒータ21の動作を制御する。   The controller 40 is for controlling the curing furnace temperature of the curing furnace 20, and is composed of a computer including a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory) and the like. The controller 40 sets the curing furnace temperature based on outputs from the container temperature detection unit 30 and the curing furnace temperature sensor 22 and controls the operation of the heater 21 so as to be the set curing furnace temperature.

ここで、硬化炉20で容器中間体1aを加熱する際には、繊維束10における熱硬化性樹脂の熱硬化反応が発熱反応であることから、熱硬化性樹脂が自己発熱し、その温度が硬化炉温度以上に一時的に急上昇するという過昇温現象の発生が見出される。そこで、本実施形態のコントローラ40は、硬化炉20の硬化炉温度を所定の硬化温度に設定して保持する第1処理と、容器中間体1aで生じた過昇温現象の開始を、容器中間体1aの温度に基づいて検出する第2処理と、第2処理にて過昇温現象の開始を検出したタイミングに基づいて、硬化炉温度を低下させる第3処理と、過昇温現象による温度上昇の終了を、容器中間体1aの温度に基づいて検出する第4処理と、第4処理にて過昇温現象による温度上昇の終了を検出したタイミングに基づいて、硬化炉温度を最終硬化温度に設定する第5処理と、を実行する(詳しくは後述)。   Here, when the container intermediate body 1a is heated in the curing furnace 20, since the thermosetting reaction of the thermosetting resin in the fiber bundle 10 is an exothermic reaction, the thermosetting resin self-heats and its temperature is The occurrence of an excessive temperature rise phenomenon that suddenly rises above the curing furnace temperature is found. Therefore, the controller 40 according to the present embodiment sets the first process in which the curing furnace temperature of the curing furnace 20 is set to a predetermined curing temperature, and the start of the excessive temperature rise phenomenon generated in the container intermediate body 1a. A second process that is detected based on the temperature of the body 1a; a third process that lowers the curing furnace temperature based on the timing at which the start of the excessive temperature increase phenomenon is detected in the second process; and a temperature due to the excessive temperature increase phenomenon Based on the fourth process for detecting the end of the rise based on the temperature of the container intermediate 1a and the timing at which the end of the temperature rise due to the excessive temperature rise phenomenon is detected in the fourth process, the curing furnace temperature is set to the final curing temperature. The fifth process is set (details will be described later).

図3は本実施形態に係る硬化工程を示すフローチャート、図4は本実施形態に係る硬化炉の温度状況の例を示すグラフ、図5は容器中間体の温度上昇率と加熱時間との関係を示すグラフである。図3及び図4に示すように、製造システム100による複合容器1の製造方法では、高い温度である所定の硬化温度(本実施形態では、最終硬化温度T3)に硬化炉温度を設定し、過昇温現象が発生している途中では硬化炉20の温度を低くし、その後、容器中間体1aを最終硬化させるための最終硬化温度T3に硬化炉温度を設定する。   FIG. 3 is a flowchart showing the curing process according to the present embodiment, FIG. 4 is a graph showing an example of the temperature condition of the curing furnace according to the present embodiment, and FIG. 5 shows the relationship between the temperature rise rate of the container intermediate and the heating time. It is a graph to show. As shown in FIGS. 3 and 4, in the method for manufacturing the composite container 1 by the manufacturing system 100, the curing furnace temperature is set to a predetermined curing temperature (the final curing temperature T <b> 3 in this embodiment) which is a high temperature, While the temperature rising phenomenon is occurring, the temperature of the curing furnace 20 is lowered, and then the curing furnace temperature is set to the final curing temperature T3 for final curing of the container intermediate 1a.

具体的には、まず、硬化炉温度が所定の硬化温度に設定され保持される(S1,S2)。本実施形態では、最終硬化温度T3が所定の硬化温度として設定される。これにより、容器温度が立ち上がった後に最終硬化温度T3となるように保持され、その結果、容器中間体1aの硬化が進む。   Specifically, first, the curing furnace temperature is set and maintained at a predetermined curing temperature (S1, S2). In the present embodiment, the final curing temperature T3 is set as a predetermined curing temperature. Thereby, after container temperature rises, it hold | maintains so that it may become final curing temperature T3, As a result, hardening of the container intermediate body 1a advances.

