JPH06341602A - Pressure reducing boiler type vaporizer and control thereof - Google Patents

Pressure reducing boiler type vaporizer and control thereof

Info

Publication number
JPH06341602A
JPH06341602A JP6403391A JP6403391A JPH06341602A JP H06341602 A JPH06341602 A JP H06341602A JP 6403391 A JP6403391 A JP 6403391A JP 6403391 A JP6403391 A JP 6403391A JP H06341602 A JPH06341602 A JP H06341602A
Authority
JP
Japan
Prior art keywords
temperature
reduced pressure
steam generating
pressure steam
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6403391A
Other languages
Japanese (ja)
Other versions
JP3166189B2 (en
Inventor
Kazumitsu Nukui
一光 温井
Masakazu Hanamure
花牟礼雅一
Kanji Kujirai
寛司 鯨井
Masahiro Arakawa
正裕 荒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Precision Products Co Ltd
Tokyo Gas Co Ltd
Original Assignee
Sumitomo Precision Products Co Ltd
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Precision Products Co Ltd, Tokyo Gas Co Ltd filed Critical Sumitomo Precision Products Co Ltd
Priority to JP6403391A priority Critical patent/JP3166189B2/en
Publication of JPH06341602A publication Critical patent/JPH06341602A/en
Application granted granted Critical
Publication of JP3166189B2 publication Critical patent/JP3166189B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

PURPOSE:To provide a pressure reducing boiler type vaporizer stable and good in control responsiveness. CONSTITUTION:A pressure reduced steam generating boiler 11 and a pressure reduced steam boiler 12 are installed in communication with each other and a heating medium pipe 14 for passing steam therethrough is provided in the pressure reduced steam generating boiler 11. A heat transfer pipe 16 for passing LNG into the pressure reduced steam boiler 12 is provided. The water temperature and pressure in the pressure reduced steam generating boiler 11 and the outlet gas temperature of LNG in the heat transfer pipe 16 are detected and the interior temperature of the boiler, the flow amount of LNG and the outlet gas temperature in an ideal condition are judged by comparison and, if any deviation is detected, a non-condensable gas can be considered to be mixed in the boiler. When the non-condensable gas is mixed, since the judgement by comparison is stopped and since a detection signal switching means 23 is switched to effect feed-back control based on the detection signal from a water temperature sensor 18, there is no possibility of erroneous judgement and this method provides a good control responsiveness as well as stability.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、減圧ボイラ式気化器お
よびその制御方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vacuum boiler type vaporizer and a control method thereof.

【0002】[0002]

