JPH06341941A - Surface tension measuring method of pendant type droplet - Google Patents
Surface tension measuring method of pendant type dropletInfo
- Publication number
- JPH06341941A JPH06341941A JP15450793A JP15450793A JPH06341941A JP H06341941 A JPH06341941 A JP H06341941A JP 15450793 A JP15450793 A JP 15450793A JP 15450793 A JP15450793 A JP 15450793A JP H06341941 A JPH06341941 A JP H06341941A
- Authority
- JP
- Japan
- Prior art keywords
- droplet
- surface tension
- coordinate
- measurement
- liquid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Force Measurement Appropriate To Specific Purposes (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は、ペンダント液滴型表
面張力測定法に関するものである。さらに詳しくは、こ
の発明は、化学や薬品分野における液体表面張力、液体
純度、液体の表面電荷、あるいは表面電荷容量の測定
や、界面活性剤の性能試験、印刷コピー機やジェットプ
リンター用のカラー液体の表面特性の測定、固体表面塗
布用液体のぬれ特性、さらには、金属鉱業における浮遊
選鉱用泡立ち試験や、機械工業における金属用潤滑油の
特性試験、生化学や食品における気液や液液界面の張力
の検出等に有用な、ペンダント液滴型表面張力測定法に
関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pendant droplet type surface tension measuring method. More specifically, the present invention is directed to the measurement of liquid surface tension, liquid purity, liquid surface charge or surface charge capacity in the chemical and pharmaceutical fields, surfactant performance tests, and color liquids for printing copiers and jet printers. Surface properties measurement, wetting property of liquid for solid surface coating, foaming test for flotation in metal mining industry, property test of metal lubricating oil in machinery industry, gas-liquid or liquid-liquid interface in biochemistry and food The present invention relates to a pendant droplet type surface tension measuring method, which is useful for detecting the tension of water.
【0002】[0002]
【従来の技術とその課題】従来より、化学や薬品分野に
おける液体表面張力、液体純度、液体の表面電荷あるい
は表面電荷容量の測定や、各種分野における界面活性、
ぬれ特性、起泡特性、気液や液液界面の張力の検出のた
めに、液液および気液界面の表面張力が測定されてきて
おり、そのためのより精度の高い簡便な方法への工夫も
様々に検討されてきている。2. Description of the Related Art Conventionally, measurement of liquid surface tension, liquid purity, liquid surface charge or surface charge capacity in the fields of chemistry and chemicals, surface activity in various fields,
The surface tensions of liquid-liquid and gas-liquid interfaces have been measured in order to detect the wetting properties, foaming properties, and tensions of gas-liquid and liquid-liquid interfaces. For that purpose, it is also possible to devise a more accurate and simple method. It has been studied in various ways.
【0003】このような表面張力を測定する方法として
は、たとえば、毛管上昇法、泡利用法、液滴重量法、ウ
ィルヘルミ法などが広く一般的に用いられている。この
従来方法の一つである毛管上昇法は、液体中に毛細管を
浸し、液体と毛細管内壁との付着力が液体の凝集力より
大きい場合には、毛細管内に液体が上昇することから、
平衡に達したときの液面の高さ、液体の密度、重力加速
度、および液体のねれ角から表面張力を求めるものであ
る。しかしながら、実際には、この毛管上昇法によって
毛細管内壁への液体のぬれ角を精度よく測定することは
非常に困難である。このため、精度よく表面張力を求め
ることは不可能である。As a method for measuring such surface tension, for example, a capillary rising method, a bubble utilization method, a droplet weight method, a Wilhelmy method and the like are widely used. The capillary rising method, which is one of the conventional methods, is to immerse the capillary tube in the liquid, and when the adhesive force between the liquid and the inner wall of the capillary is larger than the cohesive force of the liquid, the liquid rises in the capillary tube.
The surface tension is obtained from the height of the liquid surface when the equilibrium is reached, the density of the liquid, the gravitational acceleration, and the helix angle of the liquid. However, in reality, it is very difficult to accurately measure the wetting angle of the liquid on the inner wall of the capillary by this capillary rising method. Therefore, it is impossible to accurately determine the surface tension.
