JPH10202670A - Method for vulcanizing and molding thick-walled unvulcanized rubber composite - Google Patents

Method for vulcanizing and molding thick-walled unvulcanized rubber composite

Info

Publication number
JPH10202670A
JPH10202670A JP807697A JP807697A JPH10202670A JP H10202670 A JPH10202670 A JP H10202670A JP 807697 A JP807697 A JP 807697A JP 807697 A JP807697 A JP 807697A JP H10202670 A JPH10202670 A JP H10202670A
Authority
JP
Japan
Prior art keywords
thick
unvulcanized rubber
rubber
composite
unvulcanized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP807697A
Other languages
Japanese (ja)
Inventor
Hidetoshi Matsuzawa
秀年 松沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP807697A priority Critical patent/JPH10202670A/en
Publication of JPH10202670A publication Critical patent/JPH10202670A/en
Pending legal-status Critical Current

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance productivity of a vulcanizing and molding process to a large extent while holding performance of a thick-walled rubber product. SOLUTION: A thick-walled composite 10 formed by mutually bonding and integrating a plurality of kinds of unvulcanized rubbers is preheated by high frequency dielectric heating to be vulcanized and molded. In this case, a hydrous compd. is preliminarily added to and compounded with a component compsn. of unvulcanized rubber 10-1 low in a value of a loss factor represented by a product ε.tanδ of a specific dielectric constant (ε) and a dielectric loss angle (tanδ) among the unvulacnized rubbers and the range of a loss factor between the unvulcanized rubbers is reduced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、複数種の未加硫
ゴムを互いに接合一体化した厚肉複合体を高周波誘電加
熱により、その後の加硫成形に対し有利に予備加熱した
後、加硫成形する方法に関し、特に各未加硫ゴム相互間
でその比誘電率εと誘電体損失角tanδとの積ε・t
anδで表される損失係数の値に較差を有する厚肉複合
体に適合し、その加硫成形後におけるゴム製品が所期の
十分な性能を発揮すると同時に、高温短時間による高能
率な加硫成形を可能として、この工程全般にわたる生産
性を大幅に向上させることに寄与する厚肉未加硫ゴム複
合体の加硫成形方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vulcanized composite obtained by joining a plurality of types of unvulcanized rubber to one another by high-frequency dielectric heating, which is advantageously preheated for subsequent vulcanization molding. Regarding the molding method, in particular, the product ε · t of the relative dielectric constant ε and the dielectric loss angle tanδ between each unvulcanized rubber.
Suitable for thick composites with a difference in the value of the loss coefficient represented by an δ, the rubber product after vulcanization exhibits the expected sufficient performance, and at the same time, highly efficient vulcanization by high temperature and short time The present invention relates to a vulcanization molding method for a thick unvulcanized rubber composite, which enables molding and contributes to greatly improving productivity throughout the entire process.

【0002】[0002]

【従来の技術】厚肉複合体をその表面部からの熱伝導の
みに依存して加硫成形する従来一般の方法では、加熱さ
れる表面から内部へ行くに従って、ゴム特有の著しく小
さい熱伝導率のため表面部に比し温度上昇が大幅に遅れ
るが、慣例としてこの難昇温部が適正加硫度(期待し得
る最も望ましい物性を示す加硫の度合)に達するまで加
硫成形のための加熱を継続する必要があった。
2. Description of the Related Art In a conventional general method of vulcanizing and molding a thick-walled composite solely based on heat conduction from its surface, an extremely small thermal conductivity unique to rubber is obtained from the surface to be heated to the inside. Because of this, the temperature rise is greatly delayed compared to the surface part, but as a rule, the vulcanization molding is carried out until this difficult temperature rise part reaches the appropriate degree of vulcanization (the degree of vulcanization that shows the most desirable physical properties that can be expected). Heating had to be continued.

【0003】その場合、難昇温部から表面部に向うにつ
れ次第に加硫度が増加するので、表面部により近い部分
ほど著しい過加硫状態を示し、これに伴うゴム物性の劣
化により製品性能低下の不利は免れず、またこの性能低
下を最小限に止めるには低温長時間の加硫成形が余儀な
くされるため生産性が著しく損なわれる問題が生じ、よ
ってこれらの同時改善が従来から強く求められてきた。
[0003] In this case, the degree of vulcanization gradually increases from the hardly-heated portion to the surface portion, so that a portion closer to the surface portion shows a remarkably over-vulcanized state, resulting in deterioration of rubber properties and deterioration of product performance. In order to minimize this decrease in performance, vulcanization molding at a low temperature and for a long time is inevitable, resulting in a problem that productivity is significantly impaired. Have been.

【0004】この改善の最も簡便な手段として、室温よ
りは高いが加硫温度に比し大幅に低い雰囲気温度とした
予備加熱室内にて、厚肉複合体を全体にわたり、ほぼ均
一な温度に達するまで加熱する方法が採られた。しか
し、この方法は、加熱の設定温度を高め過ぎると厚肉複
合体の表面部の加硫が進行し過ぎる不具合を招くため低
く抑える必要があり、その結果、難昇温部を所定の温度
レベルまで高めるには長時間を要するうえ加熱の度合い
も低く、結局、加硫成形工程全般にわたる生産性改善が
不十分となるのは止むを得ず、加えて過加硫問題の解決
には至らなかった。
[0004] The simplest means of this improvement is to reach a substantially uniform temperature throughout the thick-walled composite in a preheating chamber in which the ambient temperature is higher than room temperature but significantly lower than the vulcanization temperature. Heating method was adopted. However, in this method, if the set temperature for heating is too high, the vulcanization of the surface portion of the thick-walled composite body will proceed too much, so that it is necessary to keep the temperature low. It takes a long time to increase the temperature and the degree of heating is low, and it is inevitable that the productivity improvement throughout the vulcanization molding process will be insufficient, and in addition it will not solve the overvulcanization problem Was.

【0005】[0005]

【発明が解決しようとする課題】そこで、さらに一層有
効な方法として高周波誘電加熱、なかでもマイクロ波加
熱が試みられた。しかしこの方法にしても、単一の配合
ゴム組成になる厚肉体の場合又は厚肉複合体では各未加
硫ゴム相互間の配合組成が近似している場合に限り、こ
の被加熱体回りのマイクロ波電界を均一にすることによ
り、短時間で難昇温部を所望温度まで加熱し得るに過ぎ
ないという、実用上利用可能なゴム製品が著しく限定さ
れる不利な点を有している。
Therefore, high-frequency dielectric heating, especially microwave heating, has been attempted as an even more effective method. However, even in this method, only in the case of a thick body having a single compounded rubber composition or in the case of a thick-walled composite, the compounded composition between the unvulcanized rubbers is similar only when the compounded composition between the unvulcanized rubbers is similar. By making the microwave electric field uniform, there is a disadvantage that rubber products that can be practically used are significantly limited, in that it is only possible to heat the hardly-heated portion to a desired temperature in a short time.