【従来の技術】最近、LNG(液化天然ガス)が、公害の
少ないエネルギー源として、急速に拡大しつつある。L
NGは、メタン(CH4)を主成分とする天然ガスを極低
温まで冷却し液化したもので、一旦LNG貯蔵設備等に
貯蔵し、これを気化装置に導入して、種々の用途とし
て、供給するようになっている。そのLNG気化装置と
しては、LNGの加熱源に、海水、河川水等を用いた
ものや、LNG等の燃焼熱を用いたものがある。さら
に、中間熱媒体を使用した方式の気化器が案出されてい
る。この方式の一例として、減圧ボイラ式気化器を挙げ
ることができる。この減圧ボイラ式気化器1は、中間熱
媒体として減圧状態における低温蒸気を適用するもの
で、図2に示すように、減圧蒸気発生缶2と、この減圧
蒸気発生缶2に連通する減圧蒸気缶3とを有し、前記減
圧蒸気発生缶2には、加熱蒸気を流通させた熱媒管4が
配設されると共に水が滞留され、一方、前記減圧蒸気缶
3には、LNGを流通する伝熱管5が配設されている。
前記減圧蒸気発生缶2とこれに連通する減圧蒸気缶3内
の空気を真空ポンプ(図示せず)により吸引して減圧し、
減圧蒸気発生缶2内の水を加熱蒸気を流通させた熱媒管
4によって低温蒸気化し、この低温蒸気により、伝熱管
5を流通するLNGを気化するようにしている。かかる
減圧ボイラ式気化器1においては、減圧蒸気発生缶2内
の水の温度を検出して、熱媒管4に流入する蒸気を調節
し、減圧蒸気発生缶2内の水の温度が設定温度とすべ
く、温度制御を行っている。
2. Description of the Related Art Recently, LNG (liquefied natural gas) is rapidly expanding as an energy source with little pollution. L
NG is a natural gas containing methane (CH 4 ) as a main component, cooled to an extremely low temperature and liquefied. Once stored in an LNG storage facility or the like, this is introduced into a vaporizer and supplied for various purposes. It is supposed to do. As the LNG vaporizer, there are a LNG heating source that uses seawater, river water, and the like, and a device that uses combustion heat of LNG and the like. Furthermore, a vaporizer of a type using an intermediate heat medium has been devised. An example of this system is a decompression boiler type vaporizer. The decompression boiler type vaporizer 1 applies low-temperature steam in a decompressed state as an intermediate heat medium. As shown in FIG. 2, the decompression steam generation can 2 and the decompression steam can communicating with the decompression steam generation can 2. 3, the reduced pressure steam generating can 2 is provided with a heat medium pipe 4 in which heating steam is circulated, and water is retained therein, while LNG is circulated in the reduced pressure steam can 3. A heat transfer tube 5 is arranged.
The reduced pressure steam generating can 2 and the air in the reduced pressure steam can 3 communicating with the reduced pressure steam generating can 2 are sucked by a vacuum pump (not shown) to reduce the pressure,
The water in the reduced pressure steam generating can 2 is vaporized into a low temperature by the heating medium pipe 4 in which the heating vapor is circulated, and the LNG flowing in the heat transfer pipe 5 is vaporized by the low temperature vapor. In the decompression boiler type vaporizer 1, the temperature of the water in the decompression steam generator can 2 is detected, the steam flowing into the heat medium pipe 4 is adjusted, and the temperature of the water in the decompression steam generator can 2 is set to the set temperature. Therefore, the temperature is controlled.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、前述し
たような減圧ボイラ式気化器1における温度制御方式で
は、減圧蒸気発生缶2内の水温の変化は、減圧蒸気発生
缶2自体の熱容量が大きいこと、温度検出手段が検出遅
れをもっていることにより、無駄時間、時定数共に大き
くなっており、外乱が入ってから、制御が安定化するま
で、時間がかかりすぎる。また、減圧蒸気発生缶2内の
圧力を検出して制御する方法では、不凝縮性ガスが滞留
すると、減圧蒸気発生缶2内の水の温度と圧力の対応関
係が崩れ、気化LNGの温度の低下を招くおそれがあ
る。本発明はこのような課題に鑑みてなされたもので、
安定性があり、応答性のよい良好な制御を可能とした減
圧ボイラ式気化器およびその制御方法を提供することを
目的とする。
However, in the temperature control system in the decompression boiler type vaporizer 1 as described above, the change in the water temperature in the decompression steam generator can 2 is that the heat capacity of the decompression steam generator can 2 itself is large. Since the temperature detection means has a detection delay, both the dead time and the time constant are large, and it takes too much time until the control is stabilized after the disturbance is introduced. Further, in the method of detecting and controlling the pressure in the reduced pressure steam generation can 2, when the non-condensable gas stays, the correspondence relationship between the temperature of the water in the reduced pressure steam generation can 2 and the pressure is broken, and the temperature of the vaporized LNG is decreased. There is a risk of lowering. The present invention has been made in view of such problems,
It is an object of the present invention to provide a decompression boiler type vaporizer and a control method thereof that are stable and enable good control with good responsiveness.

【0004】[0004]