【0004】また、泡利用法は、チューブ等を用いて液
体中に気体の泡を押し出し、その泡を徐々に膨らませ
て、泡の内圧と外圧の差から表面張力を推定するもので
ある。しかしながら、この方法で求めた表面張力は、平
衡時の表面張力ではなくて動特性であるため、誤差が非
常に大きくなるといった欠点がある。また、液滴重量法
は、細管の先端で液滴をゆっくりと成長させ、液滴の重
さがその液体の表面張力よりも大きくなって落下する現
象から表面張力を算出する方法である。この方法におい
ても、その表面張力は動特性から求めたものであるた
め、実際の表面張力に比べて誤差が非常に大きい。さら
に、この方法においては、すべての液滴が落下するので
はなく、多少の液滴は細管に残るので、この分だけ補正
する必要もあり、測定は非常に複雑となる。In the bubble utilization method, a bubble of gas is pushed into a liquid by using a tube or the like, the bubble is gradually expanded, and the surface tension is estimated from the difference between the internal pressure and the external pressure of the bubble. However, the surface tension obtained by this method is not a surface tension at the time of equilibrium but a dynamic characteristic, so that there is a drawback that the error becomes very large. The droplet weight method is a method of slowly growing a droplet at the tip of a thin tube and calculating the surface tension from the phenomenon that the weight of the droplet becomes larger than the surface tension of the liquid and drops. Also in this method, the surface tension is obtained from the dynamic characteristics, and therefore the error is very large compared to the actual surface tension. Further, in this method, not all of the droplets drop, but some droplets remain in the capillary, so it is necessary to correct this amount, and the measurement becomes very complicated.
【0005】また、ウィルヘルミ法は、ガラスまたはプ
ラチナ等の測定板を液体表面に接触させ、その測定板の
表面張力による重量増加分を天秤を用いて測定する方法
である。しかしながら、この方法ではぬれ角のデータが
必要であり、簡便にかつ精度よく表面張力を測定するこ
とができないという欠点がある。この発明は、以上の通
りの事情に鑑みてなされたものであり、従来の表面張力
測定方法の欠点を解消し、簡便に、かつ、表面張力の正
確かつ迅速な測定を可能とする新しい表面張力測定法を
提供することを目的としている。The Wilhelmi method is a method in which a measuring plate such as glass or platinum is brought into contact with the surface of a liquid, and the weight increase due to the surface tension of the measuring plate is measured using a balance. However, this method requires the data of the wetting angle, and has the drawback that the surface tension cannot be measured easily and accurately. The present invention has been made in view of the above circumstances, and a new surface tension that solves the drawbacks of the conventional surface tension measuring method and enables simple and accurate surface tension measurement. It is intended to provide a measurement method.
【0006】[0006]
【課題を解決するための手段】この発明は上記の課題を
解決するものとして、液滴を細管先端に垂下させて、そ
の液滴表面の座標値を観測決定し、この座標値と、毛管
定数、ペンダント液滴の曲率半径、測定時の座標位置、
座標変換時の角度をパラメータとする液滴表面の算出座
標値との差を最小にして、この時のパラメータから表面
張力を求めることを特徴とするペンダント液滴型表面張
力測定法を提供する。In order to solve the above-mentioned problems, the present invention hangs a droplet on the tip of a thin tube and observes and determines the coordinate value of the surface of the droplet. The coordinate value and the capillary constant are determined. , Radius of curvature of pendant droplet, coordinate position at measurement,
Provided is a pendant droplet type surface tension measuring method characterized by minimizing a difference from a calculated coordinate value of a droplet surface having an angle at the time of coordinate conversion as a parameter and obtaining the surface tension from the parameter at this time.