この所定の硬化温度は、最終硬化温度T3に設定されなくともよく、最終硬化温度T3以上でもよく、最終硬化温度T3以下でもよく、どのような温度に設定されてもよい。ただし、製造効率を向上させる観点から、所定の硬化温度は、最高中間硬化温度T2以上に設定することが好ましい。最高中間硬化温度T2は、その温度で保持して硬化させた場合に生じた過昇温現象のピークTmaxが許容最高温度T4に達すると推定される温度である。また、許容最高温度T4は、容器中間体1aについて容器性能に悪影響が及ばない温度範囲の最高温度であって、容器中間体1aの材料の耐熱性等に応じて定まる温度である。なお、所定の硬化温度の上限は、特に限定されないが、所定の硬化温度は許容最高温度T4以下の温度に設定されてよい。ただし加熱開始直後の段階では、容器中間体1aの容器温度は直ちに許容最高温度T4を超えることはないため、所定の硬化温度を許容最高温度T4より高い温度に設定してもよい。   The predetermined curing temperature may not be set to the final curing temperature T3, may be equal to or higher than the final curing temperature T3, may be equal to or lower than the final curing temperature T3, and may be set to any temperature. However, from the viewpoint of improving manufacturing efficiency, the predetermined curing temperature is preferably set to be equal to or higher than the maximum intermediate curing temperature T2. The maximum intermediate curing temperature T2 is a temperature at which it is estimated that the peak Tmax of the excessive temperature rise phenomenon that occurs when the resin is cured at that temperature reaches the allowable maximum temperature T4. The allowable maximum temperature T4 is a maximum temperature in a temperature range that does not adversely affect the container performance of the container intermediate 1a, and is a temperature determined according to the heat resistance of the material of the container intermediate 1a. The upper limit of the predetermined curing temperature is not particularly limited, but the predetermined curing temperature may be set to a temperature equal to or lower than the allowable maximum temperature T4. However, since the container temperature of the container intermediate 1a does not immediately exceed the allowable maximum temperature T4 immediately after the start of heating, the predetermined curing temperature may be set higher than the allowable maximum temperature T4.

そして、硬化炉温度が所定の硬化温度(ここでは、最終硬化温度T3)に保持されているとき、下式(1)の判定式に示すように、容器温度の昇温速度である温度上昇率Wについて変化割合が1よりも大きいか否かが判定される(S3)。これによって、容器中間体1aで生じた過昇温現象の開始を検出することができる。温度上昇率Wは、N回目の測定時tの容器温度Tと、N−1回目の測定時tN−1の容器温度TN−1と、から求めることができる(下式(2)参照)。例えば、図4に示すグラフにおいては、容器温度のグラフの傾きが大きくなるタイミング、図5に示すグラフにおいては、所定の硬化温度で加熱されることで温度上昇率Wが一定になっている状態から過昇温現象が開始することで温度上昇率Wが増加するタイミングにて、S3の判定がYesとなる。

/WN−1>1 …(1)
=(T−TN−1)/(t−tN−1) …(2)
N:任意の整数。
When the curing furnace temperature is maintained at a predetermined curing temperature (here, the final curing temperature T3), as shown in the determination formula of the following formula (1), the temperature increase rate that is the rate of temperature increase of the container temperature It is determined whether or not the change rate for W is greater than 1 (S3). Thereby, it is possible to detect the start of the overheating phenomenon that has occurred in the container intermediate 1a. Temperature increase rate W N is a pot temperature T N of the N-th measurement time t N, the pot temperature T N-1 during measurement t N-1 to N-1 th, can be obtained from (the following formulas ( 2)). For example, in the graph shown in FIG. 4, the temperature at which the inclination of the graph of the container temperature increases, and in the graph shown in FIG. 5, the temperature increase rate W is constant by being heated at a predetermined curing temperature. The determination of S3 becomes Yes at the timing when the temperature increase rate W increases due to the start of the overheating phenomenon.

W N / W N-1 > 1 (1)
W N = (T N −T N−1 ) / (t N −t N−1 ) (2)
N: Any integer.