【課題を解決するための手段】前記した課題を解決する
ために、本発明は、熱媒管を配設すると共に水を滞留し
た減圧蒸気発生缶と、この減圧蒸気発生缶に連通すると
共に低温流体を流通する伝熱管を配設した減圧蒸気缶と
を設け、前記減圧蒸気発生缶内における水の温度検出手
段と減圧蒸気発生缶内の圧力検出手段を設ける一方、前
記伝熱管に、気化された低温流体の温度を検出する出ガ
ス温度検出手段を設け、これら温度検出手段、圧力検出
手段および出ガス温度検出手段による検出信号を、理想
的状態における缶内温度、低温流体流量、出ガス温度、
低温流体入り口温度の関係と比較して、異常状態を検出
する制御手段を設けたことを特徴とする。また、本発明
は、減圧蒸気発生缶内の水温と減圧蒸気発生缶内および
減圧蒸気缶内の圧力並びに出ガス温度を検出し、これら
水温、圧力にかかる検出信号に基づいてフィードバック
制御を行うと共に、出ガス温度、圧力にかかる検出信号
を理想的状態下の出ガス温度と圧力との関係と比較して
偏差を検出することで、不凝縮性ガスの滞留を検出する
ことを特徴とする。さらに、本発明は、減圧蒸気発生缶
内および減圧蒸気缶内において、不凝縮性ガスの滞留が
検出された場合、減圧蒸気発生缶内の水温が目標値に達
するまで、水温にかかる検出信号に基づいてフィードバ
ック制御を行うことを特徴とする。
In order to solve the above-mentioned problems, the present invention provides a reduced pressure steam generating can in which a heat medium pipe is arranged and water is retained, and a low temperature steam generating can which is in communication with the reduced pressure steam generating can. A reduced pressure steam can provided with a heat transfer tube for circulating a fluid is provided, and while the temperature detection means of water in the reduced pressure steam generation can and the pressure detection means in the reduced pressure steam generation can are provided, the heat transfer tube is vaporized. A means for detecting the temperature of the low-temperature fluid is provided to detect the temperature of the low-temperature fluid. ,
It is characterized in that a control means for detecting an abnormal state is provided as compared with the relationship of the low temperature fluid inlet temperature. Further, the present invention detects the water temperature in the reduced pressure steam generating can, the pressure in the reduced pressure steam generating can and the pressure in the reduced pressure steam can, and the outlet gas temperature, and performs feedback control based on the detection signal related to these water temperature and pressure. It is characterized in that retention of the non-condensable gas is detected by comparing a detection signal concerning the output gas temperature and pressure with the relationship between the output gas temperature and pressure under an ideal state to detect a deviation. Furthermore, in the present invention, when retention of non-condensable gas is detected in the reduced pressure steam generation can and in the reduced pressure steam can, until the water temperature in the reduced pressure steam generation can reaches a target value, a detection signal relating to the water temperature is detected. It is characterized in that feedback control is performed based on this.

【0005】[0005]

【作用】減圧蒸気発生缶内および減圧蒸気缶内における
温度、圧力の関係は飽和蒸気圧曲線により表すことがで
きる。さらに、缶内温度(Θs)、低温流体流量(G)、出
ガス温度(Θ)および低温流体入り口温度(Θi)の間に
は、 Θ=(1−f(G))Θs+f(G)Θi なる関係が成立する(但し、f(G)は伝熱面積をパラメ
ータに持つ単調増加関数である)。従って、これらの要
素を、理想的状態(缶内が蒸気によって満たされている
とした状況)における値として、記憶しておき、装置の
運転中における前記それぞれの値を求めて、前記理想的
状態における値と比較し、偏差を検出することで、異常
状態(例えば、不凝縮性ガスが混入している)にあると判
断することができる。不凝縮性ガスが混入していると判
断した場合は、排気を行うと共に減圧蒸気発生缶内およ
び減圧蒸気缶内における温度を所定の温度とすべく制御
を行う。また、前述の各要素(例えば、低温流体の流量
(G))を変更するような場合、その他の各要素を、低温
流体の流量(G)に対応した値とすべく制御が実行され
る。その際、缶内温度(Θs)が所定の温度に達するま
で、前述した理想的状態における各要素の値との比較判
断を停止し、減圧蒸気発生缶内の水の温度が目標値に達
したときは、再び前記した比較判断を行なうようにす
る。
The relationship between the temperature and the pressure in the reduced pressure steam generating can and in the reduced pressure steam can can be represented by a saturated vapor pressure curve. Further, between the temperature in the can (Θs), the flow rate of the low temperature fluid (G), the temperature of the discharged gas (Θ) and the temperature of the low temperature fluid inlet (Θi), Θ = (1-f (G)) Θs + f (G) Θi The following relationship is established (however, f (G) is a monotonically increasing function having the heat transfer area as a parameter). Therefore, these elements are stored as values in an ideal state (a state where the inside of the can is filled with steam), and the respective values during operation of the apparatus are obtained to obtain the ideal state. It is possible to determine that there is an abnormal state (for example, non-condensable gas is mixed) by detecting the deviation by comparing with the value in. When it is determined that the non-condensable gas is mixed, the exhaust is performed and the temperature inside the reduced pressure steam generating can and the inside of the reduced pressure steam can are controlled to a predetermined temperature. In addition, each element (for example, the flow rate of the cryogenic fluid)
When (G)) is changed, the control is executed so that each of the other elements has a value corresponding to the flow rate (G) of the low temperature fluid. At that time, until the temperature inside the can (Θs) reaches a predetermined temperature, the comparison judgment with the values of each element in the ideal state described above is stopped, and the temperature of the water inside the depressurized steam generation can reaches the target value. In such a case, the above-mentioned comparison judgment is made again.

