JP6540558B2 - Tank manufacturing method - Google Patents

Tank manufacturing method Download PDF

Info

Publication number
JP6540558B2
JP6540558B2 JP2016044409A JP2016044409A JP6540558B2 JP 6540558 B2 JP6540558 B2 JP 6540558B2 JP 2016044409 A JP2016044409 A JP 2016044409A JP 2016044409 A JP2016044409 A JP 2016044409A JP 6540558 B2 JP6540558 B2 JP 6540558B2
Authority
JP
Japan
Prior art keywords
tank
temperature
fiber reinforced
time
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016044409A
Other languages
Japanese (ja)
Other versions
JP2017159499A (en
Inventor
上田 直樹
直樹 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2016044409A priority Critical patent/JP6540558B2/en
Publication of JP2017159499A publication Critical patent/JP2017159499A/en
Application granted granted Critical
Publication of JP6540558B2 publication Critical patent/JP6540558B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Description

本発明は、タンクの製造方法に関するものである。   The present invention relates to a method of manufacturing a tank.

車両搭載用高圧タンクとして、ライナの外周を繊維強化プラスチック層で補強したものが知られている。特許文献1では、ライナの外周に繊維強化プラスチック材料を巻きつけ、それらを昇温して繊維強化プラスチック層(繊維強化樹脂層)を形成した後、ライナおよび繊維強化プラスチック層を冷却することで高圧タンクを製造する方法が開示されている。   As a high pressure tank for vehicle mounting, one in which the outer periphery of a liner is reinforced with a fiber reinforced plastic layer is known. In Patent Document 1, a fiber reinforced plastic material is wound around the outer periphery of the liner, and after raising the temperature to form a fiber reinforced plastic layer (fiber reinforced resin layer), the liner and the fiber reinforced plastic layer are cooled to high pressure. A method of manufacturing a tank is disclosed.

特開2011−012764号公報JP, 2011-012764, A

しかしながら、従来技術では、タンクを冷却する際に、タンクの内部と外部に温度差が生じるため、タンクの繊維強化樹脂層に大きな残留歪みが発生してしまう可能性があるという問題があった。   However, in the prior art, when the tank is cooled, a temperature difference occurs between the inside and the outside of the tank, which causes a problem that a large residual strain may occur in the fiber reinforced resin layer of the tank.

本発明は、上述の課題の少なくとも一部を解決するためになされたものであり、以下の形態として実現することが可能である。   The present invention has been made to solve at least a part of the above-mentioned problems, and can be realized as the following modes.

(1)本発明の一形態によれば、タンクの製造方法が提供される。このタンクの製造方法は、ライナの外周に未硬化の熱硬化性樹脂を含浸した繊維束が巻回されたタンクを加熱し、前記熱硬化性樹脂を硬化させて繊維強化樹脂層を形成する工程と、前記タンクを外部から冷却しつつ、前記タンクの内部に液体を注入して前記タンクを内部から冷却することによって、前記タンクを前記熱硬化性樹脂の軟化温度まで冷却する工程と、前記タンクを前記軟化温度で一定期間保持する工程とを備える。 (1) According to one aspect of the present invention, a method of manufacturing a tank is provided. The method of manufacturing the tank comprises heating a tank in which a fiber bundle impregnated with uncured thermosetting resin is wound around the outer periphery of the liner, and curing the thermosetting resin to form a fiber reinforced resin layer. And cooling the tank to a softening temperature of the thermosetting resin by injecting a liquid into the tank and cooling the tank from the inside while cooling the tank from the outside, and the tank And maintaining the temperature at the softening temperature for a fixed period of time.

この形態のタンクの製造方法によれば、タンクを外部から冷却しつつ、タンクの内部に液体を注入してタンクを内部から冷却することで、タンクの内部と外部との温度差を減少し、繊維強化樹脂層に大きな残留歪みが生じるのを抑制できる。また、タンクを熱硬化性樹脂の軟化温度で一定期間保持するので、繊維強化樹脂層に残留歪みが生じても、それを緩和することができる。   According to the method of manufacturing the tank of this aspect, the temperature difference between the inside and the outside of the tank is reduced by injecting the liquid into the inside of the tank and cooling the tank from the inside while cooling the tank from the outside. It is possible to suppress the occurrence of large residual strain in the fiber reinforced resin layer. Further, since the tank is held at the softening temperature of the thermosetting resin for a certain period, even if residual distortion occurs in the fiber reinforced resin layer, it can be relieved.