図3及び図4に戻り、上記S3でNoの場合、硬化炉温度が所定の硬化温度(最終硬化温度T3)に引き続き保持される一方、上記S3でYesの場合、硬化炉温度を低下させる(S4)。硬化炉温度を低下させる方法は特に限定されないが、硬化炉20のヒータ21をOFFとして硬化炉20での加熱自体を停止してもよく、硬化炉温度を少なくとも所定の硬化温度より低い待機温度に設定してもよい。待機温度は、最高中間硬化温度T2未満の温度に設定される。また、待機温度は、繊維束10の熱硬化性樹脂が硬化可能な最低温度である最低中間硬化温度T0以下であってもよい。なお、S4の処理は、S3でYesと判定された直後に実行されてよく、所定の時間が経過した後に実行されてもよく、所定の遅れ(猶予)が存在してよい。   Returning to FIG. 3 and FIG. 4, in the case of No in S <b> 3, the curing furnace temperature is continuously maintained at a predetermined curing temperature (final curing temperature T <b> 3), whereas in the case of Yes in S <b> 3, the curing furnace temperature is decreased ( S4). The method for lowering the curing furnace temperature is not particularly limited, but the heating itself in the curing furnace 20 may be stopped by turning off the heater 21 of the curing furnace 20, and the curing furnace temperature is set to a standby temperature lower than at least a predetermined curing temperature. It may be set. The standby temperature is set to a temperature lower than the maximum intermediate curing temperature T2. The standby temperature may be equal to or lower than the lowest intermediate curing temperature T0 that is the lowest temperature at which the thermosetting resin of the fiber bundle 10 can be cured. Note that the process of S4 may be executed immediately after it is determined Yes in S3, may be executed after a predetermined time has elapsed, and there may be a predetermined delay (grace).

S4の処理の後、下式(3)の判定式に示すように、容器中間体1aの温度が低下したか否かが判定される(S5)。これによって、容器中間体1aで生じた過昇温現象による温度上昇の終了を検出することができる。図4に示すグラフにおいては、容器温度のグラフの曲線部分の極大値(過昇温現象のピークTmax)を過ぎたタイミング(図4のP1からP2になったタイミング)にて、S5の判定がYesとなる。

≦TN−1 …(3)
After the process of S4, as shown in the determination formula of the following formula (3), it is determined whether or not the temperature of the container intermediate 1a has decreased (S5). Thereby, it is possible to detect the end of the temperature rise due to the excessive temperature rise phenomenon generated in the container intermediate 1a. In the graph shown in FIG. 4, the determination of S5 is made at the timing (timing from P1 to P2 in FIG. 4) past the maximum value (peak Tmax of the excessive temperature rise phenomenon) of the curve portion of the container temperature graph. Yes.

T N ≦ T N−1 (3)

上記S5でNoの場合、上記S4にて再び硬化炉20のヒータ21がOFFとされた状態、または待機温度に設定された状態が維持される。一方、上記S5でYesの場合、過昇温現象による温度上昇の終了が検出され、硬化炉温度が最終硬化温度T3に設定されると共に、当該最終硬化温度T3に保持される(S6,S7)。その結果、過昇温現象のピークTmaxから降下した容器温度が直ちに再上昇し、最終硬化温度T3に至ることとなる。S7の処理の後、容器温度が最終硬化温度T3に至っているか否かが判定される(S8)。S8でNoの場合、S7にて硬化炉温度が最終硬化温度T3にて保持された状態が維持される。なお、最終硬化温度T3は、許容最高温度T4未満の温度であって最終硬化が可能な温度であればどのような温度に設定してもよい。なお、S6の処理は、S5でYesと判定された直後に実行されてよく、所定の時間が経過した後に実行されてもよく、所定の遅れ(猶予)が存在してよい。   In the case of No in S5, the state where the heater 21 of the curing furnace 20 is turned off again in S4 or the state set to the standby temperature is maintained. On the other hand, in the case of Yes in S5, the end of the temperature rise due to the excessive temperature rise phenomenon is detected, and the curing furnace temperature is set to the final curing temperature T3 and is held at the final curing temperature T3 (S6, S7). . As a result, the container temperature dropped from the peak Tmax of the excessive temperature rise phenomenon immediately rises again and reaches the final curing temperature T3. After the process of S7, it is determined whether or not the container temperature has reached the final curing temperature T3 (S8). In the case of No in S8, the state where the curing furnace temperature is maintained at the final curing temperature T3 is maintained in S7. The final curing temperature T3 may be set to any temperature as long as it is a temperature lower than the allowable maximum temperature T4 and is capable of final curing. In addition, the process of S6 may be performed immediately after it determines with Yes by S5, may be performed after predetermined time passes, and a predetermined | prescribed delay (grace) may exist.