【0006】[0006]

【実施例】次に、本発明にかかる減圧ボイラ式気化器お
よび制御方法について、添付の図面を参照しながら以下
説明する。図1において、参照符号10は減圧ボイラ式
気化器を示し、この減圧ボイラ式気化器10は、減圧蒸
気発生缶11と減圧蒸気缶12とを連通構成し、缶内を
真空ポンプ(図示せず)により排気減圧化すると共に、こ
の減圧化された缶内に貯留された水を加熱して低温の蒸
気を発生させ、この蒸気をLNG気化用の加熱源として
用いるようになっている。前記減圧蒸気発生缶11に
は、加熱蒸気を流量調節弁13を介して流通させた熱媒
管14が前記貯留した水中内を通過するように、配設構
成されている。一方、前記減圧蒸気缶12には、LNG
を流量調節弁15を介して流通させた伝熱管16が配設
構成されている。また、前記減圧蒸気発生缶11には、
減圧蒸気発生缶11内における水の温度を検知するため
の水温センサ17と、減圧蒸気発生缶11内の圧力を検
知するための圧力センサ18が設けられる。さらに、前
記伝熱管16には、気化されたLNGの温度を検出する
出ガス温度センサ19が設けられる。これら水温センサ
17、圧力センサ18および出ガス温度センサ19によ
る検知信号は、制御システム20に取り込まれるように
なっている。この制御システム20は前記検知信号に基
づいて、理想的状態における缶内温度(Θs)、低温流体
流量(G)、出ガス温度(Θ)およびLNG入り口温度(Θ
i)との比較判断を実行し、偏差が検出された場合、異常
状態にあるとして、フィードバック制御を行うものであ
る。尚、減圧蒸気発生缶11と減圧蒸気缶12内におい
ては、理想的状態にある場合、缶内温度(Θs)、低温流
体流量(G)、出ガス温度(Θ)および低温流体入り口温度
(Θi)には、 Θ=(1−f(G))Θs+f(G)Θi なる関係が成立するので、制御システム20を、それぞ
れの要素の値ごとにその値に対応する他の要素の値をあ
らかじめ記憶しておく手段と、その記憶された値と実際
の運転時に検出された値と比較する手段とによって構成
し、前述の比較判断を実行することができる。また、前
記制御システム20は、運転時に検出された値から前記
関係式の演算処理を行って他の要素の値を導出し、それ
らの導出された値と、運転時に検出された他の要素の検
出値と比較する手順を実行する構成とすることも可能で
ある。前記熱媒管14における流量調節弁13および伝
熱管16における流量調節弁15は、それぞれ、調節計
21、22を具備しており、調節計21、22は、差圧
検出器から流量にかかる信号に変換したものを設定値と
比較し、その結果を演算した後、操作信号として、流量
調節弁13、15の弁開度を調整する信号を送出し、弁
開度を連続的に調節制御するものである。前記調節計2
1は、水温センサ17および圧力センサ18と、検知信
号切換手段23を介して電気的に接続され、一方、前記
伝熱管16における流量調節弁15の調節計22は、流
入するLNGの流量に対応した、熱媒管14に流入する
加熱蒸気の流量を決定する信号を算出するフィードフォ
ワード量設定部24と電気的に接続される。さらに、こ
のフィードフォワード量設定部24は、熱媒管14にお
ける流量調節弁13の調節計21と電気的に接続されて
いる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, a decompression boiler type carburetor and a control method according to the present invention will be described below with reference to the accompanying drawings. In FIG. 1, reference numeral 10 indicates a decompression boiler type carburetor, and this decompression boiler type carburetor 10 comprises a reduced pressure steam generating can 11 and a reduced pressure steam can 12 in communication with each other and a vacuum pump (not shown) inside the can. ) To reduce the exhaust pressure, heat the water stored in the depressurized can to generate low-temperature steam, and use this steam as a heating source for LNG vaporization. The reduced pressure steam generating can 11 is arranged so that a heating medium pipe 14 in which heating steam is circulated through a flow rate control valve 13 passes through the stored water. On the other hand, the reduced pressure steam can 12 contains LNG.
A heat transfer tube 16 is provided to allow the heat transfer tube 16 to flow through the flow rate control valve 15. In addition, in the reduced pressure steam generating can 11,
A water temperature sensor 17 for detecting the temperature of water in the reduced pressure steam generating can 11 and a pressure sensor 18 for detecting the pressure in the reduced pressure steam generating can 11 are provided. Further, the heat transfer tube 16 is provided with an outlet gas temperature sensor 19 for detecting the temperature of the vaporized LNG. The detection signals from the water temperature sensor 17, the pressure sensor 18, and the gas temperature sensor 19 are taken into the control system 20. Based on the detection signal, the control system 20 determines the can temperature (Θs), the low temperature fluid flow rate (G), the outlet gas temperature (Θ) and the LNG inlet temperature (Θ) in an ideal state.
If a deviation is detected by performing a comparison judgment with i), it is determined that there is an abnormal state and feedback control is performed. In the reduced pressure steam generating can 11 and the reduced pressure steam can 12, in an ideal state, the temperature inside the can (Θs), the low temperature fluid flow rate (G), the outlet gas temperature (Θ) and the low temperature fluid inlet temperature.
Since (Θi) has a relationship of Θ = (1−f (G)) Θs + f (G) Θi, the control system 20 sets the value of each element to the value of another element corresponding to that value. Can be stored in advance and means for comparing the stored value with the value detected during the actual operation, and the above-described comparison / determination can be executed. Further, the control system 20 performs the arithmetic processing of the relational expression from the value detected at the time of driving to derive the values of other elements, and the derived values and the other elements detected at the time of driving. It is also possible to adopt a configuration in which the procedure of comparing with the detected value is executed. The flow rate control valve 13 in the heat medium tube 14 and the flow rate control valve 15 in the heat transfer tube 16 are provided with controllers 21 and 22, respectively, and the controllers 21 and 22 are signals from the differential pressure detector related to the flow rate. The value converted into the set value is compared with the set value, the result is calculated, and then a signal for adjusting the valve opening of the flow rate adjusting valves 13 and 15 is sent as an operation signal to continuously adjust and control the valve opening. It is a thing. The controller 2
1 is electrically connected to the water temperature sensor 17 and the pressure sensor 18 via the detection signal switching means 23, while the controller 22 of the flow rate control valve 15 in the heat transfer tube 16 corresponds to the inflowing LNG flow rate. Further, it is electrically connected to the feedforward amount setting unit 24 that calculates a signal that determines the flow rate of the heated steam flowing into the heat medium pipe 14. Further, the feedforward amount setting unit 24 is electrically connected to the controller 21 of the flow rate control valve 13 in the heat medium pipe 14.