【0006】この点は、例えばフォークリフトなどの使
途に適合するソリッドタイヤ用の厚肉複合体のように、
その各未加硫ゴムが各々異なる要求特性に適合するよう
に配合設計され、各未加硫ゴム相互間で配合組成に著し
い相違を有する場合、これに高周波加熱、なかでも加熱
効率に優れるマイクロ波加熱を施した際、実際上難昇温
部の温度が損失係数の値が高い未加硫ゴムの、例えば表
面部分のそれに比し大幅に低い結果がもたらされ、引続
く加硫成形に不都合をきたすことにほかならない。
[0006] This point is, for example, a thick composite for solid tires suitable for use in forklifts and the like,
If each unvulcanized rubber is compounded and designed to meet different required properties, and there is a significant difference in the compounding composition between each unvulcanized rubber, microwave heating, especially excellent in heating efficiency, When heated, the temperature of the difficult-to-heat-up portion is substantially lower than that of the unvulcanized rubber having a high loss coefficient, for example, of the surface portion, which is inconvenient for the subsequent vulcanization molding. It is nothing less than causing

【0007】なお加硫成形前のタイヤにマイクロ波加熱
を施す方法として特公昭57−42501号公報は、タ
イヤのトレッドゴムに予めマイクロ波加熱を施し加熱し
た後、組立て成型する点につき開示しているが、この組
立て成型から加硫成形に至る間に、予備加熱を施さない
他の接合部材に対する熱伝導により、特にトレッドゴム
の他の接合部材との接合面近傍にて著しく温度が低下
し、またこれを回避するため複数ゴム部材を同時に加熱
しようとすれば、その部材数に見合う台数のマイクロ波
加熱装置を必要とするなど、実用上の大きな不利を伴
う。
Japanese Patent Publication No. 57-42501 discloses a method of applying microwave heating to a tire before vulcanization molding, in which a tread rubber of a tire is subjected to microwave heating in advance, heated, and then assembled and molded. However, during the period from the assembly molding to the vulcanization molding, due to heat conduction to other joining members that are not subjected to preheating, the temperature is remarkably lowered particularly in the vicinity of the joining surface with the other joining members of the tread rubber, Further, if a plurality of rubber members are to be heated at the same time in order to avoid this, there is a great disadvantage in practical use, for example, a number of microwave heating devices corresponding to the number of members are required.

【0008】そこで複数種の互いに大きく相違する配合
組成からなる各未加硫ゴムを含む厚肉複合体に高周波誘
電加熱、特にマイクロ波加熱を施して、厚肉複合体の難
昇温部の温度を表面部のそれ以上の望ましい温度まで高
めた後、これを加硫成形することにより、製品がその全
体にわたる適正なゴムの加硫度の下で要求性能に対し充
足した所期のゴム物性を発揮すること並びに加硫成形工
程全般にわたる生産性を大幅に向上させることが可能な
厚肉未加硫ゴム複合体の加硫成形方法を提供するのが本
発明の目的である。
Therefore, high-frequency dielectric heating, particularly microwave heating, is applied to a thick-walled composite including unvulcanized rubbers having a composition that is significantly different from each other, so that the temperature of the difficult-to-heat-up portion of the thick-walled composite is increased. After raising the temperature to a desired temperature higher than the surface, vulcanization molding is performed to ensure that the product meets the required performance under the appropriate degree of vulcanization of the rubber over its entirety. It is an object of the present invention to provide a vulcanization molding method for a thick-walled unvulcanized rubber composite, which can exert its effects and greatly improve the productivity throughout the vulcanization molding process.

【0009】[0009]

【課題を解決するための手段】各未加硫ゴムの比誘電率
εと誘電体損失角tanδとの積で表される損失係数ε
・tanδに着目することにより、上記目的を達成する
ことが可能であることを見出して本発明を完成させるに
至った。
A loss coefficient ε represented by a product of a relative dielectric constant ε of each unvulcanized rubber and a dielectric loss angle tan δ.
By focusing on tan δ, the inventors have found that the above object can be achieved, and have completed the present invention.

【0010】先に、損失係数の値の小さい未加硫ゴムに
導電性カーボンブラックを添加して、目的が達成できる
ことを見出した(特開平6−344510号)が、高コ
ストのため使用を制限される場合もあり、この導電性カ
ーボンブラックの代りに、より低コストで同様の性能を
発揮する含水化合物を適用することによって、本発明の
目的が達成された。
[0010] Previously, it has been found that the purpose can be achieved by adding conductive carbon black to unvulcanized rubber having a small loss coefficient (JP-A-6-344510). In some cases, the object of the present invention has been achieved by applying a hydrated compound exhibiting similar performance at lower cost in place of the conductive carbon black.

【0011】すなわち、(1)本発明の厚肉未加硫ゴム
複合体の加硫成形方法は、複数種の未加硫ゴムを互いに
接合一体化した厚肉複合体を、予め高周波誘電加熱によ
り加熱した後、加硫成形するにあたり、各未加硫ゴムの
うち、その比誘電率(ε)と誘電体損失角(tanδ)
との積ε・tanδで表される損失係数の値の小さい未
加硫ゴムの成分組成中に予め含水化合物を添加配合し
て、各未加硫ゴム相互間における損失係数の較差を縮小
することを特徴とする。
That is, (1) the vulcanization molding method of the thick unvulcanized rubber composite of the present invention comprises the steps of: forming a thick composite in which a plurality of types of unvulcanized rubbers are integrally joined together by high-frequency dielectric heating in advance. After heating and vulcanization molding, the relative dielectric constant (ε) and dielectric loss angle (tan δ) of each unvulcanized rubber
By adding a water-containing compound in advance to the component composition of the unvulcanized rubber having a small value of the loss coefficient represented by the product ε · tan δ of the unvulcanized rubber, to reduce the difference of the loss coefficient between the unvulcanized rubbers. It is characterized by.

【0012】(2)本発明の厚肉未加硫ゴム複合体の加
硫成形方法は、前(1)項において、前記含水化合物
が、50〜200℃において、水を放出する化合物であ
ることを特徴とする。
(2) In the vulcanization molding method for a thick unvulcanized rubber composite according to the present invention, in the above item (1), the hydrated compound is a compound which releases water at 50 to 200 ° C. It is characterized by.