S8でYesの場合、硬化炉温度が最終硬化温度T3の状態で所定時間待機された後、硬化炉20が停止され、硬化炉温度が一定の温度降下率で降下され、これに伴って、容器温度が一定の温度降下率で降下され、これにより、熱硬化性樹脂の硬化が終了する(S9)。   In the case of Yes in S8, after waiting for a predetermined time in a state where the curing furnace temperature is the final curing temperature T3, the curing furnace 20 is stopped, and the curing furnace temperature is lowered at a constant temperature drop rate. The temperature is lowered at a constant temperature drop rate, thereby completing the curing of the thermosetting resin (S9).

次に、本実施形態の作用・効果について説明する。   Next, functions and effects of this embodiment will be described.

例えば、図6に示すように、硬化炉温度を終始、最終硬化温度T3に設定して硬化をおこなった場合、過昇温現象による温度上昇の影響を受けることにより、容器温度が許容最高温度T4を超えてしまい、容器中間体1aについて容器性能に悪影響が及ぶ場合がある。ここで、容器温度が許容最高温度T4を超えないようにするために、硬化炉温度を中間硬化温度T1(最低中間硬化温度T0以上である)で保持しておき、時間が経過して過昇温現象が終了したら最終硬化温度まで昇温する方法が従来知られている。硬化炉温度を中間硬化温度T1で保持する保持時間は、容器サイズや熱硬化性樹脂の種別によって過昇温現象が異なることから、経験則や硬化条件設定試験の実施等により定められ、その探索に時間が要される。また、従来、保持時間としては、図7に示すように、安全を期すために比較的長い時間が設定され、結果的には、過昇温現象が終わった後にも保持時間が未だ続く場合がある。   For example, as shown in FIG. 6, when curing is performed with the curing furnace temperature set to the final curing temperature T3 from beginning to end, the container temperature is affected by the temperature rise due to the excessive temperature rise phenomenon, so that the container temperature is the allowable maximum temperature T4. The container performance may be adversely affected with respect to the container intermediate 1a. Here, in order to prevent the container temperature from exceeding the allowable maximum temperature T4, the curing furnace temperature is maintained at the intermediate curing temperature T1 (which is equal to or higher than the minimum intermediate curing temperature T0), and the temperature rises over time. A method of raising the temperature to the final curing temperature when the temperature phenomenon is finished is conventionally known. The holding time for holding the curing furnace temperature at the intermediate curing temperature T1 is determined by an empirical rule or by conducting a curing condition setting test because the overheating phenomenon varies depending on the container size and the type of thermosetting resin. Takes time. Further, conventionally, as shown in FIG. 7, a relatively long time is set for safety as shown in FIG. 7, and as a result, the holding time may continue even after the overheating phenomenon has ended. is there.

これに対し、本実施形態では、容器温度をモニタリングしながら硬化工程を実施しており、硬化炉20で容器中間体1aを加熱する際、硬化炉温度を所定の硬化温度に設定する一方、過昇温現象の開始を検出したタイミングに基づいて、硬化炉温度を低下させる。これによって、所定の硬化温度として高い温度を設定しておくことにより、容器中間体1aの容器温度を速やかに上げることができると共に、過昇温現象によって温度が上昇しているときは硬化炉温度を低くしておくことで、安全性を確保することができる。また、過昇温現象による温度上昇の終了を検出したタイミングに基づいて、硬化炉温度を最終硬化温度T3に設定することによって、過昇温現象による容器中間体へのダメージのおそれが無くなった後に、速やかに熱硬化樹脂を硬化させることができる。その結果、生産性を向上させることができ、製造コストを低下させることが可能となる。   In contrast, in the present embodiment, the curing process is performed while monitoring the container temperature, and when the container intermediate 1a is heated in the curing furnace 20, the curing furnace temperature is set to a predetermined curing temperature, The curing furnace temperature is lowered based on the timing at which the start of the temperature rising phenomenon is detected. Thus, by setting a high temperature as the predetermined curing temperature, the container temperature of the container intermediate 1a can be quickly raised, and when the temperature is rising due to an excessive temperature rise phenomenon, the curing furnace temperature By keeping the value low, safety can be ensured. In addition, after setting the curing furnace temperature to the final curing temperature T3 based on the timing of detecting the end of the temperature rise due to the excessive temperature rise phenomenon, there is no risk of damage to the container intermediate due to the excessive temperature rise phenomenon. The thermosetting resin can be quickly cured. As a result, productivity can be improved and manufacturing costs can be reduced.