【0007】以上のような減圧ボイラ式気化器10およ
び制御方法において、減圧蒸気発生缶11内および減圧
蒸気缶12内における缶内温度(Θs)、低温流体流量
(G)、出ガス温度(Θ)および低温流体入り口温度(Θi)
の間にある Θ=(1−f(G))Θs+f(G)Θi なる関係に基づき、これらの要素を、理想的状態におけ
る値として、制御システム20を構成する記憶手段(図
示せず)に記憶しておき、減圧ボイラ式気化器10の運
転中において検知された検知信号と、前記記憶された値
と比較し、偏差を検出することで、異常状態(例えば、
不凝縮性ガスが混入している)にあると判断することが
できる。不凝縮性ガスが混入していると判断した場合
は、制御システム20は排気を行うと共に、検知信号切
換手段23を切換制御して水温センサ17からの検知信
号を調節計21に供給するようにし、減圧蒸気発生缶1
1内および減圧蒸気缶12内における温度を所定の温度
とすべく温度制御を行う。また、前述の各要素(例え
ば、低温流体の流量(G))を変更するような場合、その
他の各要素を、低温流体の流量(G)に対応した値とすべ
く制御が実行される。その際、制御システム20は缶内
温度(Θs)が所定の温度に達するまで、前述した理想的
状態における各要素の値との比較判断を停止し、検知信
号切換手段23を切換制御して、水温センサ17からの
検知信号に基づき、フィードバック制御を実行する。こ
の際、フィードフォワード量設定部24は、伝熱管16
における流量調節弁15の調節計22からのLNGの流
量にかかる検出信号に基づいて、フィードフォワード制
御を行なう。すなわち、フィードフォワード量設定部2
4は、熱媒管14を流通する加熱蒸気の流量を決定する
信号を算出して熱媒管14における流量調節弁13の調
節計21に送出し、熱媒管14に流入する加熱蒸気を調
節し、水温を目標値に調節する手順を実行する。水温が
目標値に達すると、制御システム20は再び、理想的状
態における缶内温度(Θs)、低温流体流量(G)、出ガス
温度(Θ)および低温流体入り口温度(Θi)との比較判断
を実行する。
In the pressure reducing boiler type carburetor 10 and the control method as described above, the temperature inside the pressure reducing steam generator can 11 and the pressure reducing steam can 12 (Θs), the low temperature fluid flow rate
(G), outlet gas temperature (Θ) and low temperature fluid inlet temperature (Θi)
Based on the relationship of Θ = (1-f (G)) Θs + f (G) Θi between these values, these elements are stored in a storage means (not shown) constituting the control system 20 as values in an ideal state. It is stored and compared with a detection signal detected during the operation of the decompression boiler type carburetor 10 and the stored value, and a deviation is detected to detect an abnormal state (for example,
Non-condensable gas is mixed in). When it is determined that the non-condensable gas is mixed, the control system 20 exhausts the gas and at the same time controls the detection signal switching means 23 to supply the detection signal from the water temperature sensor 17 to the controller 21. , Reduced pressure steam generator can 1
Temperature control is performed so that the temperature in 1 and in the reduced pressure steam can 12 is set to a predetermined temperature. Further, when the above-mentioned respective elements (for example, the flow rate (G) of the low temperature fluid) are changed, the control is executed so that the other elements are set to values corresponding to the flow rate (G) of the low temperature fluid. At that time, the control system 20 stops the comparison and judgment with the values of the respective elements in the ideal state described above until the temperature inside the can (Θs) reaches a predetermined temperature, and controls the detection signal switching means 23 to switch, Feedback control is executed based on the detection signal from the water temperature sensor 17. At this time, the feedforward amount setting unit 24 sets the heat transfer tube 16
The feedforward control is performed based on the detection signal related to the flow rate of LNG from the controller 22 of the flow rate control valve 15 in. That is, the feedforward amount setting unit 2
Reference numeral 4 calculates a signal that determines the flow rate of the heating steam flowing through the heat medium pipe 14, sends it to the controller 21 of the flow rate control valve 13 in the heat medium pipe 14, and adjusts the heating steam flowing into the heat medium pipe 14. Then, execute the procedure to adjust the water temperature to the target value. When the water temperature reaches the target value, the control system 20 again makes a comparison judgment with the can temperature (Θs), the low temperature fluid flow rate (G), the outlet gas temperature (Θ) and the low temperature fluid inlet temperature (Θi) in the ideal state. To execute.