【0013】(3)本発明の厚肉未加硫ゴム複合体の加
硫成形方法は、前(1)項において、前記含水化合物の
添加量はこの化合物が添加される未加硫ゴムのゴム成分
100重量部に対して、0.5〜20重量部であること
を特徴とする。
(3) The vulcanization molding method of the thick unvulcanized rubber composite according to the present invention is characterized in that, in the above (1), the amount of the water-containing compound is determined by adjusting the rubber content of the unvulcanized rubber to which the compound is added. It is characterized by being 0.5 to 20 parts by weight based on 100 parts by weight of the component.

【0014】[0014]

【発明の実施の形態】以下この発明を図面に基づき一層
詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in more detail with reference to the drawings.

【0015】図2(a)、(b)及び図3(a)、
(b)は厚肉未加硫ゴム複合体の一例として、加硫成形
後にソリッドタイヤとなる環状の厚肉複合体10を示
し、図2は二種の未加硫ゴムを、図3では三種の未加硫
ゴムを互いに接合一体化した例を示す。なお図2
(a)、図3(a)は厚肉複合体10の斜視図を、図2
(b)、図3(b)にはそれぞれA−A線の断面図を示
し、図中Bは難昇温部を表す。
2 (a), 2 (b) and 3 (a),
(B) shows an annular thick composite 10 which becomes a solid tire after vulcanization molding as an example of a thick unvulcanized rubber composite, FIG. 2 shows two types of unvulcanized rubber, and FIG. The following shows an example in which unvulcanized rubbers are joined and integrated with each other. FIG. 2
(A) and FIG. 3 (a) are perspective views of the thick composite 10 and FIG.
(B) and FIG. 3 (b) are cross-sectional views taken along the line AA, respectively, and B in the figure represents a difficult temperature rising portion.

【0016】図2、図3において環状の厚肉複合体10
は、その半径方向で最も内側の未加硫ゴム10−1と、
このゴムとは配合組成が大幅に相違する最も外側の未加
硫ゴム10−2とを、図3に示す例ではこれらゴムの中
間に、やはりいずれのゴムとも配合組成を異にする未加
硫ゴム10−3を、それぞれ互いに接合一体化してな
る。
2 and 3, the annular thick composite 10
Is the innermost unvulcanized rubber 10-1 in the radial direction,
In the example shown in FIG. 3, an unvulcanized rubber having a compounding composition different from that of any of the rubbers is provided between the rubber and the outermost unvulcanized rubber 10-2 having a compounding composition greatly different from that of the rubber. The rubbers 10-3 are joined and integrated with each other.

【0017】図3を例にとれば、上記の厚肉複合体10
を予め高周波誘電加熱により加熱した後、加硫成形する
のに先立ち、各未加硫ゴム10−1、10−2、10−
3のうち損失係数ε・tanδの値が小さい未加硫ゴ
ム、例えば最内側の未加硫ゴム10−1及び中間の未加
硫ゴム10−3の成分組成中に予め所定の含水化合物を
添加配合するものとし、これにより各未加硫ゴム10−
1、10−2及び10−3相互間における損失係数の較
差を縮小する。
Referring to FIG. 3 as an example, the thick composite 10
Are preheated by high-frequency dielectric heating, and prior to vulcanization molding, each unvulcanized rubber 10-1, 10-2, 10-
3, a predetermined hydrated compound is previously added to the component composition of the unvulcanized rubber having a small loss coefficient ε · tan δ, for example, the innermost unvulcanized rubber 10-1 and the intermediate unvulcanized rubber 10-3. And each unvulcanized rubber 10-
Reduce the loss factor difference between 1, 10-2 and 10-3.

【0018】本発明に用いられる含水化合物の添加量
は、製品ソリッドタイヤにおける所期の適正なゴム物性
を保持し得る範囲内の量でよく、好ましくは加えられる
未加硫ゴムのゴム成分100重量部に対して、1.5〜
20重量部であり、より好ましくは5〜15重量部であ
る。この添加量は上記の損失係数の較差縮小に十分寄与
し得る性質を備えている含水化合物を適用すれば少量で
効果が発現する。
The amount of the water-containing compound used in the present invention may be an amount within a range capable of maintaining the desired proper rubber physical properties in the solid tire product, and is preferably 100% by weight of the rubber component of the unvulcanized rubber to be added. 1.5 to
20 parts by weight, more preferably 5 to 15 parts by weight. The effect can be obtained with a small amount by adding a hydrated compound having a property capable of sufficiently contributing to the above-described reduction of the loss coefficient.

【0019】本発明に用いられる含水化合物としては、
好ましくは50〜200℃において、水を放出する化合
物が含まれるが、例えば含水メタケイ酸ナトリウム、含
水塩化マグネシウム、含水ピロリン酸ナトリウム、含水
炭酸ナトリウム、含水硫化ナトリウム等の含水金属化合
物を挙げることができる。中でも含水メタケイ酸ナトリ
ウム、含水ピロリン酸ナトリウムが好ましい。
The hydrous compound used in the present invention includes:
Preferably, a compound that releases water at 50 to 200 ° C is included, and examples thereof include hydrated metal compounds such as hydrated sodium metasilicate, hydrated magnesium chloride, hydrated sodium pyrophosphate, hydrated sodium carbonate, and hydrated sodium sulfide. . Among them, hydrous sodium metasilicate and hydrous sodium pyrophosphate are preferable.

【0020】かくして各未加硫ゴム10−1、10−
2、10−3の損失係数の較差を予め縮小した厚肉複合
体10としたうえで、これに高周波加熱を施して予備加
熱することにより、厚肉複合体10の難昇温部から表面
部に至る全域にわたる各部を所望の温度まで高めた後、
加硫成形を行うものである。なお厚肉未加硫ゴム複合体
の予備加熱には、高周波のなかでもマイクロ波の照射が
好ましい。また、高周波により加熱される度合は後述す
るように実際上、未加硫ゴムの損失係数に応じて定ま
る。
Thus, each unvulcanized rubber 10-1, 10-
The thickness of the thick-walled composite 10 is reduced beforehand by applying high-frequency heating to the thick-walled composite 10 after preliminarily reducing the range of the loss coefficient of 2, 10-3. After raising each part over the entire area to the desired temperature,
The vulcanization molding is performed. For preheating the thick unvulcanized rubber composite, microwave irradiation is preferable among high frequencies. Further, the degree of heating by the high frequency is actually determined according to the loss coefficient of the unvulcanized rubber as described later.

【0021】上記は加硫成形によりソリッドタイヤとな
る厚肉複合体10を例として説明したが、その他の厚肉
ゴムタイヤ全般及びそれ以外の厚肉ゴム物品における厚
肉複合体にも適用することができる。
Although the above description has been given by taking as an example the thick composite 10 which becomes a solid tire by vulcanization molding, the present invention can also be applied to other thick rubber tires in general and other thick rubber composites in thick rubber articles. it can.