また、S4において硬化炉温度を低くする際は、硬化炉20での加熱を停止してもよい。これによって、過昇温現象による容器中間体1aへのダメージを確実に回避することができる。特に、S1での所定の硬化温度として最終硬化温度T3を設定すると共に、S4において硬化炉20のヒータ21を停止する制御を行う場合、ヒータ21をON・OFFするだけのシンプルな制御にて、生産性を向上できる。   Further, when the curing furnace temperature is lowered in S4, the heating in the curing furnace 20 may be stopped. Thereby, damage to the container intermediate body 1a due to an excessive temperature rise phenomenon can be surely avoided. In particular, when the final curing temperature T3 is set as the predetermined curing temperature in S1, and when the control for stopping the heater 21 of the curing furnace 20 is performed in S4, simple control by simply turning the heater 21 on and off is performed. Productivity can be improved.

また、S1では、所定の硬化温度として、最終硬化温度T3を設定してよい。これによって、速やかに容器中間体1aの温度を上げることができる。   In S1, the final curing temperature T3 may be set as the predetermined curing temperature. Thereby, the temperature of the container intermediate body 1a can be quickly raised.

また、S3では、容器中間体の温度上昇率の変化割合が1よりも大きくなったとき、過昇温現象の開始を検出してもよい。この場合、過昇温現象の開始を好適に検出することが可能となる。   Further, in S3, when the rate of change in the temperature rise rate of the container intermediate is greater than 1, the start of the excessive temperature rise phenomenon may be detected. In this case, it is possible to suitably detect the start of the excessive temperature rise phenomenon.

以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に限られるものではなく、各請求項に記載した要旨を変更しない範囲で変形し、又は他のものに適用したものであってもよい。   The preferred embodiments of the present invention have been described above. However, the present invention is not limited to the above-described embodiments. The present invention is modified without departing from the scope described in the claims or applied to others. It may be.

例えば、上記実施形態では、容器温度の温度上昇率Wの変化割合が1よりも大きくなることを判定することによって過昇温現象の開始を検出し、容器温度の低下を判定することによって過昇温現象による温度上昇の終了を検出したが、検出手法は限定されず、種々の手法により各検出を行ってよい。以上において、上記S1,S2が第1工程に対応し、S3が第2工程に対応し、S4が第3工程に対応し、S5が第4工程に対応し、S6が第5工程に対応する。   For example, in the above embodiment, the start of the excessive temperature rise phenomenon is detected by determining that the rate of change of the temperature increase rate W of the container temperature is greater than 1, and the excessive increase is determined by determining the decrease in the container temperature. Although the end of the temperature rise due to the temperature phenomenon is detected, the detection method is not limited, and each detection may be performed by various methods. In the above, S1 and S2 correspond to the first step, S3 corresponds to the second step, S4 corresponds to the third step, S5 corresponds to the fourth step, and S6 corresponds to the fifth step. .

1…複合容器、1a…容器中間体、2…ライナ、3…強化層、10…繊維束、20…硬化炉、30…容器温度検出部(検出部)、40…コントローラ、100…製造システム。   DESCRIPTION OF SYMBOLS 1 ... Composite container, 1a ... Container intermediate body, 2 ... Liner, 3 ... Reinforcement layer, 10 ... Fiber bundle, 20 ... Curing furnace, 30 ... Container temperature detection part (detection part), 40 ... Controller, 100 ... Manufacturing system.

Claims (5)

強化層を備えた複合容器を製造する製造方法であって、
熱硬化性樹脂が含浸された繊維束がライナの外面側に巻き付けられて形成された容器中間体を硬化炉で加熱することにより、前記繊維束の熱硬化性樹脂を硬化させる硬化工程を含み、
前記硬化工程は、
前記硬化炉の硬化炉温度を所定の硬化温度に設定して保持する第1工程と、
前記容器中間体で生じた過昇温現象の開始を、前記容器中間体の温度に基づいて検出する第2工程と、
前記第2工程にて前記過昇温現象の開始を検出したタイミングに基づいて、前記硬化炉温度を低下させる第3工程と、
前記過昇温現象による温度上昇の終了を、前記容器中間体の温度に基づいて検出する第4工程と、
前記第4工程にて前記過昇温現象による温度上昇の終了を検出したタイミングに基づいて、前記硬化炉温度を最終硬化温度に設定する第5工程と、を含む、複合容器の製造方法。
A manufacturing method for manufacturing a composite container having a reinforcing layer,
A curing step of curing the thermosetting resin of the fiber bundle by heating a container intermediate formed by winding the fiber bundle impregnated with the thermosetting resin around the outer surface of the liner in a curing furnace;
The curing step includes
A first step of setting and holding a curing furnace temperature of the curing furnace at a predetermined curing temperature;
A second step of detecting the start of an overheating phenomenon occurring in the container intermediate based on the temperature of the container intermediate;
A third step of lowering the curing furnace temperature based on the timing at which the start of the overheating phenomenon is detected in the second step;
A fourth step of detecting the end of the temperature rise due to the overheating phenomenon based on the temperature of the container intermediate;
And a fifth step of setting the curing furnace temperature to a final curing temperature based on the timing at which the end of the temperature rise due to the excessive temperature rise phenomenon is detected in the fourth step.
前記第3工程では、前記硬化炉での加熱を停止する、請求項1記載の複合容器の製造方法。   The method for manufacturing a composite container according to claim 1, wherein in the third step, heating in the curing furnace is stopped. 前記第1工程では、前記所定の硬化温度として、前記最終硬化温度を設定する、請求項1又は2記載の複合容器の製造方法。   The method for manufacturing a composite container according to claim 1 or 2, wherein, in the first step, the final curing temperature is set as the predetermined curing temperature. 前記第2工程では、前記容器中間体の温度上昇率の変化割合が1よりも大きくなったとき、過昇温現象の開始を検出する、請求項1〜3の何れか一項記載の複合容器の製造方法。   The composite container according to any one of claims 1 to 3, wherein in the second step, when the rate of change in the temperature increase rate of the container intermediate becomes greater than 1, the start of an overheating phenomenon is detected. Manufacturing method. 強化層を備えた複合容器を製造する製造システムであって、
熱硬化性樹脂が含浸された繊維束がライナの外面側に巻き付けられて形成された容器中間体を加熱し、前記繊維束の熱硬化性樹脂を硬化させる硬化炉と、
前記容器中間体の温度を検出する検出部と、
前記硬化炉の硬化炉温度を制御するためのコントローラと、を備え、
前記コントローラは、
前記硬化炉の硬化炉温度を所定の硬化温度に設定して保持する第1処理と、
前記容器中間体で生じた過昇温現象の開始を、前記容器中間体の温度に基づいて検出する第2処理と、
前記第2処理にて前記過昇温現象の開始を検出したタイミングに基づいて、前記硬化炉温度を低下させる第3処理と、
前記過昇温現象による温度上昇の終了を、前記容器中間体の温度に基づいて検出する第4処理と、
前記第4処理にて前記過昇温現象による温度上昇の終了を検出したタイミングに基づいて、前記硬化炉温度を最終硬化温度に設定する第5処理と、を実行する、複合容器の製造システム。
A manufacturing system for manufacturing a composite container having a reinforcing layer,
A curing furnace for heating a container intermediate formed by winding a fiber bundle impregnated with a thermosetting resin around the outer surface of the liner, and curing the thermosetting resin of the fiber bundle;
A detection unit for detecting the temperature of the container intermediate;
A controller for controlling the curing furnace temperature of the curing furnace,
The controller is
A first process of setting and holding a curing furnace temperature of the curing furnace at a predetermined curing temperature;
A second process for detecting the start of an overheating phenomenon occurring in the container intermediate based on the temperature of the container intermediate;
A third process for lowering the curing furnace temperature based on the timing at which the start of the overheating phenomenon is detected in the second process;
A fourth process for detecting the end of the temperature rise due to the excessive temperature rise phenomenon based on the temperature of the container intermediate;
A composite container manufacturing system that executes a fifth process of setting the curing furnace temperature to a final curing temperature based on a timing at which the end of the temperature increase due to the excessive temperature rise phenomenon is detected in the fourth process.
JP2013049693A 2013-03-12 2013-03-12 Composite container manufacturing method and composite container manufacturing system Active JP5877807B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013049693A JP5877807B2 (en) 2013-03-12 2013-03-12 Composite container manufacturing method and composite container manufacturing system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013049693A JP5877807B2 (en) 2013-03-12 2013-03-12 Composite container manufacturing method and composite container manufacturing system

Publications (2)

Publication Number Publication Date
JP2014172375A JP2014172375A (en) 2014-09-22
JP5877807B2 true JP5877807B2 (en) 2016-03-08

Family

ID=51694118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013049693A Active JP5877807B2 (en) 2013-03-12 2013-03-12 Composite container manufacturing method and composite container manufacturing system

Country Status (1)

Country Link
JP (1) JP5877807B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7245562B2 (en) * 2017-11-17 2023-03-24 アクアインテック株式会社 Pipeline inner circumference backing method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2799633B2 (en) * 1990-10-06 1998-09-21 株式会社芦田製作所 Material temperature control method in autoclave molding
JP4148400B2 (en) * 2002-08-28 2008-09-10 三菱重工業株式会社 Intelligent molding system for thermosetting resin composite and intelligent molding method thereof
JP2006334831A (en) * 2005-05-31 2006-12-14 Mitsubishi Heavy Ind Ltd Device for and method of molding thermosetting resin
JP2011136491A (en) * 2009-12-28 2011-07-14 Jx Nippon Oil & Energy Corp Process of producing composite container
JP2010274565A (en) * 2009-05-29 2010-12-09 Toyota Motor Corp Production process of high pressure tank for vehicle loading
JP2011012764A (en) * 2009-07-02 2011-01-20 Toyota Motor Corp Device and method for manufacturing high-pressure tank for vehicle
JP5737047B2 (en) * 2011-08-11 2015-06-17 トヨタ自動車株式会社 High pressure gas tank manufacturing method and manufacturing apparatus

Also Published As

Publication number Publication date
JP2014172375A (en) 2014-09-22

Similar Documents

Publication Publication Date Title
JP6215678B2 (en) Composite container manufacturing system and composite container manufacturing method
US20190195429A1 (en) High pressure tank and method of manufacturing high pressure tank
US20150153002A1 (en) Manufacturing method of tank and manufacturing apparatus of tank
JP5877807B2 (en) Composite container manufacturing method and composite container manufacturing system
CA2836867C (en) Method of manufacturing gas tank
CA2880544A1 (en) Composite article curing
JP2014113755A (en) Production method of composite container
US20040069391A1 (en) Method and apparatus for preheating raw tire
US9868253B2 (en) Method of manufacturing tank, heat curing method and heat curing apparatus
JP5877808B2 (en) Composite container manufacturing method and composite container manufacturing system
JP5796508B2 (en) Induction heating method and apparatus, and high pressure gas tank manufacturing method
JP6152337B2 (en) Composite container manufacturing method and composite container manufacturing system
JP5737047B2 (en) High pressure gas tank manufacturing method and manufacturing apparatus
CN111664348B (en) Method for manufacturing can
CN103987863A (en) Batch annealing furnace for coils
JP6228827B2 (en) Composite container manufacturing method and composite container manufacturing apparatus
US10695970B2 (en) Manufacturing method and apparatus
JP5825000B2 (en) High pressure gas tank manufacturing method and manufacturing apparatus
JP6114476B2 (en) Tire preheating device, tire vulcanizing system, tire preheating method, and tire manufacturing method
JP2013064430A (en) Device and method for manufacturing high-pressure gas tank
JP6464570B2 (en) Tire vulcanizing method and tire vulcanizing apparatus
JP6540558B2 (en) Tank manufacturing method
JP2020116756A (en) Method of producing high pressure tank
JP6752781B2 (en) The process of molding thermosetting resin
JP2019148325A (en) Pressure accumulator and method for manufacturing pressure accumulator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160126

R150 Certificate of patent or registration of utility model

Ref document number: 5877807

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250