【0008】以上、本発明にかかる減圧ボイラ式気化器
およびその制御方法について、一実施例を挙げ、説明し
たが、熱媒管14に加熱蒸気を流通させた構成の他、減
圧蒸気発生缶11にバーナ管を配設して燃焼バーナの燃
焼熱を伝熱させるようにしてもよい。
The decompression boiler type carburetor and the control method therefor according to the present invention have been described above with reference to an embodiment. In addition to the structure in which heating steam is circulated in the heat medium pipe 14, the decompression steam generator can 11 is also provided. A burner tube may be arranged in the above to transfer the combustion heat of the combustion burner.

【0009】[0009]

【発明の効果】以上の通り、本発明によれば、温度制御
のみの手順に比較して、無駄、遅れ時間の大幅に短縮し
た制御を行うことができるので、外乱にも強く、安定し
た制御が可能となる。また、低温流体の流量を変更した
際には、一旦缶内温度、低温流体流量、出ガス温度、低
温流体入り口温度の関係との比較判断を停止して、水温
が目標値に達してから、再び、比較判断を実行するよう
にしたので、誤判断するようなことはなく、常に、迅速
な追従ができ、気化された低温流体の安定供給が可能と
なる。
As described above, according to the present invention, it is possible to perform control in which waste and delay time are significantly shortened as compared with the procedure of only temperature control, so that stable control is possible against disturbance. Is possible. Also, when the flow rate of the low temperature fluid is changed, once the comparison judgment with the relation between the temperature inside the can, the low temperature fluid flow rate, the outlet gas temperature, and the low temperature fluid inlet temperature is stopped, and the water temperature reaches the target value, Since the comparison determination is executed again, there is no possibility of making an erroneous determination, rapid follow-up is always possible, and stable supply of the vaporized low-temperature fluid becomes possible.