【0007】すなわち、この発明は、細管先端から液滴
を垂下させ、そのペンダント型の液滴の表面形状を実測
し、さらに、ペンダント型の複雑な表面形状を理論的に
求め、その差を最小にするようにして表面張力を求める
ものである。このため、この発明の表面張力測定方法
は、重量、水圧、ぬれ角などを考慮する必要がない。さ
らに、この発明においては、迅速に表面張力を求めるこ
とができ、特定の時間における表面張力だけでなく、表
面張力の経時変化も測定可能である。 そして、液滴の
形状のみを実測値とし、他の量の計測を必要としないこ
とから、液滴が水等の液体に浸っている場合にも、外部
から電位を印加して、電気毛管力(電位依存表面張力)
をも求めることができる。That is, according to the present invention, a droplet is made to hang down from the tip of a thin tube, the surface shape of the pendant type droplet is actually measured, and a complex pendant type surface shape is theoretically obtained, and the difference between them is minimized. Then, the surface tension is obtained. Therefore, in the surface tension measuring method of the present invention, it is not necessary to consider weight, water pressure, wetting angle and the like. Further, in the present invention, the surface tension can be quickly obtained, and not only the surface tension at a specific time but also the change with time of the surface tension can be measured. Then, since only the shape of the droplet is used as the actual measurement value, and it is not necessary to measure other amounts, even when the droplet is submerged in a liquid such as water, an electric potential is applied from the outside and the electrocapillary force is applied. (Potential dependent surface tension)
Can also be asked.
【0008】液滴のガス中での表面張力を求めてガス吸
着量も測定することも可能となる。液滴吸着分子層のレ
オロジーも測定可能となる。もちろん、この発明では、
測定系の自動化によって、より迅速にかつ正確に表面張
力を測定することが可能となる。たとえば、液滴形状を
CCDカメラ等によって光学的に読み取り解析すること
である。この読み取り、および解析は自動化される。It is also possible to measure the gas adsorption amount by obtaining the surface tension of the droplet in the gas. The rheology of the droplet adsorption molecular layer can also be measured. Of course, in this invention,
The automation of the measurement system makes it possible to measure the surface tension more quickly and accurately. For example, the shape of the droplet is optically read and analyzed by a CCD camera or the like. This reading and analysis is automated.
【0009】[0009]
【作用】 (I)一般原理 まず、初めに、液滴(1)を図1に示すように細管
(2)より垂下させ、空気中または異なる不溶液中に生
成させる。この時、液滴は図1に示すようなペンダント
型の形をとる。そこで、たとえば、液滴の最下部の中心
に原点とした基準座標を考慮し、液滴のある点につい
て、その座標位置を実測により確定する。(I) General Principle First, first, a droplet (1) is made to hang down from a thin tube (2) as shown in FIG. 1, and is formed in air or in a different insoluble solution. At this time, the droplet has a pendant shape as shown in FIG. Therefore, for example, considering the reference coordinates with the origin at the center of the lowermost portion of the droplet, the coordinate position of a certain point of the droplet is determined by actual measurement.
【0010】次に、このペンダント型の液滴の形状を求
める。図1に示す座標(x,z) において液滴形状の形をx=
x(z)の関数形として与えると、その理論式(ラプラス方
程式)は、媒介変数θを用いて、Next, the shape of this pendant type droplet is determined. At the coordinates (x, z) shown in Fig. 1, the droplet shape is x =
Given as a functional form of x (z), its theoretical formula (Laplace equation) is
【0011】[0011]
【数1】 [Equation 1]
【0012】となる。この式1の媒介変数θとx とz の
関係は、[0012] The relationship between the parametric variables θ and x and z in Equation 1 is
【0013】[0013]
【数2】 [Equation 2]
【0014】となる。ここで、式1に関して必要な物理
化学パラメータは、表面張力γ、液滴内外の2相間の密
度差Δρ、および、液滴最下部の毛管圧Pcである。この
液滴最下部の毛管圧Pcは表面張力γと液滴最下部の曲率
半径R を用いて、[0014] Here, the physicochemical parameters required for Equation 1 are the surface tension γ, the density difference Δρ between the two phases inside and outside the droplet, and the capillary pressure Pc at the bottom of the droplet. The capillary pressure Pc at the bottom of the droplet is calculated by using the surface tension γ and the radius of curvature R at the bottom of the droplet.
【0015】[0015]
【数3】 [Equation 3]
【0016】と表すことができる。またさらに、液滴内
外の2相間の密度差Δρは、毛管定数q を用いて、It can be expressed as Furthermore, the density difference Δρ between the two phases inside and outside the droplet is calculated by using the capillary constant q
【0017】[0017]
【数4】 [Equation 4]
【0018】と表すことができる。実験から求めた座標
位置と理論値から求めた座標位置の差は、It can be expressed as The difference between the coordinate position obtained from the experiment and the coordinate position obtained from the theoretical value is
【0019】[0019]
【数5】 [Equation 5]
【0020】となり、最小二乗法を用いて、このφを最
小とするための、q,R,Δz,Δx,および座標変換時の角度
ωを求める。式5で、XiはThen, the least square method is used to find q, R, Δz, Δx and the angle ω at the time of coordinate conversion for minimizing this φ. In Equation 5, Xi is
【0021】[0021]
【数6】 [Equation 6]
【0022】であり、また、Ziは、And Zi is
【0023】[0023]
【数7】 [Equation 7]
【0024】である。すなわち、実験的に得られた液滴
曲線(Xi,Zi)(i=1,2,,,,nは測定点) を、式1および式2
を積分して得ることができる曲線Xi=Xi(Zi:q,R, Δz,Δ
x,ω) と比較し、実験値と理論値との差φ(q,R, Δz,Δ
x,ω) を最小にするように、q,R,Δz,Δx 、および、ω
を決定する。It is That is, the droplet curve (Xi, Zi) obtained experimentally (i = 1,2, ...
Can be obtained by integrating the curve Xi = Xi (Zi: q, R, Δz, Δ
x, ω), the difference between the experimental and theoretical values φ (q, R, Δz, Δ
x, ω) to minimize q, R, Δz, Δx, and ω
To decide.
【0025】理論曲線が毛管定数q 、曲率半径R という
パラメータの他に、Δz,Δx,ωを含むのは、液滴実験曲
線を定める座標系(x',z') と理論曲線の座標系(x,z) が
ずれているのを補正するためであり、図2のような対応
関係をもつ。実験測定点を50〜100 程度(n=50 〜100)と
り、式3のq,R,Δz,Δx,ωの5つのパラメータを変えつ
つ、左辺φを最小にする。 (II)解析方法 以上の一般原理において、式1および式2の積分をz=0,
x=0,θ=0の最低点から始めると一般的に積分は発散して
しまい、一般的に、解析は困難となる。そのため、式1
および式2の積分をθ=0以外のところから始めて発散を
防ぐ方法を採用する。The theoretical curve contains Δz, Δx, ω in addition to the parameters of the capillary constant q and the radius of curvature R because the coordinate system (x ', z') defining the droplet experimental curve and the coordinate system of the theoretical curve are included. This is to correct the deviation of (x, z), and has the correspondence relationship as shown in FIG. The experimental measurement points are set at about 50 to 100 (n = 50 to 100), and the left side φ is minimized while changing the five parameters of q, R, Δz, Δx, and ω in the equation 3. (II) Analytical method In the above general principle, the integral of Equation 1 and Equation 2 is z = 0,
If you start from the lowest point of x = 0, θ = 0, the integral will generally diverge, making the analysis generally difficult. Therefore, Equation 1
And the method of preventing the divergence by starting the integration of Expression 2 from a place other than θ = 0 is adopted.
【0026】たとえば、θの小さいところ、例えばθ=
π/12 を積分端点として、式3と式4を式1と式2に代
入し、式1と式2の解析的近似式は、For example, where θ is small, for example, θ =
Substituting equations 3 and 4 into equations 1 and 2 with π / 12 as the integration endpoint, the analytical approximation equations of equations 1 and 2 are
【0027】[0027]
【数8】 [Equation 8]
【0028】[0028]
【数9】 [Equation 9]
【0029】となる。ここで、ψは、It becomes Where ψ is
【0030】[0030]
【数10】 [Equation 10]
【0031】である。なお、式8については、qRについ
ての6 次式で近似し、式9式については、qRについての
4次式で近似しているが、もちろん、この発明において
は、これに限ったものではない。式5を最小化する5つ
のパラメータを選ぶのが非線形最小二乗法であるが、こ
のなかでも、たとえば、R.Hook and T.A.Jeaves, (J. A
ssn. Comp. March., 8(1961) 212) 等による方法が有効
である。It is The expression 8 is approximated by a sixth-order expression for qR, and the expression 9 is approximated by a fourth-order expression for qR. Of course, the present invention is not limited to this. . The nonlinear least squares method selects five parameters that minimize Equation 5, and among them, for example, R. Hook and TAJeaves, (J. A.
ssn. Comp. March., 8 (1961) 212) etc. is effective.
【0032】φにおける5つのパラメータ(q,R, Δz,Δ
x,ω) の初期値として、q=5.5cm-1、R は液滴赤道半径
を用い、さらに、ω=0とおき、Δx およびΔz は図2に
示すように、x'およびy'と対応づけて実測したものを用
いる。これらの初期値から、式5のψ(q,R, Δz,Δx,
ω) を極小化し、そのときのqを式4に代入して、表面
張力γを求める。Five parameters (q, R, Δz, Δ in φ
As an initial value of (x, ω), q = 5.5 cm−1, R is the droplet equatorial radius, and ω = 0, and Δx and Δz are x ′ and y ′ as shown in FIG. The one measured in association with each other is used. From these initial values, ψ (q, R, Δz, Δx,
ω) is minimized, and q at that time is substituted into Equation 4 to obtain the surface tension γ.
【0033】以下、この発明のペンダント液滴型表面張
力測定法についてさらに詳しく説明する。The pendant droplet type surface tension measuring method of the present invention will be described in more detail below.
【0034】[0034]
【実施例】実際に液滴曲線の座標(Xi,Zi)(i=1,2,,,,nは
測定点) を実験的に得るための装置としては、表面張力
の自動測定を可能とした、たとえば、図3に例示した構
成をひとつの態様として示すことができる。この図3に
例示したように、ミクロスクリュー付注射器から注入さ
れた液滴は、チューブを通って、実験槽内で液滴をつく
る。実験槽はガラス、プラスチック等の透明なものが望
ましく、実験槽内には液滴に比べて十分な量の液体また
は気体をあらかじめ入れておく。[Example] As an apparatus for experimentally obtaining the coordinates (Xi, Zi) of a droplet curve (i = 1, 2 ,,,, n is a measurement point), it is possible to automatically measure the surface tension. In addition, for example, the configuration illustrated in FIG. 3 can be shown as one aspect. As illustrated in FIG. 3, droplets injected from a syringe with a micro screw pass through a tube and form droplets in a laboratory tank. The experiment tank is preferably made of transparent material such as glass or plastic, and a sufficient amount of liquid or gas as compared with liquid droplets is put in the experiment tank in advance.
【0035】この液滴に光源を白スクリーンを通して照
射し、その液滴の形状をCCDカメラにより取り込み、
ビデオレコーダおよびイメージ解析用コンピュータを用
いて、液滴形状を解析する。このような装置を用いるこ
とによって、迅速にかつ高精度で表面張力を測定するこ
とが可能となる。The droplet is irradiated with a light source through a white screen, the shape of the droplet is captured by a CCD camera,
The drop shape is analyzed using a video recorder and a computer for image analysis. By using such an apparatus, it becomes possible to measure the surface tension quickly and with high accuracy.
【0036】しかもこの発明においては、表面張力の他
に、求めた表面張力から、吸着量P、表面電荷σ、さら
に、時間経過における表面張力をも測定可能となる。表
面張力の他に、この吸着量P 、表面電荷σをも求める場
合には、実験槽の中には、液滴の対極として、参照電極
を設置し、液滴および参照電極に、電圧付加用の外部電
源装置によって、数ボルトの電圧を印加する。Further, in the present invention, in addition to the surface tension, the adsorption amount P, the surface charge σ, and the surface tension over time can be measured from the obtained surface tension. In addition to the surface tension, in order to obtain this adsorption amount P and surface charge σ, a reference electrode is installed in the experimental tank as a counter electrode of the liquid droplet, and a voltage is applied to the liquid droplet and the reference electrode. A voltage of several volts is applied by the external power supply device.
【0037】この装置を用いて、溶液の液滴への吸着量
P は、Using this device, the amount of solution adsorbed on the liquid droplets
P is
【0038】[0038]
【数11】 [Equation 11]
【0039】となる。ここでC は溶液の濃度、R は気体
定数、T は温度である。また、この装置を用いて溶液の
液滴表面の表面電荷σは、It becomes Where C is the solution concentration, R is the gas constant, and T is the temperature. In addition, using this device, the surface charge σ on the surface of the solution droplet is
【0040】[0040]
【数12】 [Equation 12]
【0041】となる。ここで、E は外部電圧である。ま
た、表面張力γの経時変化から平衡表面張力は、It becomes Where E is the external voltage. Also, from the change of surface tension γ with time, the equilibrium surface tension is
【0042】[0042]
【数13】 [Equation 13]
【0043】で求めることが可能である。ここで、γ0
は初期値、P は吸着量である。また、P は式11より求
めた吸着量、D は溶液の並進拡散定数である。次に、実
際にこの発明の表面張力測定法を用いて、純水と汚水の
溶液中に、水銀の液滴をたらして、その表面張力の時間
推移を求めた。図4は、その結果である。高精度での迅
速測定が可能とされた。It can be obtained by Where γ 0
Is the initial value and P is the adsorption amount. Further, P is the adsorption amount obtained from Equation 11, and D is the translational diffusion constant of the solution. Next, using the surface tension measuring method of the present invention, mercury droplets were dropped in a solution of pure water and sewage, and the time course of the surface tension was determined. FIG. 4 shows the result. High-accuracy and quick measurement was possible.
【0044】また、さらに、純粋と0.15モルの食塩水の
表面張力の電圧依存性を測定した。その結果は、図5に
示す通りであった。Furthermore, the voltage dependence of the surface tension of pure and 0.15 mol saline solutions was measured. The result was as shown in FIG.
【0045】[0045]
【発明の効果】以上詳しく説明した通り、この発明の方
法により表面張力が短時間で迅速に測定可能となり、生
産等の現場でのモニタリングも可能になる。また、さら
に、この表面張力の測定から、電気毛管力測定もきわめ
て容易に測定可能となる。As described in detail above, according to the method of the present invention, the surface tension can be measured quickly in a short time, and the monitoring at the site of production or the like becomes possible. Further, from the measurement of the surface tension, the electrocapillary force measurement can be measured very easily.
【図面の簡単な説明】[Brief description of drawings]
【図1】この発明の基本原理を示した断面図である。FIG. 1 is a sectional view showing the basic principle of the present invention.
【図2】この発明の基本原理を示した断面図である。FIG. 2 is a sectional view showing the basic principle of the present invention.
【図3】この発明の実施例としての測定方法を示した概
略図である。FIG. 3 is a schematic diagram showing a measuring method as an embodiment of the present invention.
【図4】この発明の実施例の結果を示した関係図であ
る。FIG. 4 is a relationship diagram showing a result of an example of the present invention.
【図5】この発明の実施例の結果を示した関係図であ
る。FIG. 5 is a relationship diagram showing a result of an example of the present invention.
1 液 滴 2 細 管 1 liquid drop 2 thin tube
Claims (3)
ント型液滴表面の座標値を観測決定し、この座標値と、
毛管定数、ペンダント液滴の曲率半径、測定時の座標位
置、座標変換時の角度をパラメータとする液滴表面の算
出座標値との差を最小にして、この時のパラメータから
表面張力を求めることを特徴とするペンダント液滴型表
面張力測定法。1. A droplet is hung on the tip of a thin tube, and the coordinate value of the surface of the pendant type droplet is observed and determined.
Obtain the surface tension from the parameters at this time by minimizing the difference from the calculated coordinate values of the droplet surface using the capillary constant, the radius of curvature of the pendant droplet, the coordinate position during measurement, and the angle during coordinate conversion as parameters. A pendant droplet type surface tension measurement method characterized by:
る請求項1の測定法。2. The measuring method according to claim 1, wherein the droplet shape is optically read and calculated and analyzed.
1の測定法。3. The measuring method according to claim 1, wherein the difference is minimized by the method of least squares.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15450793A JPH06341941A (en) | 1993-05-31 | 1993-05-31 | Surface tension measuring method of pendant type droplet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15450793A JPH06341941A (en) | 1993-05-31 | 1993-05-31 | Surface tension measuring method of pendant type droplet |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06341941A true JPH06341941A (en) | 1994-12-13 |
Family
ID=15585762
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15450793A Pending JPH06341941A (en) | 1993-05-31 | 1993-05-31 | Surface tension measuring method of pendant type droplet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06341941A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008090007A2 (en) * | 2007-01-25 | 2008-07-31 | Flamac | Method and apparatus for measuring viscosity and surface tension |
JP2011158456A (en) * | 2010-02-03 | 2011-08-18 | Kohei Kosaka | Device for surface tension measurement of capillary tube rising system |
CN103033449A (en) * | 2012-12-24 | 2013-04-10 | 江苏大学 | Method for measuring liquid interfacial tension based on three measurement points of liquid drop profile curve |
CN103063548A (en) * | 2012-12-24 | 2013-04-24 | 江苏大学 | Measurement method for liquid interfacial tension based on liquid droplet contour curve four measurement points |
JP2015197395A (en) * | 2014-04-02 | 2015-11-09 | 株式会社デンソー | Inspection method for organic solvent |
CN110286066A (en) * | 2018-09-20 | 2019-09-27 | 中国科学院上海硅酸盐研究所 | A kind of measuring device of sessile drop method measurement surface tension of high-temperature melt |
CN113740211A (en) * | 2021-09-22 | 2021-12-03 | 陕西科技大学 | Surface tension optical measurement system and method based on capillary phenomenon |
CN114279960A (en) * | 2021-12-17 | 2022-04-05 | 中国科学院广州能源研究所 | Capillary liquid bead microscopic absorption fluorescence spectrum framework for high-precision portable water quality detection |
CN114295521A (en) * | 2022-01-07 | 2022-04-08 | 四川大学 | Method for measuring surface tension coefficient of liquid by using needle tube |
CN114354452A (en) * | 2022-01-04 | 2022-04-15 | 四川大学 | Method for measuring surface tension coefficient by dropping liquid drops on needle tube |
CN114383979A (en) * | 2022-01-21 | 2022-04-22 | 四川大学 | Method for measuring surface tension coefficient of liquid by liquid drop method |
-
1993
- 1993-05-31 JP JP15450793A patent/JPH06341941A/en active Pending
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008090007A2 (en) * | 2007-01-25 | 2008-07-31 | Flamac | Method and apparatus for measuring viscosity and surface tension |
WO2008090007A3 (en) * | 2007-01-25 | 2008-10-02 | Flamac | Method and apparatus for measuring viscosity and surface tension |
JP2011158456A (en) * | 2010-02-03 | 2011-08-18 | Kohei Kosaka | Device for surface tension measurement of capillary tube rising system |
CN103033449A (en) * | 2012-12-24 | 2013-04-10 | 江苏大学 | Method for measuring liquid interfacial tension based on three measurement points of liquid drop profile curve |
CN103063548A (en) * | 2012-12-24 | 2013-04-24 | 江苏大学 | Measurement method for liquid interfacial tension based on liquid droplet contour curve four measurement points |
JP2015197395A (en) * | 2014-04-02 | 2015-11-09 | 株式会社デンソー | Inspection method for organic solvent |
CN110286066A (en) * | 2018-09-20 | 2019-09-27 | 中国科学院上海硅酸盐研究所 | A kind of measuring device of sessile drop method measurement surface tension of high-temperature melt |
CN113740211A (en) * | 2021-09-22 | 2021-12-03 | 陕西科技大学 | Surface tension optical measurement system and method based on capillary phenomenon |
CN114279960A (en) * | 2021-12-17 | 2022-04-05 | 中国科学院广州能源研究所 | Capillary liquid bead microscopic absorption fluorescence spectrum framework for high-precision portable water quality detection |
CN114279960B (en) * | 2021-12-17 | 2023-12-12 | 中国科学院广州能源研究所 | High-precision portable capillary liquid bead microscopic absorption fluorescence spectrum architecture for water quality detection |
CN114354452A (en) * | 2022-01-04 | 2022-04-15 | 四川大学 | Method for measuring surface tension coefficient by dropping liquid drops on needle tube |
CN114295521A (en) * | 2022-01-07 | 2022-04-08 | 四川大学 | Method for measuring surface tension coefficient of liquid by using needle tube |
CN114295521B (en) * | 2022-01-07 | 2023-04-25 | 四川大学 | Method for measuring surface tension coefficient of liquid by using needle tube |
CN114383979A (en) * | 2022-01-21 | 2022-04-22 | 四川大学 | Method for measuring surface tension coefficient of liquid by liquid drop method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1252498B1 (en) | Method and apparatus for measuring surface tension and surface activity of a liquid | |
Gruner et al. | Controlling molecular transport in minimal emulsions | |
JPH06341941A (en) | Surface tension measuring method of pendant type droplet | |
US20090320568A1 (en) | Method and apparatus for measuring viscosity and surface tension | |
Madani et al. | Oil drop shedding from solid substrates by a shearing liquid | |
Heydarifard et al. | Reactive absorption of CO2 into Piperazine aqueous solution in a stirrer bubble column: Modeling and experimental | |
CN108956994B (en) | Method and apparatus for measuring physiological properties of biological samples | |
CA2859033A1 (en) | Method and apparatus for characterizing interfacial tension between two immiscible or partially miscible fluids | |
JP2018059929A (en) | Sensor for detecting state of fluid within microfluidic plate, system for controlling preparation of sample containing fluid, and method of detecting state of fluid within microfluidic plate | |
Berg et al. | Evaluation of liquid handling conditions in microplates | |
Poleski et al. | Wetting of surfaces with ionic liquids | |
RU2460987C1 (en) | Method of determining surface tension coefficient and wetting angle | |
Blazyk et al. | An automated differential scanning dilatometer | |
Hjelt et al. | Measuring liquid evaporation from micromachined wells | |
Kostoglou et al. | On the identification of liquid surface properties using liquid bridges | |
Thormann | Automation of analytical isotachophoresis | |
WO2001002834A1 (en) | Micro-fabricated solubility measuring system and a method for determining the solubility of a sample | |
Xu et al. | On-demand in situ generation of oxygen in a nanofluidic embedded planar microband electrochemical reactor | |
Reinhard et al. | Steady-state and kinetics-based affinity determination in effector-effector target interactions | |
Thakral et al. | Analysis of accuracy of burette in determination of surface tension of liquids and study of its variation with detachment time and inclination angle | |
JPH1194730A (en) | Transparent lid for micro-plate with recessed surface | |
RADU et al. | THE STUDY OF CAPILLARITY PHENOMENA BY MEANS OF IMAGEJ SOFTWARE | |
Craig et al. | Specific ion effects at the air–water interface: Experimental studies | |
Hyde | In-situ Investigation of the Oil-Water Interface Under Dynamic Conditions | |
TWI780721B (en) | Test kit housing and test kit |