本発明は、上記以外の種々の形態で実現することも可能である。例えば、タンクの製造装置、タンクの冷却制御装置、タンクの冷却方法等の形態で実現することができる。   The present invention can also be realized in various forms other than the above. For example, the present invention can be realized in the form of a tank manufacturing apparatus, a tank cooling control apparatus, a tank cooling method, and the like.

本発明の第1実施形態の製造方法で得られるタンクの概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the tank obtained by the manufacturing method of 1st Embodiment of this invention. タンクの製造装置を示す説明図である。It is an explanatory view showing a manufacturing apparatus of a tank. 第1実施形態におけるタンクの内部温度および外部温度の時間変化の一例を示すグラフである。It is a graph which shows an example of the time change of the internal temperature of the tank in 1st Embodiment, and an external temperature. 第2実施形態におけるタンクの内部温度および外部温度の時間変化の一例を示すグラフである。It is a graph which shows an example of the time change of the internal temperature of the tank in 2nd Embodiment, and an external temperature.

・第1実施形態:
図1は、本発明の第1実施形態の製造方法で得られるタンク100の概略構成を示す断面図である。このタンク100は、例えば、燃料電池車両に搭載され、燃料ガスである水素を貯蔵する高圧タンクとして用いられる。
First Embodiment:
FIG. 1 is a cross-sectional view showing a schematic configuration of a tank 100 obtained by the manufacturing method of the first embodiment of the present invention. The tank 100 is mounted on, for example, a fuel cell vehicle, and is used as a high pressure tank for storing hydrogen which is a fuel gas.

タンク100は、両端に半球状のドーム部を有する略円筒状の形状を有し、ライナ10を繊維強化樹脂層30で被覆して構成されている。ライナ10は、内部中空であり、長手方向の両端に口金21,22が配置されている。口金21,22は、略円柱状の形状を有し、例えばステンレス鋼やアルミニウムなどの金属で形成される。第1の口金21は、ライナ10の内部に導通する貫通孔23を有しており、配管(後述)が挿入可能である。第2の口金22は、長手方向の両端にそれぞれ有底状の凹部24,25を有しており、凹部24の内周面には雌ねじが設けられている。凹部24には、回転支持棒(後述)がねじ込み接続可能であり、凹部25には、配管の端部が挿入可能である。   The tank 100 has a substantially cylindrical shape having hemispherical dome portions at both ends, and is configured by covering the liner 10 with the fiber reinforced resin layer 30. The liner 10 is hollow inside, and the mouthpieces 21 and 22 are disposed at both ends in the longitudinal direction. The mouthpieces 21 and 22 have a substantially cylindrical shape, and are formed of, for example, a metal such as stainless steel or aluminum. The first mouthpiece 21 has a through hole 23 conducted to the inside of the liner 10, and a pipe (described later) can be inserted. The second base 22 has bottomed recesses 24 and 25 at both ends in the longitudinal direction, and a female screw is provided on the inner peripheral surface of the recess 24. A rotary support rod (described later) can be screwed into and connected to the recess 24, and the end of the pipe can be inserted into the recess 25.

繊維強化樹脂層30は、ライナ10の外周を覆うように繊維強化樹脂材料を巻回した後、加熱して硬化させることによって形成される。繊維強化樹脂材料としては、未硬化の熱硬化性樹脂を含浸した繊維束、例えば炭素繊維とエポキシ樹脂を含む炭素繊維強化プラスチック(CFRP:carbon-fiber-reinforced plastic)の束を利用することが可能である。   The fiber reinforced resin layer 30 is formed by winding a fiber reinforced resin material so as to cover the outer periphery of the liner 10, and then heating and curing it. As a fiber reinforced resin material, it is possible to use a fiber bundle impregnated with an uncured thermosetting resin, for example, a bundle of carbon fiber reinforced plastic (CFRP: carbon fiber and epoxy resin). It is.