【0010】[0010]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかる減圧ボイラ式気化器を示す系統
説明図である。
FIG. 1 is a system explanatory view showing a decompression boiler type vaporizer according to the present invention.

【図3】従来における減圧ボイラ式気化器を示す系統説
明図である。
FIG. 3 is a system explanatory view showing a conventional decompression boiler type carburetor.

【符号の説明】[Explanation of symbols]

10 減圧ボイラ式気化器 11 減圧蒸気発生缶 12 減圧蒸気缶 13 流量調節弁 14 熱媒管 15 流量調節弁 16 伝熱管 17 水温センサ 18 圧力センサ 19 出ガス温度センサ 20 制御システム 21、22 調節計 23 検知信号切換手段 24 フィードフォワード量設定部 10 Decompression boiler type vaporizer 11 Decompression steam generator can 12 Decompression steam can 13 Flow rate control valve 14 Heat transfer medium pipe 15 Flow rate control valve 16 Heat transfer pipe 17 Water temperature sensor 18 Pressure sensor 19 Outlet gas temperature sensor 20 Control system 21, 22 Regulator 23 Detection signal switching means 24 Feedforward amount setting unit

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年2月26日[Submission date] February 26, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図2[Name of item to be corrected] Figure 2

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図2】従来における減圧ボイラ式気化器を示す系統説
明図である。
FIG. 2 is a system explanatory view showing a conventional decompression boiler type carburetor.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図3[Name of item to be corrected] Figure 3

【補正方法】削除[Correction method] Delete

フロントページの続き (72)発明者 鯨井 寛司 神奈川県横浜市鶴見区東寺尾5−5−43− 211 (72)発明者 荒川 正裕 千葉県船橋市古作4−8−3(72) Inventor Kanji Whalei 5-5-43- 211 Higashiterao, Tsurumi-ku, Yokohama-shi, Kanagawa Prefecture (72) Masahiro Arakawa 4-8-3 Old Works, Funabashi City, Chiba Prefecture

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 熱媒管を配設すると共に水を滞留した
減圧蒸気発生缶と、この減圧蒸気発生缶に連通すると共
に低温流体を流通する伝熱管を配設した減圧蒸気缶とを
設け、前記減圧蒸気発生缶内における水の温度検出手段
と減圧蒸気発生缶内の圧力検出手段を設ける一方、前記
伝熱管に、気化された低温流体の温度を検出する出ガス
温度検出手段を設け、これら温度検出手段、圧力検出手
段および出ガス温度検出手段による検出信号を、理想的
状態における缶内温度、低温流体流量、出ガス温度、低
温流体入り口温度の関係と比較して、異常状態を検出す
る制御手段を設けたことを特徴とする減圧ボイラ式気化
器。
1. A reduced pressure steam generating can, which is provided with a heat medium pipe and retains water, and a reduced pressure steam can, which is connected to the reduced pressure steam generating can and is provided with a heat transfer pipe for circulating a low temperature fluid, On the other hand, the temperature detection means for detecting the temperature of water in the reduced pressure steam generating can and the pressure detection means for detecting the pressure inside the reduced pressure steam generating can are provided. An abnormal state is detected by comparing the detection signals of the temperature detecting means, the pressure detecting means and the outlet gas temperature detecting means with the relationship among the temperature inside the can, the low temperature fluid flow rate, the outlet gas temperature and the low temperature fluid inlet temperature in the ideal state. A decompression boiler type vaporizer characterized in that a control means is provided.
【請求項2】 減圧蒸気発生缶内の水温と減圧蒸気発
生缶内および減圧蒸気缶内の圧力並びに出ガス温度を検
出し、これら水温、圧力にかかる検出信号に基づいてフ
ィードバック制御を行うと共に、出ガス温度、圧力にか
かる検出信号を理想的状態下の出ガス温度と圧力との関
係と比較して偏差を検出することで、不凝縮性ガスの滞
留を検出することを特徴とする減圧ボイラ式気化器の制
御方法。
2. The water temperature in the reduced pressure steam generation can, the pressure in the reduced pressure steam generation can and the pressure in the reduced pressure steam can, and the temperature of the discharged gas are detected, and feedback control is performed based on the detection signals relating to these water temperature and pressure. A decompression boiler characterized by detecting non-condensable gas retention by detecting deviations by comparing detection signals related to gas temperature and pressure with the relationship between gas temperature and pressure under ideal conditions. Control method of a carburetor.
【請求項3】 請求項1記載の減圧蒸気発生缶内およ
び減圧蒸気缶内において、不凝縮性ガスの滞留が検出さ
れた場合、減圧蒸気発生缶内の水温が目標値に達するま
で、水温にかかる検出信号に基づいてフィードバック制
御を行うことを特徴とする減圧ボイラ式気化器の制御方
法。
3. When the non-condensable gas retention is detected in the depressurized steam generating can and the depressurized steam can according to claim 1, the water temperature in the depressurized steam generating can is increased until it reaches a target value. A method of controlling a decompression boiler type carburetor, characterized by performing feedback control based on such a detection signal.
JP6403391A 1991-03-05 1991-03-05 Control method of decompression boiler type vaporizer Expired - Fee Related JP3166189B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6403391A JP3166189B2 (en) 1991-03-05 1991-03-05 Control method of decompression boiler type vaporizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6403391A JP3166189B2 (en) 1991-03-05 1991-03-05 Control method of decompression boiler type vaporizer