【0022】一般に上記厚肉複合体10は、加硫成形後
のゴム製品、例えばタイヤとして各部分が異種の要求性
能に対応する必要上、複数種の未加硫ゴム10−1、1
0−2、10−3は各々配合設計が大きく異なり、従っ
て各未加硫ゴム組成は互いに大きく相違するのが通例で
ある。また、しばしば製造工程に対する配慮からの要求
に応えるため同様な相違が生じる。
In general, the above thick-walled composite 10 is made of a plurality of types of unvulcanized rubbers 10-1 and 10-1 because a rubber product after vulcanization molding, for example, a tire needs to cope with different performance requirements.
Nos. 0-2 and 10-3 each have a significantly different blending design, so that the respective unvulcanized rubber compositions generally differ greatly from each other. Also, similar differences often arise in order to meet the demands of the manufacturing process.

【0023】各未加硫ゴム10−1、10−2、10−
3の配合組成が大きく相違すれば、高周波電界内におけ
る損失係数ε・tanδの値もまた各未加硫ゴム相互間
で大きな較差が生じるのが通例である。そこで、これら
のゴムを互いに接合一体化した厚肉複合体10に高周
波、なかでもマイクロ波を照射して加熱すると、マイク
ロ波の電力ロスは厚肉複合体10内における損失係数の
値が大きい未加硫ゴム部分に選択的に集中する結果、こ
の未加硫ゴム部分が主に加熱されて他の部分に比し著し
く高温となる現象を呈する。
Each unvulcanized rubber 10-1, 10-2, 10-
If the composition of No. 3 is greatly different, the value of the loss coefficient ε · tan δ in the high-frequency electric field also generally has a large difference between the unvulcanized rubbers. Therefore, when the thick composite body 10 in which these rubbers are joined and integrated with each other is heated by irradiating a high frequency wave, especially a microwave, the power loss of the microwave is not large because the value of the loss coefficient in the thick composite body 10 is large. As a result of being selectively concentrated on the vulcanized rubber portion, the unvulcanized rubber portion is mainly heated and exhibits a phenomenon in which the temperature becomes significantly higher than that of the other portions.

【0024】これは、未加硫ゴム10−1、10−2、
10−3にて消費するマイクロ波電力ロスPが、下記式
にて与えられる。
This is because the unvulcanized rubber 10-1, 10-2,
The microwave power loss P consumed at 10-3 is given by the following equation.

【0025】[0025]

【数1】P=(1/1.8)fv2 ×ε・tanδ×1
-10 (W/m3 ) (式中、fは発振周波数(Hz)を表し、vは電界の大
きさ(V/m)を表す。) ここに上式の右辺中、発振周波数fは被加熱物である厚
肉複合体10に対し最適となるように固定するのが合理
的であり、電界の大きさvについては、厚肉複合体10
が各未加硫ゴム相互間で損失係数の値に大きな較差を有
する場合、過大な加熱部分か生じるうれいを回避するた
め所定の限度以内に抑える必要があり、結局未加硫ゴム
10−1、10−2、10−3にて消費されるマイクロ
波電力ロス、すなわち発生する熱量は損失係数ε・ta
nδに比例するからである。
## EQU1 ## P = (1 / 1.8) fv 2 × ε · tan δ × 1
0 -10 (W / m 3 ) (where f represents the oscillation frequency (Hz) and v represents the magnitude of the electric field (V / m)) Here, in the right side of the above equation, the oscillation frequency f is It is reasonable to fix the thick composite 10 which is the object to be heated so as to be optimal.
If there is a large difference in the value of the loss coefficient between the unvulcanized rubbers, it is necessary to keep the loss coefficient within a predetermined limit in order to avoid the joy caused by an excessively heated portion. , 10-2, and the microwave power loss consumed at 10-3, that is, the amount of generated heat is a loss coefficient ε · ta
This is because it is proportional to nδ.

【0026】上に述べたところは、例えば従来の厚肉複
合体10にマイクロ波加熱を施した直後における各未加
硫ゴム10−1(例えば損失係数0.2)、10−2
(例えば損失係数1.05)、10−3(例えば損失係
数0.1)の表面部及び内部の温度を計測した例を図4
(a)(2種の未加硫ゴム使用の場合)、(b)(3種
の未加硫ゴム使用の場合)に示すとおり、損失係数の値
が最も大きい未加硫ゴム10−2の内部温度が他の未加
硫ゴム10−1、10−3に比し著しく高い温度を示す
ことから明らかである。
As described above, for example, each unvulcanized rubber 10-1 (for example, a loss coefficient of 0.2), 10-2 immediately after microwave heating is applied to the conventional thick composite 10
FIG. 4 shows an example in which the surface and internal temperatures of 10-3 (for example, a loss factor of 0.15) and 10-3 (for example, a loss factor of 0.1) are measured.
As shown in (a) (in the case of using two types of unvulcanized rubber) and (b) (in the case of using three types of unvulcanized rubber), the unvulcanized rubber 10-2 having the largest value of the loss coefficient was obtained. This is apparent from the fact that the internal temperature shows a remarkably higher temperature than the other unvulcanized rubbers 10-1 and 10-3.

【0027】よって冒頭で述べた従来のマイクロ波加熱
を可能とする対象が、単一の配合ゴム組成になる厚肉体
又はこれに類似した、各未加硫ゴム相互間の配合組成が
近似した厚肉複合体に限定されるのは上記理由による。
Therefore, the object of the conventional microwave heating described at the beginning is a thick body having a single compound rubber composition or a similar material having a similar compound composition between unvulcanized rubbers. It is for the above reasons that it is limited to meat complexes.

【0028】そこで、配合組成が互いに大きく相違する
未加硫ゴム10−1、10−2、10−3のうち、損失
係数の値が小さい未加硫ゴム組成、例えば未加硫ゴム1
0−1、10−3に上述したような特性を有する含水化
合物を所定量添加配合することにより、これらの損失係
数の値を大きくすることができる。
Therefore, among the unvulcanized rubbers 10-1, 10-2, and 10-3 whose composition is greatly different from each other, the unvulcanized rubber composition having a small loss coefficient, for example, the unvulcanized rubber 1
By adding a predetermined amount of a hydrated compound having the above-described properties to 0-1, 10-3, the values of these loss coefficients can be increased.

【0029】これは、実施例にて詳述するように上記従
来例の厚肉複合体10の未加硫ゴム10−1(例えば損
失係数0.2)及び10−3(例えば損失係数0.1)
に前掲の各種含水化合物を、加えられる未加硫ゴムのゴ
ム成分100重量部に対して、1.5〜20.0重量部
添加配合することにより、これらの損失係数の値が共に
1.00まで高まることを見出した結果に基づく知見で
ある。
This is because, as described in detail in the embodiments, the unvulcanized rubbers 10-1 (for example, loss coefficient 0.2) and 10-3 (for example, loss coefficient 0. 1)
By adding 1.5 to 20.0 parts by weight of the above-mentioned various water-containing compounds to 100 parts by weight of the rubber component of the unvulcanized rubber to be added, the values of these loss coefficients are both 1.00. It is the knowledge based on the result that it found that it increased.

【0030】さらに上記の損失係数の値を1.00とし
た未加硫ゴム10−1、10−3と従来例と同じ未加硫
ゴム10−2(例えば損失係数1.05)との各種厚肉
複合体10に、従来例と同一照射条件の下で、高周波誘
電加熱、例えばマイクロ波加熱を施した直後における計
測温度を図5(a)、(b)(実際例にて詳述する)及
び図6(実施例にて詳述する)に示すが、これらは何れ
も従来例の図4(a)、(b)にて特に難昇温部B又は
その近傍部分が示していた低い温度が、表面部に比し、
より高温度を示すまで顕著に上昇することを表してい
る。なお図4〜図6は、図2(b)、図3(b)に示す
環状厚肉複合体10の断面を図で上下に2分して(w/
2)難昇温部Bを通る線上の各点にて測定した温度をプ
ロットした温度分布グラフを示す。
Further, various types of the unvulcanized rubbers 10-1 and 10-3 having the above-mentioned loss coefficient value of 1.00 and the same unvulcanized rubber 10-2 (for example, a loss coefficient of 1.05) as the conventional example were used. The measured temperature immediately after high-frequency dielectric heating, for example, microwave heating is applied to the thick-walled composite 10 under the same irradiation conditions as the conventional example, will be described in detail with reference to FIGS. ) And FIG. 6 (which will be described in detail in the embodiment), but these are all low in the case where the difficult-to-heat-up portion B or its vicinity is particularly shown in FIGS. 4 (a) and 4 (b) of the conventional example. The temperature is lower than the surface,
This indicates that the temperature rises significantly until a higher temperature is indicated. FIGS. 4 to 6 show the cross section of the annular thick composite body 10 shown in FIGS. 2B and 3B divided vertically into two parts (w /
2) A temperature distribution graph in which temperatures measured at respective points on a line passing through the hardly-heated portion B are plotted.

【0031】ここに一般には単一の配合組成になる未加
硫ゴムなどの誘電体に対するマイクロ波の浸透深さは発
振周波数fに反比例するとされているが、この図5、図
6に例示するような昇温現象は、例えば厚肉体の形状、
大きさ、ゴム配合組成などに応じ難昇温部B近傍にてマ
イクロ波を重複作用させ得るようなマイクロ波周波数f
を適宜選択することにより得られる。なお図5、図6に
示す例ではこの周波数fを915MHzとしたものであ
り、ちなみにこの周波数fを2450MHzとしたとこ
ろ難昇温部Bの温度が表面部のそれに比し大幅に低い結
果を示した。
Here, it is generally said that the penetration depth of microwaves into a dielectric material such as unvulcanized rubber having a single compounding composition is inversely proportional to the oscillation frequency f. Examples are shown in FIGS. 5 and 6. Such a heating phenomenon, for example, the shape of a thick body,
A microwave frequency f at which microwaves can be caused to overlap in the vicinity of the hardly-heated portion B depending on the size, rubber compounding composition, etc.
Is appropriately selected. In the examples shown in FIGS. 5 and 6, this frequency f was set to 915 MHz. Incidentally, when this frequency f was set to 2450 MHz, the result that the temperature of the difficult-to-heat-up portion B was significantly lower than that of the surface portion was shown. Was.

【0032】さらに上述の作用と、含水化合物の添加量
又はその種類とを適宜組合わせることにより、厚肉複合
体10の難昇温複合体10の難昇温部Bから表面部に至
る間の温度分布のありさまを所望の形態とすることが可
能となる。
Further, by appropriately combining the above-described action with the amount or type of the hydrated compound added, it is possible to increase the temperature of the thick-walled complex 10 from the hardly-heated portion B of the complex 10 to the surface portion. The desired temperature distribution can be obtained.

【0033】かくして厚肉複合体10の未加硫ゴム10
−1、10−2、10−3相互間における損失係数の較
差を縮小することにより、この厚肉複合体10に高周波
誘電加熱、とりわけマイクロ波加熱を施した際、難昇温
部B及びその近傍を所望の温度まで、表面部の温度以上
に高めることができる。
Thus, the unvulcanized rubber 10 of the thick composite 10
-1, 10-2, and 10-3 reduce the difference between the loss coefficients, so that when the thick-walled composite 10 is subjected to high-frequency dielectric heating, particularly microwave heating, it is difficult to increase the temperature in the temperature rising portion B and its The temperature in the vicinity can be increased to a desired temperature, which is equal to or higher than the surface temperature.

【0034】その場合、被加熱体である厚肉複合体10
の各未加硫ゴムの配合組成、形状、寸法などに応じて、
最適なマイクロ波の周波数fの他に、出力電力又は被加
熱体回りの電界の大きさv、照射時間などの諸条件を設
定して予備加熱を実施するのは勿論であり、かくして準
備した厚肉複合体10に、望ましくは引続いて慣例に従
い金型を用いた加硫成形を施せば、高温短時間で厚肉複
合体10の各部における加硫度を適正に保ったゴム製品
が得られる。
In this case, the thick composite body 10 to be heated is
Depending on the composition, shape, dimensions, etc. of each unvulcanized rubber,
In addition to the optimum frequency f of the microwave, the output power or the magnitude v of the electric field around the object to be heated, various conditions such as the irradiation time are set, and the preheating is of course carried out. If the meat composite 10 is desirably subsequently subjected to vulcanization molding using a mold in accordance with a customary manner, a rubber product in which the degree of vulcanization at each part of the thick composite 10 is appropriately maintained in a short time at a high temperature can be obtained. .

【0035】これにより厚肉複合体10の加硫成形後に
おけるゴム製品は、その各部に加硫の過不足がなく、し
かも少量の含水化合物の添加配合で足りるので要求性能
の発揮に適うゴム物性を保持することができる。同時に
高温短時間条件下での高能率な加硫成形が可能となるの
で、この工程全般にわたる生産性を大幅に向上すること
に寄与する。さらにマイクロ波などの高周波出力電力を
一層高めることも可能となり照射時間の短縮も可能とな
る。
As a result, the rubber product after vulcanization molding of the thick-walled composite 10 does not have excessive or insufficient vulcanization in each part thereof, and a small amount of a water-containing compound is enough to be added and compounded. Can be held. At the same time, high-efficiency vulcanization molding under high-temperature and short-time conditions becomes possible, which contributes to greatly improving the productivity throughout this process. Further, high-frequency output power such as microwaves can be further increased, and irradiation time can be shortened.

【0036】[0036]

【実施例】まず後述する実施例1、2及び比較例1、2
に共通するマイクロ波加熱の例につき図1を用いて説明
する。
EXAMPLES First, Examples 1 and 2 and Comparative Examples 1 and 2 to be described later.
An example of microwave heating common to the above will be described with reference to FIG.

【0037】図1は厚肉複合体10にマイクロ波加熱を
施す装置を示す概略構成図であり、本装置はマイクロ波
発生装置12、マイクロ波の導波管14、厚肉複合体1
0にマイクロ波照射を施すアプリケータ16、アプリケ
ータ内のマイクロ波を反射攪拌するスターラ(回転翼)
18、好ましくはマイクロ波を透過するポリプロピレン
などの合成樹脂からなる回転支持台20からなってい
る。 〔実施例1,比較例1〕加硫成形後にソリッドタイヤと
なる円環状厚肉複合体10は図2(a)、(b)に従
い、A−A線に沿う総厚さtを10cmとし、最内側未
加硫ゴム10−1は通常のゴムに短繊維を均して分散混
入したゴムであり、厚さt/2は5cm、その損失係数
が0.2であり、最外側未加硫ゴム10−2は表1に示
す配合組成になり、厚さt/2が5cm、その損失係数
は1.05である。なおこの例における難昇温部は両ゴ
ム10−1と10−2との接合面のほぼ中央(w/2)
周線上Bにあり、容積は約17500cm3 とした。
FIG. 1 is a schematic structural view showing an apparatus for applying microwave heating to a thick-walled composite 10, which is a microwave generator 12, a microwave waveguide 14, and a thick-walled composite 1
An applicator 16 for applying microwave irradiation to a stirrer, and a stirrer (rotary blade) for reflecting and stirring microwaves in the applicator.
18, preferably a rotating support 20 made of a synthetic resin such as polypropylene that transmits microwaves. [Example 1, Comparative Example 1] The annular thick-walled composite 10 which becomes a solid tire after vulcanization molding has a total thickness t along the line AA of 10 cm according to FIGS. 2 (a) and 2 (b), The innermost unvulcanized rubber 10-1 is a rubber in which short fibers are evenly dispersed and mixed into ordinary rubber, the thickness t / 2 is 5 cm, the loss coefficient is 0.2, and the outermost unvulcanized rubber is 10%. Rubber 10-2 had the composition shown in Table 1, had a thickness t / 2 of 5 cm, and had a loss coefficient of 1.05. In this example, the difficult temperature rising portion is substantially at the center (w / 2) of the joining surface between the rubbers 10-1 and 10-2.
It was on the circumference B and the volume was about 17,500 cm 3 .

【0038】[0038]

【表1】 上記の厚肉複合体10を比較例1として用い、最内側未
加硫ゴム10−1に下記、本発明における含水化合物を
添加配合した(A)、(B)の厚肉複合体10を、各未
加硫ゴム10−1に添字a、bを付し、実施例1として
準備した。 (A)10−1a;含水メタケイ酸ソーダ8重量部添
加。 (B)10−1b;含水ピロリン酸ナトリウム10重量
部を添加。 なお上記(A)、(B)の損失係数は1.00に揃え
た。
[Table 1] Using the thick composite 10 described above as Comparative Example 1, the thick composite 10 of (A) and (B) in which the innermost unvulcanized rubber 10-1 was mixed with a hydrous compound according to the present invention described below, Each unvulcanized rubber 10-1 was provided with a suffix a or b, and prepared as Example 1. (A) 10-1a; 8 parts by weight of hydrous sodium metasilicate was added. (B) 10-1b; 10 parts by weight of hydrous sodium pyrophosphate was added. The loss coefficients of (A) and (B) were set to 1.00.

【0039】(A)、(B)の各実施例1と比較例1と
に、それぞれ別個に図1に例示する装置にてマイクロ波
加熱を施した。なおマイクロ波の周波数fを915MH
z、出力電力は3KW、照射時間を約10分とした。
Each of Example 1 and Comparative Example 1 in (A) and (B) was separately subjected to microwave heating by the apparatus illustrated in FIG. The frequency f of the microwave is 915 MH
z, the output power was 3 KW, and the irradiation time was about 10 minutes.

【0040】マイクロ波加熱を施した後、引続き各厚肉
複合体10の各部温度を測定した結果を、比較例1は図
4(a)、実施例1の(A)、(B)を図5(a)、
(b)に示す。なお図5(a)は(A)、図5(b)は
(B)に対応する。なお各図において横軸は厚さt(c
m)を示す。図4(a)、図5から明らかなように、実
施例1の各厚肉複合体10は難昇温部B近傍の温度が表
面部より高く、引続く加硫成形に対し好ましい温度分布
を示し、比較例1の温度分布に対し大幅に改善されてい
る。
After microwave heating, the temperature of each part of each thick-walled composite 10 was measured. Comparative Example 1 shows FIGS. 4 (a) and (A) and (B) of Example 1. 5 (a),
(B). 5A corresponds to FIG. 5A, and FIG. 5B corresponds to FIG. In each figure, the horizontal axis represents the thickness t (c).
m). As is clear from FIGS. 4A and 5, each thick composite body 10 of Example 1 has a higher temperature in the vicinity of the hardly-heated portion B than the surface portion, and has a preferable temperature distribution for the subsequent vulcanization molding. As shown, the temperature distribution of Comparative Example 1 was greatly improved.

【0041】上記各厚肉複合体10は金型により加硫成
形してソリッドタイヤとした後、各ソリッドタイヤの各
部の加硫度を図4〜図6における温度測定位置近傍で測
定したところ、冒頭にて述べた適正加硫度を100とす
る指数にて表せば、比較例1は100〜440にわたる
範囲の分布を有し、これに対し実施例1の(A)、
(B)は100〜170の範囲内に収まり、かつゴムの
基本物性に変化は見出せず製品性能は確保されている。
Each of the thick-walled composites 10 was vulcanized and molded with a mold to obtain a solid tire, and the degree of vulcanization of each part of each solid tire was measured in the vicinity of the temperature measurement position in FIGS. Expressed as an index with the appropriate degree of vulcanization described as 100 at the beginning, Comparative Example 1 has a distribution in the range of 100 to 440, whereas (A) of Example 1
(B) falls within the range of 100 to 170, and there is no change in the basic physical properties of the rubber, and the product performance is secured.

【0042】なお試みに各実施例1が示す加硫度の範囲
内に収まるように、比較例1に低温加硫成形を施してみ
ようとしても不可能であった。
In this connection, it was impossible to perform low-temperature vulcanization molding on Comparative Example 1 so as to fall within the range of the degree of vulcanization shown in each Example 1.

【0043】〔実施例2,比較例2〕同様にソリッドタ
イヤとなる厚肉複合体10は図3(a)、(b)に従
い、A−A線に沿う総厚さtを10cmとし、最内側未
加硫ゴム10−1は実施例1と同じ損失係数が0.2の
短繊維混入ゴムとし、厚さt/2は5cmであり、最外
側未加硫ゴム10−2は表1に示す実施例1と同一配合
の損失係数が1.05で、厚さをt/4の2.5cmと
し、中間未加硫ゴム10−3は表1に示す配合組成と
し、その損失係数は0.1で、厚さt/4は2.5cm
である。なおこの例においても難昇温部は最内側未加硫
ゴム10−1と中間未加硫ゴム10−3との接合面のほ
ぼ中央周線上Bにあり、容積は約17500cm3 とし
た。
Example 2 and Comparative Example 2 Similarly, the thick composite 10 which is to be a solid tire has a total thickness t along the line AA of 10 cm according to FIGS. 3 (a) and 3 (b). The inner unvulcanized rubber 10-1 is a short fiber mixed rubber having the same loss coefficient of 0.2 as in Example 1, the thickness t / 2 is 5 cm, and the outermost unvulcanized rubber 10-2 is shown in Table 1. The loss coefficient of the same compound as in Example 1 is 1.05, the thickness is 2.5 cm of t / 4, and the intermediate unvulcanized rubber 10-3 has the compound composition shown in Table 1, and the loss coefficient is 0. .1, the thickness t / 4 is 2.5 cm
It is. Also in this example, the difficult temperature rising portion is located substantially on the center circumferential line B of the joining surface between the innermost unvulcanized rubber 10-1 and the intermediate unvulcanized rubber 10-3, and has a volume of about 17,500 cm 3 .

【0044】この厚肉複合体10は比較例2として用
い、最内側未加硫ゴム10−1及び中間未加硫ゴム10
−3に下記含水化合物を添加配合した(C)を実施例2
として準備した。なお添字cは実施例1と同様である。 (C)10−1c;含水メタケイ酸ソーダを8.0重量
部添加。
This thick-walled composite 10 was used as Comparative Example 2, and the innermost unvulcanized rubber 10-1 and the intermediate unvulcanized rubber 10 were used.
(C) obtained by adding and blending the following hydrated compound to -3 in Example 2.
Prepared as The suffix c is the same as in the first embodiment. (C) 10-1c; 8.0 parts by weight of hydrous sodium metasilicate was added.

【0045】10−3c;含水ピロリン酸ソーダを1
0.0重量部を添加。 なお(C)の最内側及び中間の各未加硫ゴムの損失係数
は1.00に揃えた。
10-3c: 1 part of hydrous sodium pyrophosphate
Add 0.0 parts by weight. The loss coefficient of each of the innermost and middle unvulcanized rubbers in (C) was set to 1.00.

【0046】(C)の実施例2と比較例2とに、それぞ
れ別個に図1に例示する装置にてマイクロ波加熱を施し
た。なおマイクロ波の周波数fを915MHz、出力電
力は3KW、照射時間は約10分とした。
Microwave heating was performed separately on the device of Example 2 and Comparative Example 2 in (C) using the apparatus illustrated in FIG. The microwave frequency f was 915 MHz, the output power was 3 KW, and the irradiation time was about 10 minutes.

【0047】マイクロ波加熱を施した後、引続き各厚肉
複合体10の各部温度を測定した結果を、比較例2は図
4(b)、実施例2の(C)を図6に示す。なお、図の
横軸は厚さtを示す。図4(b)、図6から明らかなよ
うに、実施例2においても厚肉複合体10は難昇温部B
近傍の温度が表面部より高く、引続く加硫成形に対し好
ましい温度分布を示し、比較例2の温度分布に比しより
大幅に改善されている。
After microwave heating, the results of successive measurements of the temperature of each part of each thick composite 10 are shown in FIG. 4 (b) for Comparative Example 2 and FIG. 6 for (C) in Example 2. The abscissa in the figure indicates the thickness t. As is clear from FIG. 4B and FIG. 6, also in the second embodiment, the thick composite body 10
The temperature in the vicinity is higher than the surface portion, and shows a favorable temperature distribution for the subsequent vulcanization molding, which is much more improved than the temperature distribution in Comparative Example 2.

【0048】上記各厚肉複合体10をやはり金型により
加硫成形してソリッドタイヤとした後、それらの各部の
加硫度を図4〜図6の温度測定位置近傍で測定し、その
結果を適正加硫度を100とする指数にて表したとこ
ろ、やはり比較例2は100〜550にわたる範囲の分
布を有し、これに対し実施例2の(C)は100〜18
0の範囲内に収まり、かつゴムの基本物性に変化は見出
せず製品性能が確保されている。
Each of the above thick-walled composites 10 was also vulcanized and molded with a mold to obtain a solid tire, and then the degree of vulcanization of each part was measured near the temperature measurement position in FIGS. Is expressed by an index with the appropriate degree of vulcanization being 100, Comparative Example 2 also has a distribution in the range of 100 to 550, whereas (C) of Example 2 has a distribution of 100 to 18
0, and no change was found in the basic physical properties of the rubber, and the product performance was secured.

【0049】また試みに各実施例2の加硫度の範囲内に
収まるように比較例2のソリッドタイヤに低温加硫成形
を施してみようとしてもやはり不可能であった。
Further, it was not possible to attempt low-temperature vulcanization molding of the solid tire of Comparative Example 2 so as to fall within the range of the degree of vulcanization of each Example 2.

【0050】[0050]

【発明の効果】この発明によれば、複数種の互いに大き
く相違する配合組成からなる未加硫ゴムを含む厚肉複合
体に対し、高周波誘電加熱、なかでもマイクロ波加熱を
施して難昇温部の温度を表面部のそれに比し、より一層
高温度まで高める予備加熱を可能とし、これにより、そ
の後の加硫成形後における製品が要求性能に対し十分対
応できる適正なゴム物性を備えることができ、同時に加
硫成形工程全般にわたる生産性を大幅に向上することを
可能とする厚肉未加硫ゴム複合体の加硫成形方法を提供
することができる。
According to the present invention, high-frequency dielectric heating, in particular, microwave heating is applied to a thick-walled composite containing an unvulcanized rubber having a composition greatly different from that of a plurality of types to make it difficult to raise the temperature. The pre-heating, which raises the temperature of the part to a higher temperature than that of the surface part, enables the product after vulcanization molding to have appropriate rubber physical properties that can sufficiently meet the required performance. Thus, it is possible to provide a vulcanization molding method for a thick-wall unvulcanized rubber composite, which can greatly improve productivity throughout the vulcanization molding step.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に適用されるマイクロ波加熱の装置の一
例を示す概略構成図である。
FIG. 1 is a schematic configuration diagram showing an example of a microwave heating apparatus applied to the present invention.

【図2】厚肉複合体の一例を示し、(a)は斜視図であ
り、(b)は(a)のA−A線の断面図である。
FIGS. 2A and 2B show an example of a thick-walled composite, where FIG. 2A is a perspective view and FIG. 2B is a cross-sectional view taken along line AA of FIG.

【図3】厚肉複合体の他の例を示し、(a)は斜視図で
あり、(b)は(a)のA−A線の断面図である。
FIGS. 3A and 3B show another example of a thick-walled composite, where FIG. 3A is a perspective view and FIG. 3B is a cross-sectional view taken along line AA of FIG.

【図4】従来の厚肉複合体の高周波誘電加熱による温度
分布を示す図である。
FIG. 4 is a diagram showing a temperature distribution of a conventional thick-walled composite by high-frequency dielectric heating.

【図5】本発明における実施例1の厚肉複合体の高周波
誘電加熱による温度分布を示す図である。
FIG. 5 is a diagram showing a temperature distribution of high-frequency dielectric heating of the thick composite of Example 1 in the present invention.

【図6】本発明における実施例2の厚肉複合体の高周波
誘電加熱による温度分布を示す図である。
FIG. 6 is a diagram showing a temperature distribution of a thick composite of Example 2 of the present invention by high-frequency dielectric heating.

【符号の説明】[Explanation of symbols]

10 厚肉複合体 10−1 未加硫ゴム 10−2 未加硫ゴム 10−3 未加硫ゴム Reference Signs List 10 thick-walled composite 10-1 unvulcanized rubber 10-2 unvulcanized rubber 10-3 unvulcanized rubber

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C08K 3:24 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI C08K 3:24

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 複数種の未加硫ゴムを互いに接合一体化
した厚肉複合体を、予め高周波誘電加熱により加熱した
後、加硫成形するにあたり、 各未加硫ゴムのうち、その比誘電率(ε)と誘電体損失
角(tanδ)との積ε・tanδで表される損失係数
の値の小さい未加硫ゴムの成分組成中に予め含水化合物
を添加配合して、各未加硫ゴム相互間における損失係数
の較差を縮小することを特徴とする厚肉未加硫ゴム複合
体の加硫成形方法。
1. A thick-walled composite in which a plurality of types of unvulcanized rubbers are joined and integrated with each other, are heated in advance by high-frequency dielectric heating and then vulcanized. A water-containing compound is previously added to the component composition of the unvulcanized rubber having a small loss coefficient represented by the product of the ratio (ε) and the dielectric loss angle (tan δ). A vulcanization molding method for a thick-walled unvulcanized rubber composite, characterized in that the difference in loss coefficient between rubbers is reduced.
【請求項2】 前記含水化合物が、50〜200℃にお
いて、水を放出する化合物であることを特徴とする請求
項1記載の厚肉未加硫ゴム複合体の加硫成形方法。
2. The vulcanization molding method for a thick unvulcanized rubber composite according to claim 1, wherein the water-containing compound is a compound that releases water at 50 to 200 ° C.
【請求項3】 前記含水化合物の添加量はこの化合物が
添加される未加硫ゴムのゴム成分100重量部に対し
て、0.5〜20重量部であることを特徴とする請求項
1記載の厚肉未加硫ゴム複合体の加硫成形方法。
3. The amount of the water-containing compound added is 0.5 to 20 parts by weight based on 100 parts by weight of the rubber component of the unvulcanized rubber to which the compound is added. Vulcanization molding method of thick unvulcanized rubber composite.
JP807697A 1997-01-20 1997-01-20 Method for vulcanizing and molding thick-walled unvulcanized rubber composite Pending JPH10202670A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP807697A JPH10202670A (en) 1997-01-20 1997-01-20 Method for vulcanizing and molding thick-walled unvulcanized rubber composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP807697A JPH10202670A (en) 1997-01-20 1997-01-20 Method for vulcanizing and molding thick-walled unvulcanized rubber composite

Publications (1)

Publication Number Publication Date
JPH10202670A true JPH10202670A (en) 1998-08-04

Family

ID=11683257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP807697A Pending JPH10202670A (en) 1997-01-20 1997-01-20 Method for vulcanizing and molding thick-walled unvulcanized rubber composite

Country Status (1)

Country Link
JP (1) JPH10202670A (en)

Similar Documents

Publication Publication Date Title
US2280771A (en) Method of baking or vulcanizing india-rubber or similar materials
RU2446047C2 (en) Method and device for production of moulded products
US4544339A (en) Apparatus for vulcanization of rubber by dielectric heating
JPH0257324A (en) Method and device for bonding fiber-reinforced plastic part
JPH0569699B2 (en)
US6984352B1 (en) Dielectric mold for uniform heating and molding of polymers and composites in microwave ovens
CA1086462A (en) Method of retreading vehicle tires using microwave heating
US2626428A (en) Heat transfer corrector for electronic molds
US20090014918A1 (en) Microwave-assisted press cure processing of friction pads
JPH10202670A (en) Method for vulcanizing and molding thick-walled unvulcanized rubber composite
US3249658A (en) Processes for curing rubber compounds
JPH06344510A (en) Vulcanization molding of thick-walled unvulcanized rubber composite
JPH10309725A (en) Vulcanization molding method of wall-thickened multi-layer structural rubber article
US2703436A (en) Method of vulcanizing rubber sheet material
JP3764366B2 (en) Tire manufacturing method
EP1109664B1 (en) Induction curable tire components and methods of selectively curing such components
JPH09193159A (en) Vulcanizing method for tire and post cure box employed therefor
US6660122B1 (en) Induction curable tire components and methods of selectively curing such components
US4559093A (en) Method for retreading vehicle tires
US2526699A (en) Method of compensating for or preventing heat losses from material during dielectric heating thereof
JP2942465B2 (en) Manufacturing method for pneumatic tires
JPH08216289A (en) Manufacture of retreaded tire
JPS5824430A (en) Vulcanization of elastomer article
EP0404380B1 (en) Method for molding and vulcanizing of rubber
JPH0542554A (en) Method for molding of rubber