図2は、タンク100の製造装置200を示す説明図である。製造装置200は、加熱炉210と、液体供給系230と、液体排出系240と、制御装置220とを備えている。加熱炉210は、タンク100を加熱又は冷却するための装置である。加熱炉210の内部には、加熱機190と、冷却機170と、放射温度計160とが設けられている。加熱機190は、加熱炉210の内壁に設置され、例えばタンク100にマイクロ波を照射して加熱する。冷却機170は、加熱炉210の内壁に設置され、タンク100に向けて複数のノズル172を備え、冷風ポンプ180から供給される冷風を各ノズル172からタンク100に向けて吹き出し、タンク100を外部から冷却する。放射温度計160は、加熱炉210内部の温度、すなわちタンク100外部の温度を測定する。   FIG. 2 is an explanatory view showing the manufacturing apparatus 200 of the tank 100. As shown in FIG. The manufacturing apparatus 200 includes a heating furnace 210, a liquid supply system 230, a liquid discharge system 240, and a control device 220. The heating furnace 210 is a device for heating or cooling the tank 100. Inside the heating furnace 210, a heater 190, a cooler 170, and a radiation thermometer 160 are provided. The heater 190 is installed on the inner wall of the heating furnace 210, and for example, the tank 100 is heated by irradiating the microwave. The cooler 170 is installed on the inner wall of the heating furnace 210, includes a plurality of nozzles 172 toward the tank 100, blows cold air supplied from the cold air pump 180 from the nozzles 172 toward the tank 100, and externally Cool from. The radiation thermometer 160 measures the temperature inside the heating furnace 210, that is, the temperature outside the tank 100.

液体供給系230は、加熱炉210の外部に設置されており、タンク100の内部に液体を供給する。液体供給系230には、貯留槽110と、ポンプ120と、ヒータ130と、温度センサ140とが設けられている。貯留槽110に貯留している液体、例えば純水は、ポンプ120によって液体供給系230に送り出され、ヒータ130によって一定の温度に加熱された後に、調温媒体としてタンク100の内部に注入される。温度センサ140は、調温媒体の温度を測定する。タンク100内部の温度変化が急激でない場合には、調温媒体の温度をタンク100内部の温度とみなすことが可能である。液体排出系240は、ポンプ150を備え、タンク100の内部に注入された調温媒体を加熱炉210の外部に排出する。   The liquid supply system 230 is installed outside the heating furnace 210 and supplies the liquid to the inside of the tank 100. In the liquid supply system 230, a storage tank 110, a pump 120, a heater 130, and a temperature sensor 140 are provided. The liquid stored in the storage tank 110, for example, pure water, is sent to the liquid supply system 230 by the pump 120, heated to a predetermined temperature by the heater 130, and then injected into the tank 100 as a temperature control medium. . The temperature sensor 140 measures the temperature of the temperature control medium. If the temperature change inside the tank 100 is not rapid, it is possible to regard the temperature of the temperature control medium as the temperature inside the tank 100. The liquid discharge system 240 includes a pump 150 and discharges the temperature control medium injected into the inside of the tank 100 to the outside of the heating furnace 210.

制御装置220は、中央処理装置と主記憶装置とを備えるマイクロコンピュータによって構成される。制御装置220は、放射温度計160と温度センサ140との温度測定値を用いて、加熱炉210内部、液体供給系230及び液体排出系240の各種機器の動作を制御する。   The controller 220 is configured by a microcomputer including a central processing unit and a main storage unit. The controller 220 controls the operation of various devices such as the inside of the heating furnace 210, the liquid supply system 230, and the liquid discharge system 240 using the temperature measurement values of the radiation thermometer 160 and the temperature sensor 140.

タンク100は、ライナ10の外周を繊維強化樹脂材料30pで被覆した後に、加熱炉210の内部に設置される。加熱する前に、タンク100の第2の口金22の凹部24に、回転支持棒60の一端部がねじ込んで固定される。回転支持棒60の他端部は、加熱炉210内部にある回転機構に固定されている(図示せず)。また、タンク100の第1の口金21の貫通孔23には、配管40の一端部が挿入され、貫通孔23を通過してタンク100の内部に挿入される。配管40の他端部は、加熱炉210外部に延びて、液体供給系230と連結されている。また、配管40のうち、タンク100の内部に位置する内部配管44の外周面には、複数の噴出孔41が設けられている。また、内部配管44の第1の口金21に近い位置には貫通孔42が設けられており、この貫通孔42を通して、排出配管50がタンク100の下端近くの位置に設置されている。排出配管50の一端部は配管40の内部を通して液体排出系240と連結されている。液体供給系230から供給された調温媒体は、配管40を通して噴出孔41からタンク100内部に注入された後、排出配管50に吸い取られて液体排出系240を通して加熱炉210外部に排出される。なお、タンク100は、回転支持棒60によって支持されており、回転支持棒60が回転すると、タンク100のライナ10と、口金21,22と、繊維強化樹脂材料30pとを含むタンク100本体が回転支持棒60と連動して回転する。   The tank 100 is installed inside the heating furnace 210 after the outer periphery of the liner 10 is coated with the fiber reinforced resin material 30 p. Before heating, one end of the rotation support rod 60 is screwed into and fixed to the recess 24 of the second base 22 of the tank 100. The other end of the rotation support rod 60 is fixed to a rotation mechanism inside the heating furnace 210 (not shown). Further, one end portion of the pipe 40 is inserted into the through hole 23 of the first mouthpiece 21 of the tank 100, and is inserted into the inside of the tank 100 through the through hole 23. The other end of the pipe 40 extends outside the heating furnace 210 and is connected to the liquid supply system 230. Further, a plurality of ejection holes 41 are provided on the outer peripheral surface of the internal pipe 44 located inside the tank 100 in the pipe 40. Further, a through hole 42 is provided at a position close to the first base 21 of the internal pipe 44, and the discharge pipe 50 is installed at a position near the lower end of the tank 100 through the through hole 42. One end of the discharge pipe 50 is connected to the liquid discharge system 240 through the inside of the pipe 40. The temperature control medium supplied from the liquid supply system 230 is injected into the inside of the tank 100 from the ejection holes 41 through the pipe 40, and then sucked into the discharge pipe 50 and discharged out of the heating furnace 210 through the liquid discharge system 240. The tank 100 is supported by the rotation support bar 60, and when the rotation support bar 60 rotates, the tank 100 main body including the liner 10 of the tank 100, the caps 21, 22 and the fiber reinforced resin material 30p rotates. It rotates in conjunction with the support rod 60.

図3は、繊維強化樹脂材料30pの加熱・冷却工程におけるタンク100の内部温度Tinおよび外部温度Toutの時間変化の一例を示すグラフである。時刻t0では、回転支持棒60が回転しており、加熱機190が運転し始めてタンク100の繊維強化樹脂材料30pを加熱する。また、制御装置220は、ポンプ120を駆動し、貯留槽110の中の液体をヒータ130に送り出して加熱させ、調温媒体として配管40を経由してタンク100の内部に注入する。このとき、制御装置220は、タンク100の内部温度Tin(すなわち調温媒体の温度)をタンク100の外部温度Toutとほぼ一致させるように制御することが好ましい。なお、調温媒体の注入と同時に、制御装置220はポンプ150を駆動し、排出配管50と液体排出系240とを経由してタンク100内部の調温媒体を排出する。   FIG. 3 is a graph showing an example of temporal changes in the internal temperature Tin and the external temperature Tout of the tank 100 in the process of heating and cooling the fiber reinforced resin material 30p. At time t0, the rotary support rod 60 is rotating, and the heater 190 starts operating to heat the fiber reinforced resin material 30p of the tank 100. Further, the control device 220 drives the pump 120 to send out the liquid in the storage tank 110 to the heater 130 for heating, and injects the liquid as a temperature control medium into the inside of the tank 100 via the pipe 40. At this time, the control device 220 preferably controls the internal temperature Tin of the tank 100 (that is, the temperature of the temperature control medium) to substantially coincide with the external temperature Tout of the tank 100. Note that simultaneously with the injection of the temperature control medium, the control device 220 drives the pump 150 to discharge the temperature control medium in the tank 100 via the discharge pipe 50 and the liquid discharge system 240.

加熱を続けると、時刻t1では、タンク100の外部温度Tout及び内部温度Tinが熱硬化性樹脂の硬化温度に達し、繊維強化樹脂材料30pの熱硬化性樹脂が硬化し始める。時刻t1から時刻t2までタンク100の外部温度Toutを硬化温度で保持し、熱硬化性樹脂の硬化が完成すると、時刻t2から冷却を開始する。時刻t2では、制御装置220は加熱機190を停止し、冷風ポンプ180を駆動して冷却機170のノズル172から冷風をタンク100に向けて送出させる。時刻t2から時刻t3まで冷却を続けると、タンク100の外部温度Tout及び内部温度Tinが熱硬化性樹脂の軟化温度に達する。時刻t3では、制御装置220は冷却機170の冷却を停止し、タンク100の外部温度Toutと内部温度Tinを軟化温度で一定期間tx保持する。この保持期間txが終了すると、時刻t4では、制御装置220は再び冷却機170とポンプ120を運転させてタンク100を冷却する。時刻t5では、タンク100の外部温度Tout及び内部温度Tinが室温になり、タンク100内部へ調温媒体の注入及びタンク100内部から調温媒体の排出が停止する。これにより、繊維強化樹脂層30が形成され、タンク100の製造が完了する。   When heating is continued, at time t1, the outside temperature Tout and the inside temperature Tin of the tank 100 reach the curing temperature of the thermosetting resin, and the thermosetting resin of the fiber reinforced resin material 30p starts to cure. The external temperature Tout of the tank 100 is maintained at the curing temperature from time t1 to time t2, and when curing of the thermosetting resin is completed, cooling is started from time t2. At time t2, the control device 220 stops the heater 190, drives the cold air pump 180, and causes the nozzle 172 of the cooler 170 to send cold air toward the tank 100. When cooling is continued from time t2 to time t3, the external temperature Tout and the internal temperature Tin of the tank 100 reach the softening temperature of the thermosetting resin. At time t3, the controller 220 stops the cooling of the cooler 170, and holds the external temperature Tout and the internal temperature Tin of the tank 100 at the softening temperature for a certain period tx. When this holding period tx ends, at time t4, the controller 220 operates the cooler 170 and the pump 120 again to cool the tank 100. At time t5, the external temperature Tout and the internal temperature Tin of the tank 100 become room temperature, and the injection of the temperature control medium into the tank 100 and the discharge of the temperature control medium from the tank 100 stop. Thereby, the fiber reinforced resin layer 30 is formed, and the manufacture of the tank 100 is completed.

以上のように、時刻t2から時刻t3までの冷却の過程では、タンク100を外部から冷却しつつ、タンク100の内部に調温媒体を注入し、タンク100を内部から冷却することで、タンク100の内部と外部との温度差を減少し、繊維強化樹脂層30に大きな残留歪みが生じるのを抑制できる。また、タンク100を熱硬化性樹脂の軟化温度で一定期間tx保持することによって、繊維強化樹脂層30に残留歪みが生じても、それを緩和することができる。なお、軟化温度で保持する保持期間txは、残留歪みを十分に減少できるように経験的又は実験的に予め決定される。   As described above, in the process of cooling from time t2 to time t3, while the tank 100 is cooled from the outside, the temperature control medium is injected into the inside of the tank 100, and the tank 100 is cooled from the inside. The temperature difference between the inside and the outside of the fiber reinforced resin layer 30 can be reduced, and generation of a large residual strain in the fiber reinforced resin layer 30 can be suppressed. Further, by holding the tank 100 at the softening temperature of the thermosetting resin for a certain period of time, even if residual distortion occurs in the fiber reinforced resin layer 30, it can be alleviated. The holding period tx held at the softening temperature is predetermined empirically or experimentally so that the residual strain can be sufficiently reduced.

・第2実施形態:
図4は、第2実施形態におけるタンク100の内部温度Tin1および外部温度Tout1の時間変化の一例を示すグラフである。図3に示した第1実施形態との違いは、調温媒体の注入が時刻t2から時刻t4までの間(冷却期間を含む)にのみ行われている点であり、これ以外の構成は第1実施形態と同様である。
Second Embodiment:
FIG. 4 is a graph showing an example of temporal changes in the internal temperature Tin1 and the external temperature Tout1 of the tank 100 in the second embodiment. The difference from the first embodiment shown in FIG. 3 is that the injection of the temperature control medium is performed only between time t2 and time t4 (including the cooling period), and the other configurations are the same as in the first embodiment. It is the same as that of one embodiment.

図4の時刻t0から時刻t1にかけて、タンク100の内部に調温媒体を注入せずにタンク100を外部のみから加熱するため、タンク100の外部と内部には第1実施形態よりも大きな温度差が生じる。このため、第1実施形態よりもタンク100の繊維強化樹脂層30に多くの歪みが生じるが、時刻t3から時刻t4の間にタンク100を熱硬化性樹脂の軟化温度で一定期間ty保持することで、その歪みを緩和することができる。ただし、歪みを完全に緩和するために、第2実施形態での保持期間tyを第1実施形態での保持期間txよりも長くすることが好ましい。また、時刻t4から時刻t5までの間では、タンク100の内部に調温媒体の注入がないため、タンク100の外部温度Tout1及び内部温度Tin1が室温になるまでの時間が第1実施形態よりも長い。これらの点を考慮すると、第2実施形態よりも第1実施形態のほうが好ましい。   Since the tank 100 is heated only from the outside from the time t0 to the time t1 in FIG. 4 without injecting the temperature control medium into the inside of the tank 100, the temperature difference between the outside and the inside of the tank 100 is larger than that in the first embodiment. Will occur. For this reason, more distortion occurs in the fiber reinforced resin layer 30 of the tank 100 than in the first embodiment, but the tank 100 is kept at ty at the softening temperature of the thermosetting resin for a certain period between time t3 and time t4. The distortion can be mitigated. However, in order to completely reduce distortion, it is preferable to set the holding period ty in the second embodiment to be longer than the holding period tx in the first embodiment. Further, between time t4 and time t5, there is no injection of the temperature control medium inside the tank 100, so the time until the external temperature Tout1 and the internal temperature Tin1 of the tank 100 become room temperature is higher than in the first embodiment. long. In consideration of these points, the first embodiment is preferable to the second embodiment.

本発明は、上述の実施形態に限られるものではなく、その趣旨を逸脱しない範囲において種々の構成で実現することができる。例えば、発明の概要の欄に記載した各形態中の技術的特徴に対応する実施形態中の技術的特徴は、上述の課題の一部又は全部を解決するために、あるいは、上述の効果の一部又は全部を達成するために、適宜、差し替えや、組み合わせを行うことが可能である。また、その技術的特徴が本明細書中に必須なものとして説明されていなければ、適宜、削除することが可能である。   The present invention is not limited to the above-described embodiment, and can be realized in various configurations without departing from the scope of the invention. For example, the technical features in the embodiments corresponding to the technical features in each of the modes described in the section of the summary of the invention can be used to solve some or all of the problems described above, or one of the effects described above. It is possible to replace or combine as appropriate to achieve part or all. Also, if the technical features are not described as essential in the present specification, they can be deleted as appropriate.

10…ライナ
21…第1の口金
22…第2の口金
23…貫通孔
24…凹部
25…凹部
30…繊維強化樹脂層
30p…繊維強化樹脂材料
40…配管
41…噴出孔
42…貫通孔
44…内部配管
50…排出配管
60…回転支持棒
100…タンク
110…貯留槽
120…ポンプ
130…ヒータ
140…温度センサ
150…ポンプ
160…放射温度計
170…冷却機
172…ノズル
180…冷風ポンプ
190…加熱機
200…製造装置
210…加熱炉
220…制御装置
230…液体供給系
240…液体排出系
DESCRIPTION OF SYMBOLS 10 ... Liner 21 ... 1st nozzle | cap | die 22 ... 2nd nozzle | cap | die 23 ... Through-hole 24 ... Recess 25 ... Recess 30 ... Fiber reinforced resin layer 30p ... Fiber reinforced resin material 40 ... Piping 41 ... Ejection hole 42 ... Through-hole 44 ... Internal piping 50 ... Discharge piping 60 ... Rotation support rod 100 ... Tank 110 ... Reservoir 120 ... Pump 130 ... Heater 140 ... Temperature sensor 150 ... Radiation thermometer 170 ... Cooling machine 172 ... Nozzle 180 ... Cold air pump 190 ... Heating 200: manufacturing apparatus 210: heating furnace 220: control device 230: liquid supply system 240: liquid discharge system

Claims (1)

タンクの製造方法であって、
ライナの外周に未硬化の熱硬化性樹脂を含浸した繊維束が巻回されたタンクを加熱し、前記熱硬化性樹脂を硬化させて繊維強化樹脂層を形成する工程と、
前記タンクを外部から冷却しつつ、前記タンクの内部に液体を注入して前記タンクを内部から冷却することによって、前記タンクを前記熱硬化性樹脂の軟化温度まで冷却する工程と、
前記タンクを前記軟化温度で一定期間保持する工程と、
を備えるタンクの製造方法。
A method of manufacturing a tank,
Heating a tank in which a fiber bundle impregnated with uncured thermosetting resin is wound around the outer periphery of the liner, and curing the thermosetting resin to form a fiber reinforced resin layer;
Cooling the tank to a softening temperature of the thermosetting resin by injecting a liquid into the tank and cooling the tank from the inside while cooling the tank from the outside;
Holding the tank at the softening temperature for a fixed period of time;
Method of producing a tank comprising:
JP2016044409A 2016-03-08 2016-03-08 Tank manufacturing method Active JP6540558B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016044409A JP6540558B2 (en) 2016-03-08 2016-03-08 Tank manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016044409A JP6540558B2 (en) 2016-03-08 2016-03-08 Tank manufacturing method

Publications (2)

Publication Number Publication Date
JP2017159499A JP2017159499A (en) 2017-09-14
JP6540558B2 true JP6540558B2 (en) 2019-07-10

Family

ID=59852842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016044409A Active JP6540558B2 (en) 2016-03-08 2016-03-08 Tank manufacturing method

Country Status (1)

Country Link
JP (1) JP6540558B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108284564B (en) * 2017-12-26 2019-08-13 华中科技大学 A kind of preparation method and product of the multilayered structure injection-molded item of fibre reinforced

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009012341A (en) * 2007-07-05 2009-01-22 Toyota Motor Corp Manufacturing method of frp molding and heater
JP2011012764A (en) * 2009-07-02 2011-01-20 Toyota Motor Corp Device and method for manufacturing high-pressure tank for vehicle
JP6215678B2 (en) * 2013-12-09 2017-10-18 Jxtgエネルギー株式会社 Composite container manufacturing system and composite container manufacturing method

Also Published As

Publication number Publication date
JP2017159499A (en) 2017-09-14

Similar Documents

Publication Publication Date Title
US11027459B2 (en) Fuel tank producing apparatus
JP6215678B2 (en) Composite container manufacturing system and composite container manufacturing method
CN102205575A (en) Mould for manufacturing a composite part including at least one fibre reinforced matrix
US10507999B2 (en) Manufacturing method of tank and tank manufacturing apparatus
CA2836867C (en) Method of manufacturing gas tank
JP6540558B2 (en) Tank manufacturing method
JP2015112813A (en) Production system for composite container, and method for producing composite container
JP2009012341A (en) Manufacturing method of frp molding and heater
US9868253B2 (en) Method of manufacturing tank, heat curing method and heat curing apparatus
CN107718543A (en) A kind of early molten protector of 3D printing material silk softening
KR102208701B1 (en) Filament winding apparatus
JP2011245740A (en) Apparatus and method for manufacturing high pressure tank
JP2011012764A (en) Device and method for manufacturing high-pressure tank for vehicle
JP7088086B2 (en) How to make a tank
JP2010265932A (en) Tank and method for manufacturing the same
JP2018083391A (en) Method for manufacturing hydrogen tank
US10005244B2 (en) Manufacturing method of pressure vessel with heating device
JP2018171717A (en) Fuel tank manufacturing apparatus
JP6152337B2 (en) Composite container manufacturing method and composite container manufacturing system
JP2017194143A (en) Tank length adjustment method
JP6146330B2 (en) Manufacturing method of high-pressure tank
JP2019035415A (en) Manufacturing method of high-pressure tank
JP2007268938A (en) Roll manufacturing method
JP2009028961A (en) Manufacturing process and manufacturing system of frp molding
JP4882295B2 (en) Manufacturing method of gas storage tank

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190527

R151 Written notification of patent or utility model registration

Ref document number: 6540558

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151