Publications (2)

Publication Number Publication Date
JPH06341602A true JPH06341602A (en) 1994-12-13
JP3166189B2 JP3166189B2 (en) 2001-05-14

Family

ID=13246411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6403391A Expired - Fee Related JP3166189B2 (en) 1991-03-05 1991-03-05 Control method of decompression boiler type vaporizer

Country Status (1)

Country Link
JP (1) JP3166189B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019094792A (en) * 2017-11-20 2019-06-20 株式会社タクマ Heat recovery power generation facility from flue gas and control method for the same
CN113654851A (en) * 2021-07-20 2021-11-16 哈尔滨工程大学 Device and method for sampling aerosol in containment vessel under severe accident condition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019094792A (en) * 2017-11-20 2019-06-20 株式会社タクマ Heat recovery power generation facility from flue gas and control method for the same
CN113654851A (en) * 2021-07-20 2021-11-16 哈尔滨工程大学 Device and method for sampling aerosol in containment vessel under severe accident condition
CN113654851B (en) * 2021-07-20 2023-12-19 哈尔滨工程大学 Device and method for sampling aerosol in containment under severe accident condition

Also Published As

Publication number Publication date
JP3166189B2 (en) 2001-05-14

Similar Documents

Publication Publication Date Title
JP4564376B2 (en) LNG power generation plant and its operation method
JPH06341602A (en) Pressure reducing boiler type vaporizer and control thereof
JP2768388B2 (en) Decompression boiler type vaporizer and control method thereof
JP2000161084A (en) Fuel heating device
JP2725715B2 (en) Control device for decompression boiler type vaporizer
JP3042637B2 (en) Control method of decompression boiler type vaporizer
JPH06265211A (en) Method for sensing non-condensed gas in pressure reduced boiler type gasification device and method for controlling pressure reduced boiler type gasification device
JP2758245B2 (en) Drain water level control device for feed water heater
JPH0198801A (en) Water-tube boiler
JPH0916266A (en) Flow rate controller
JP2808736B2 (en) Water heater control device
JPS6237210B2 (en)
JPH06180102A (en) Controller for amount of boiler feedwater
JPS5933804B2 (en) Reheat steam temperature control device
JPS6229602Y2 (en)
JPH0643441Y2 (en) Pressure control device for cold heat generation equipment
JPS6383544A (en) Control device for hot water feeder
JPH0214598B2 (en)
JPH08105604A (en) Condensing blow device of boiler using electric conductivity in supply water
JPH05149108A (en) Drum level control device for compound cycle power generation plant
JP2572771Y2 (en) Operation control device for gas vaporization equipment
JPH0461241B2 (en)
JPS5846528B2 (en) heating furnace equipment
JPS622641B2 (en)
JPS6383546A (en) Control device for hot water feeder

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees