JPH06265211A - Method for sensing non-condensed gas in pressure reduced boiler type gasification device and method for controlling pressure reduced boiler type gasification device - Google Patents

Method for sensing non-condensed gas in pressure reduced boiler type gasification device and method for controlling pressure reduced boiler type gasification device

Info

Publication number
JPH06265211A
JPH06265211A JP6548991A JP6548991A JPH06265211A JP H06265211 A JPH06265211 A JP H06265211A JP 6548991 A JP6548991 A JP 6548991A JP 6548991 A JP6548991 A JP 6548991A JP H06265211 A JPH06265211 A JP H06265211A
Authority
JP
Japan
Prior art keywords
temperature
heat transfer
surface temperature
boiler type
detecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6548991A
Other languages
Japanese (ja)
Other versions
JP2725716B2 (en
Inventor
Kazumitsu Nukui
一光 温井
Masakazu Hanamure
雅一 花牟礼
Kanji Kujirai
寛司 鯨井
Masahiro Arakawa
正裕 荒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Precision Products Co Ltd
Tokyo Gas Co Ltd
Original Assignee
Sumitomo Precision Products Co Ltd
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Precision Products Co Ltd, Tokyo Gas Co Ltd filed Critical Sumitomo Precision Products Co Ltd
Priority to JP3065489A priority Critical patent/JP2725716B2/en
Publication of JPH06265211A publication Critical patent/JPH06265211A/en
Application granted granted Critical
Publication of JP2725716B2 publication Critical patent/JP2725716B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)

Abstract

PURPOSE:To prevent occurrence of icing or deterioration of a heat efficiency by a method wherein a temperature sensor is mounted at a heat transfer pipe for low temperature fluid and a staying of non-condensed gas is detected by a reduction of a surface temperature by more than a specified value. CONSTITUTION:A boiler 1 for heating boiler water within it and steam by heating thermal medium and a gasification part 3 having a heat transfer pipe 2 in which low temperature fluid flows are connected by a steam going pipe 4 and a condensed liquid returning pipe 5. There is provided a vacuum pump 6 for reducing pressure within the boiler 1 and within the gasification device 3. A heat transfer pipe 7 acting as a boiler water heating means is installed at the boiler 1. A plurality of temperature sensors S are mounted from the upstream side to the downstream side of the heat transfer pipe 2. A signal from the temperature sensor S is inputted to a changing-over control means 17, a surface temperature of the heat transfer pipe 2 sensed by each of the temperature sensors S is processed by the changing-over control means 17 so as to monitor the surface temperature and the surface temperature difference.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はLNG等の低温流体を気
化するための減圧ボイラ式気化器に於ける不凝縮性ガス
の検出方法及び不凝縮性ガスの検出を伴う減圧ボイラ式
気化器の制御方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for detecting a non-condensable gas in a pressure reducing boiler type vaporizer for vaporizing a low temperature fluid such as LNG, and a pressure reducing boiler type vaporizer with the detection of the non-condensable gas. It relates to a control method.

【0002】[0002]

【従来の技術】LNG等の低温流体を気化するための気
化器の一つとして減圧ボイラ式気化器があり、例えば図
2に示すような構成のものがある。この気化器は、バー
ナの燃焼ガスや高温蒸気等の加熱用熱媒体により内部の
缶水を加熱して蒸気を発生させる缶体1と、低温流体が
流れる伝熱管2を設けた気化部3を蒸気往き管4と凝縮
液戻り管5で接続し、これらの缶体1内と気化部3内、
即ち缶内を真空ポンプ6で排気状態として動作させる構
成としたものである。(例えば実開平2-9755号公報参
照)尚、このような減圧ボイラ式気化器では、缶体1と
気化部3を一体にしたものもある。(例えば実開平2-975
4号公報参照)上記構成に於いて、加熱用熱媒体により加
熱されて発生した減圧蒸気(以下単に蒸気という。)
は、蒸気往き管4を経て気化部3に流入し、ここで伝熱
管2を流れる低温流体と熱交換して低温流体を気化する
と共に、自体は凝縮して凝縮液戻り管5を経て缶体1に
還流するものである。
2. Description of the Related Art As one of vaporizers for vaporizing a low temperature fluid such as LNG, there is a decompression boiler type vaporizer, for example, the one shown in FIG. This vaporizer includes a can body 1 that heats internal can water with a heating heat medium such as burner combustion gas or high-temperature steam to generate steam, and a vaporization section 3 provided with a heat transfer tube 2 through which a low-temperature fluid flows. The vapor transfer pipe 4 and the condensate return pipe 5 are connected to each other.
That is, the inside of the can is evacuated by the vacuum pump 6 to operate. (For example, see Japanese Utility Model Laid-Open No. 2-9755) In such a decompression boiler type vaporizer, there is also one in which the can body 1 and the vaporization section 3 are integrated. (For example, the actual Kaihei 2-975
(See Japanese Patent Publication No. 4) In the above structure, the reduced pressure steam generated by being heated by the heating medium for heating (hereinafter simply referred to as steam).
Flows into the vaporization section 3 through the vapor outflow tube 4 and heat-exchanges with the low temperature fluid flowing through the heat transfer tube 2 to vaporize the low temperature fluid, while condensing itself and passing through the condensate return tube 5 to the can body. It returns to 1.

【0003】以上の気化器に於いて、加熱用熱媒体の供
給量は缶水を一定の設定温度とするようにフィードバッ
ク制御を行うと共に、低温流体の流量に対応して導出し
たフィードフォワード量に基づいてフィードフォワード
制御を行っている。
In the above vaporizer, the feed amount of the heating heat medium is feedback controlled so that the can water is kept at a constant set temperature, and the feed forward amount is derived corresponding to the flow rate of the low temperature fluid. Based on this, feedforward control is performed.

【0004】尚、図中符号8a,8bは夫々加熱用熱媒
体、低温流体の流量を調節する流量調節手段で、符号9
a,9bは流量調節弁、10a,10bは流量センサ、
11a,11bは調節計である。また符号13は温度セ
ンサ12により検出した缶水温度とその設定温度に基づ
いて加熱用熱媒体側の調節計11aの流量の目標値を導
出して設定する設定手段である。上述したように、この
調節計11aは設定手段13を介して缶水温度のフィー
ドバック制御を行うと共に、低温流体側の調節計11b
から与えられるフィードフォワード量に基づいてフィー
ドフォワード制御を行う。
In the figure, reference numerals 8a and 8b are flow rate adjusting means for adjusting the flow rates of the heating medium for heating and the low temperature fluid, respectively.
a and 9b are flow rate control valves, 10a and 10b are flow rate sensors,
Reference numerals 11a and 11b are controllers. Further, reference numeral 13 is a setting means for deriving and setting a target value of the flow rate of the controller 11a on the heating heat medium side based on the can water temperature detected by the temperature sensor 12 and the set temperature thereof. As described above, the controller 11a performs feedback control of the temperature of the can water through the setting means 13, and the controller 11b on the low temperature fluid side.
Feedforward control is performed based on the feedforward amount given by.

【0005】[0005]

【発明が解決しようとする課題】缶水温度を直接的に検
出して制御を行う従来の方法では、缶水が持つ熱容量が
大きいことと、温度の検出に使用する温度センサ自体が
検出遅れを有することの2つの要因により無駄時間と時
定数が共に大きく、従って低温流体の流量の変化等に起
因する外乱が入ってから制御が安定を取り戻すまでに時
間がかかるという課題がある。そこで本発明は、缶水温
度による制御に代えて、これと一対一の対応関係にある
缶内圧力により制御を行うことにより、このような課題
を解決することを目的の一とする。
In the conventional method for directly detecting and controlling the temperature of the can water, the can water has a large heat capacity and the temperature sensor itself used for temperature detection has a detection delay. Due to these two factors, the dead time and the time constant are both large, so that there is a problem that it takes time for the control to return to stability after the disturbance caused by the change in the flow rate of the low temperature fluid enters. Therefore, an object of the present invention is to solve such a problem by performing control by the pressure inside the can, which has a one-to-one correspondence with the temperature of the can water, instead of the control by the temperature of the can water.

【0006】ところで缶水温度と缶内圧力との一対一の
対応関係は、飽和状態に於いて缶内に空気等の不凝縮性
ガスが滞留していない場合にのみ成り立つので、缶内圧
力による制御を行う場合には、不凝縮性ガスの滞留を監
視し、これを検出した場合には適切な対処を行うことが
必要となる。本発明は、このような不凝縮性ガスの滞留
の検出方法そして、これに伴う制御方法を提供すること
を目的とするものである。
By the way, the one-to-one correspondence relationship between the temperature of the can water and the pressure in the can is established only when the non-condensable gas such as air does not stay in the can in the saturated state. When performing control, it is necessary to monitor the retention of non-condensable gas and take appropriate measures when this is detected. It is an object of the present invention to provide a method for detecting such non-condensable gas retention and a control method associated therewith.

【0007】[0007]

【課題を解決するための手段】上述した課題を解決する
ために、本発明は、まず減圧ボイラ式気化器に於ける低
温流体の伝熱管に温度センサを設置して表面温度を監視
し、その表面温度の所定以上の低下により不凝縮性ガス
の滞留を検出する方法を提供する。また本発明は、上述
した課題を解決するための他の方法として、減圧ボイラ
式気化器に於ける低温流体の伝熱管に、その上流側から
下流側に複数の温度センサを設置してそれらの個所間の
表面温度差を監視し、所定以上の表面温度差により不凝
縮性ガスの滞留を検出する方法を提供する。また本発明
は、上述した課題を解決するための更に他の方法とし
て、減圧ボイラ式気化器に於ける低温流体の伝熱管に、
その上流側から下流側に複数の温度センサを設置してそ
れらの個所の表面温度と、それらの個所間の表面温度差
を監視し、いずれかの個所の表面温度の所定以上の低
下、または所定以上の表面温度差により不凝縮性ガスの
滞留を検出する方法を提供する。
In order to solve the above-mentioned problems, the present invention first installs a temperature sensor on a heat transfer tube for a low temperature fluid in a decompression boiler type vaporizer to monitor the surface temperature, and Provided is a method for detecting the retention of non-condensable gas by lowering a surface temperature by a predetermined amount or more. Further, the present invention, as another method for solving the above-mentioned problems, in a heat transfer tube for a low temperature fluid in a decompression boiler type vaporizer, a plurality of temperature sensors are installed from its upstream side to its downstream side. Provided is a method of monitoring a surface temperature difference between points and detecting a non-condensable gas retention based on a surface temperature difference of a predetermined value or more. Further, the present invention, as still another method for solving the above-mentioned problems, in a heat transfer tube for a low temperature fluid in a decompression boiler type vaporizer,
A plurality of temperature sensors are installed from the upstream side to the downstream side to monitor the surface temperature of those points and the surface temperature difference between those points, and reduce the surface temperature at any point more than a predetermined value or a predetermined value. Provided is a method for detecting the retention of non-condensable gas based on the above surface temperature difference.

【0008】更に本発明は、上述した不凝縮性ガスの検
出を伴う減圧ボイラ式気化器の制御方法として、缶水温
度を所定温度とするように加熱用熱媒体の供給量をフィ
ードバック制御して減圧蒸気の発生量を調節する減圧ボ
イラ式気化器に缶水温度センサと缶内圧力センサを設け
ると共に、これらの夫々のセンサの検出値と設定値とか
ら上記加熱用熱媒体の流量調節手段の調節計の目標値を
導出する流量設定手段と、これらの流量設定手段の切替
手段と、この切替手段を制御する切替制御手段とを構成
し、該切替制御手段は上述した検出方法により不凝縮性
ガスの滞留を検出して切替手段を制御して、缶内圧力に
よる制御から缶水温度による制御に切り替える制御方法
を提供する。
Further, the present invention is a method of controlling a decompression boiler type vaporizer with the detection of the above-mentioned non-condensable gas, in which the feed amount of the heating medium for heating is feedback-controlled so that the temperature of the can water becomes a predetermined temperature. A canister temperature sensor and a canister pressure sensor are provided in a decompression boiler type vaporizer that regulates the amount of depressurized steam generated, and the flow rate control means of the heating heat medium is determined from the detected value and set value of each of these sensors. The flow rate setting means for deriving the target value of the controller, the switching means for the flow rate setting means, and the switching control means for controlling the switching means are constituted, and the switching control means is non-condensable by the above-described detection method. Provided is a control method for detecting a gas retention and controlling a switching means to switch from control based on can internal pressure to control based on can water temperature.

【0009】[0009]

【作用】缶内に空気等の不凝縮性ガスが滞留して、これ
が低温流体の伝熱管に付着すると蒸気が伝熱管の表面に
接触しにくくなって、その表面温度が低下する。そして
出ガス温度も低下する。従って上記表面温度を監視して
いれば、その低下により不凝縮性ガスの滞留を検出する
ことができる。但し伝熱管の表面温度の低下は、低温流
体の負荷の上昇、即ち流量の増大によっても生じるの
で、上記不凝縮性ガスの滞留として検出する表面温度の
基準値は、流量に対応して変えて設定したり、流量の増
大によって低下する最低温度よりも低い値とし、即ち上
記表面温度が所定以上の低下をした場合に不凝縮性ガス
の滞留として検出する。
When non-condensable gas such as air stays in the can and adheres to the heat transfer tube of the low temperature fluid, it becomes difficult for steam to contact the surface of the heat transfer tube, and the surface temperature of the heat transfer tube decreases. And the temperature of the discharged gas also decreases. Therefore, if the surface temperature is monitored, it is possible to detect the retention of the non-condensable gas due to the decrease. However, the decrease in the surface temperature of the heat transfer tube also occurs due to the increase in the load of the low temperature fluid, that is, the increase in the flow rate.Therefore, the reference value of the surface temperature detected as the retention of the noncondensable gas should be changed according to the flow rate. The non-condensable gas is detected as a stagnation of the non-condensable gas when it is set or a value lower than the minimum temperature lowering due to the increase of the flow rate, that is, when the surface temperature lowers more than a predetermined value.

【0010】ところで不凝縮性ガスは必ずしも伝熱管に
均等に付着するわけではないので、かかる不凝縮性ガス
の付着によって伝熱管の表面の温度分布が均一でなくな
り、表面間に温度差が生じる。従って、伝熱管の上流側
から下流側に複数の温度センサを設置してそれらの個所
の表面温度差を監視していれば、それらの表面温度差が
所定以上生じた場合を不凝縮性ガスの滞留として検出す
ることができる。
By the way, since the noncondensable gas does not necessarily adhere to the heat transfer tube uniformly, the temperature distribution on the surface of the heat transfer tube becomes non-uniform due to the adhesion of the noncondensable gas, and a temperature difference occurs between the surfaces. Therefore, if a plurality of temperature sensors are installed from the upstream side to the downstream side of the heat transfer tube and the surface temperature difference at those points is monitored, the case where the surface temperature difference exceeds a predetermined value is detected by the non-condensable gas. It can be detected as retention.

【0011】減圧ボイラ式気化器では、飽和状態に於い
て、そして缶内に空気等の不凝縮性ガスが滞留していな
い場合には、缶水温度と缶内圧力の間には一定の対応関
係があるため、缶内圧力を検出すれば、この対応関係に
より間接的に缶水温度を検出することができる。従って
缶水温度の検出による制御に代えて、検出した缶内圧力
を所定圧力とするように制御することにより、間接的に
缶水温度を所定の温度に調節することができる。そして
このような制御では、缶内圧力の変化の検出に於ける無
駄時間と時定数が共に小さいので、応答特性の良い制御
を行うことができ、外乱に対して、より早く系を安定に
導くことができる。従って不凝縮性ガスの滞留を検出し
た場合には、缶内圧力による制御から従来と同様な缶水
温度による制御に切り替えることにより、缶水温度と缶
内圧力との一対一の対応関係が崩れた場合にも適切な制
御が行われる。
In the decompression boiler type vaporizer, in a saturated state and when non-condensable gas such as air does not stay in the can, there is a certain correspondence between the can water temperature and the can pressure. Since there is a relationship, if the can internal pressure is detected, the can water temperature can be indirectly detected by this correspondence. Therefore, the can water temperature can be indirectly adjusted to a predetermined temperature by controlling the detected can internal pressure to a predetermined pressure instead of the control by detecting the can water temperature. In such control, since the dead time and the time constant in detecting the change in the pressure inside the can are both small, control with good response characteristics can be performed, and the system can be guided more quickly and stably against external disturbances. be able to. Therefore, when non-condensable gas retention is detected, the one-to-one correspondence between can water temperature and can pressure is broken by switching control from can pressure to can water temperature as before. In the case of failure, appropriate control is performed.

【0012】[0012]

【実施例】次に本発明の実施例を図について説明する。
図1は本発明の制御方法を適用する減圧ボイラ式気化器
の構成を制御要素と共に表した系統図であり、図2に示
す従来の構成と同様な構成要素には同一の符号を付して
いる。
Embodiments of the present invention will now be described with reference to the drawings.
FIG. 1 is a system diagram showing the configuration of a decompression boiler type carburetor to which the control method of the present invention is applied together with control elements. The same components as those of the conventional configuration shown in FIG. There is.

【0013】図1に示した気化器は蒸気を発生させる缶
体1と低温流体を気化する気化部3を分離した構成であ
り、即ち加熱用熱媒体により内部の缶水を加熱して蒸気
を発生する缶体1と低温流体が流れる伝熱管2を設けた
気化部3を、蒸気往き管4と凝縮液戻り管5で接続し、
これらの缶体1内と気化部3内を減圧する真空ポンプ6
を設けている。そして缶体1には缶水の加熱手段として
の伝熱管7を設けており、この伝熱管7を流れる高温蒸
気等の加熱用熱媒体により缶水を加熱する構成としてい
る。上述したように本発明を適用する気化器は上記の構
成の他、缶体1と気化部3を一体とした構成等適宜であ
り、加熱用熱媒体及びこれを缶体1に供給する加熱手段
の構成も適宜である。
The vaporizer shown in FIG. 1 has a structure in which a can body 1 for generating steam and a vaporizing section 3 for vaporizing a low temperature fluid are separated from each other, that is, the can water inside is heated by a heating medium for heating to vaporize the steam. The vaporizing section 3 provided with the generated can body 1 and the heat transfer tube 2 through which the low-temperature fluid flows is connected by the vapor outgoing pipe 4 and the condensed liquid return pipe 5,
Vacuum pump 6 for decompressing the inside of the can body 1 and the inside of the vaporization section 3
Is provided. The can body 1 is provided with a heat transfer tube 7 as a heating means for the can water, and the can water is heated by a heating heat medium such as high-temperature steam flowing through the heat transfer tube 7. As described above, the vaporizer to which the present invention is applied may have an appropriate configuration such as a configuration in which the can body 1 and the vaporization section 3 are integrated, in addition to the above-described configuration, and a heating medium for heating and heating means for supplying the heating medium to the can body 1. The configuration of is also appropriate.

【0014】上記加熱用熱媒体及び低温流体の伝熱管
7,2の夫々には、流量調節手段8a,8bを設けてお
り、これらの流量調節手段8a,8bは、夫々流量調節
弁9a,9bと流量センサ10a,10b及び調節計1
1a,11bとから構成している。符号12は缶水温度
を検出する温度センサ、13は温度センサ12により検
出した缶水温度とその設定温度に基づいて加熱用熱媒体
側の調節計11aの目標値を導出して設定する第一の設
定手段である。また符号14は導圧管15を介して缶内
圧力を検出する圧力センサを備え、この検出した缶内圧
力とその設定圧力に基づいて加熱用熱媒体側の調節計1
1aの目標値を導出して設定する第二の設定手段であ
る。符号16は調節計11aの制御を第一、第二の設定
手段13、14のいずれかに切り替える切替手段であ
り、この切替手段16は切替制御手段17により切り替
える構成としている。符号18は上記加熱用熱媒体側の
調節計11bのフィードフォワード量を導出して設定す
る第三の設定手段であり、この第三の設定手段18は、
缶水温度の条件での蒸気と低温流体の熱交換に於ける熱
の静的バランスから得られる一定の流量比と、低温流体
側の調節計11bから得た低温流体の流量とからフィー
ドフォワード量を導出する。符号Sは伝熱管7の表面温
度を測定する温度センサであり、この温度センサSは伝
熱管2の上流側から下流側に複数設置している。図1で
は温度センサSは5個示しており、また図3では9個示
している。これらの温度センサSの信号は、上記切替制
御手段17に入力され、この切替制御手段17により各
温度センサSによる伝熱管2の表面温度を処理して、そ
れらの表面温度と表面温度差の監視を行う構成としてい
る。
Flow rate adjusting means 8a and 8b are provided in the heat transfer tubes 7 and 2 for the heating heat medium and the low temperature fluid, respectively, and these flow rate adjusting means 8a and 8b are flow rate adjusting valves 9a and 9b, respectively. And flow rate sensors 10a, 10b and controller 1
It is composed of 1a and 11b. Reference numeral 12 is a temperature sensor that detects the temperature of the can water, and 13 is a first value that derives and sets the target value of the controller 11a on the heating medium side for heating based on the can water temperature detected by the temperature sensor 12 and its set temperature. Is a setting means. Reference numeral 14 is provided with a pressure sensor for detecting the pressure inside the can via the pressure guiding pipe 15, and the controller 1 on the heating medium side for heating is based on the detected pressure inside the can and the set pressure thereof.
It is a second setting means for deriving and setting the target value of 1a. Reference numeral 16 is a switching means for switching the control of the controller 11a to one of the first and second setting means 13 and 14, and this switching means 16 is configured to be switched by the switching control means 17. Reference numeral 18 is a third setting means for deriving and setting the feedforward amount of the controller 11b on the heating heat medium side, and the third setting means 18 is
A feedforward amount from a constant flow rate ratio obtained from the static balance of heat in the heat exchange between the steam and the low temperature fluid at the condition of the can water temperature and the flow rate of the low temperature fluid obtained from the low temperature fluid side controller 11b. Derive. Reference numeral S is a temperature sensor that measures the surface temperature of the heat transfer tube 7. A plurality of temperature sensors S are installed from the upstream side to the downstream side of the heat transfer tube 2. FIG. 1 shows five temperature sensors S, and FIG. 3 shows nine temperature sensors S. The signals of these temperature sensors S are input to the switching control means 17, and the switching control means 17 processes the surface temperature of the heat transfer tube 2 by each temperature sensor S to monitor the surface temperature and the difference in surface temperature. It is configured to do.

【0015】以上の構成に於いて、缶内に空気等の不凝
縮性ガスが滞留しておらず、従って切替制御手段17が
その検出状態でない場合には、切替制御手段17は切替
手段16を第二の設定手段14側に切り替えて加熱用熱
媒体側の調節計11aの制御を行う。かかる制御は缶水
温度の検出と比較して無駄時間と時定数が共に小さい缶
内圧力を検出して行うため、応答速度の早い制御を行う
ことができ、より早く系を安定に導くことができる。
In the above structure, when the non-condensable gas such as air does not stay in the can and the switching control means 17 is not in the detection state, the switching control means 17 causes the switching means 16 to operate. The controller 11a on the heating heat medium side is controlled by switching to the second setting means 14 side. Since such control is performed by detecting the pressure inside the can, which has a small dead time and a small time constant compared to the detection of the temperature of the can water, it is possible to perform control with a fast response speed and to guide the system more quickly and stably. it can.

【0016】図5はこのような缶内圧力による制御をL
NGの気化に適用した実施結果の一例を示すものであ
り、また図6は従来と同様に缶水温度の検出による制御
を実施した結果を示すものであり、両者共にLNG流量
を変化させた場合の缶内圧力、缶内温度、加熱用熱媒体
としての高温蒸気量及び流量調節弁9aの開度の挙動を
表している。これらの図に示されるように、缶内圧力の
測定による制御では、缶水温度の検出による制御と比較
して、上記各変量の変動量が小さく制御性が良好で、よ
り早く系が安定に導かれることがわかる。
FIG. 5 shows the control by the pressure in the can as described above.
FIG. 6 shows an example of an implementation result applied to the vaporization of NG, and FIG. 6 shows a result of performing control by detecting the temperature of the can water as in the conventional case. In both cases, when the LNG flow rate is changed. The behaviors of the can internal pressure, the can internal temperature, the amount of high temperature steam as a heating heat medium, and the opening degree of the flow rate control valve 9a are shown. As shown in these figures, in the control by measuring the pressure in the can, compared with the control by detecting the temperature of the can water, the fluctuation amount of each of the above variables is small, the controllability is good, and the system becomes stable more quickly. You can see that you will be guided.

【0017】以上の制御に於いて缶内に空気が入って滞
留し、これが低温流体の伝熱管2に付着すると蒸気が伝
熱管2の表面に接触しにくくなって、その表面温度が低
下する。例えば図4は、図3に示すように温度センサS
(S1,S2,S3,S4,S5,S6,S7,S8,
S9)を設置した伝熱管2に於いて、温度センサS5に
対応する個所に空気が付着した場合を示すもので、この
個所の表面温度は時間の経過につれ次第に低下し、一
方、他の温度センサS1,S3に対応する個所の表面温
度は低下しない。この状態を放置すると、温度センサS
5の対応個所の表面温度はついには0℃以下となって氷
結が生じる。このような空気の付着状態に於いては、当
該温度センサS5の検出値と、他のいずれかの温度セン
サ、この場合温度センサS1の検出値の差が所定の幅Δ
T以上であるか否かを監視したり、またはいずれかの温
度センサ、この場合温度センサS5が基準温度Tよりも
高いか低いかを監視することにより上述した空気の付着
状態を切替制御手段17に於いて検出することができ
る。またこれらの監視を両者共に行い、それらの論理和
として検出を行えば、何れか一方にのみ所定以上の現象
が現れる空気の付着状態も検出することができる。
In the above control, when air enters and stays in the can and adheres to the heat transfer tube 2 of the low temperature fluid, it becomes difficult for steam to contact the surface of the heat transfer tube 2 and the surface temperature thereof decreases. For example, FIG. 4 shows the temperature sensor S as shown in FIG.
(S1, S2, S3, S4, S5, S6, S7, S8,
In the heat transfer tube 2 in which S9) is installed, the case where air adheres to a portion corresponding to the temperature sensor S5 is shown. The surface temperature of this portion gradually decreases with the passage of time, while the other temperature sensors The surface temperature of the portions corresponding to S1 and S3 does not decrease. If this state is left, the temperature sensor S
The surface temperature of the corresponding portion of 5 finally becomes 0 ° C. or lower and icing occurs. In such an air adhering state, the difference between the detected value of the temperature sensor S5 and the detected value of any other temperature sensor, in this case, the temperature sensor S1, is a predetermined width Δ.
By controlling whether the temperature is equal to or higher than T, or by monitoring whether any one of the temperature sensors, in this case the temperature sensor S5, is higher or lower than the reference temperature T, the above-mentioned air adhesion state switching control means 17 is controlled. Can be detected at. Further, if both of these are monitored and detected as the logical sum of them, it is possible to detect the adhering state of air in which a phenomenon exceeding a predetermined level appears in only one of them.

【0018】ところで上述した気化器に於ける、缶水温
度(θs)、低温流体流量(G)、低温流体の入口温度
(θi)及び出ガス温度(θ)の関係は、缶内に於ける
微小要素のヒートバランスから得られる微分方程式を解
き、定常解を求めることにより次式の通りに表すことが
できる。 θ=(1−f(G))θs+f(G)θi ………(1) 但し、f(G)は、伝熱面積をパラメータに持つ単調増
加関数である。上式に於いて、θs>θiであるから、
缶水温度(θs)が一定とすると、出ガス温度(θ)は
低温流体流量(G)の増加に対して単調減少する。ま
た、この出ガス温度の低下と共に、伝熱管2の温度も低
下する。従って、上記不凝縮性ガスの滞留として検出す
る表面温度の基準値は、流量に対応して変えて設定した
り、流量の増大によって低下する最低温度よりも低い値
として設定すれば良い。前者の場合には、切替制御手段
17は低温流体側の調節計11bからの流量信号を参照
して上記検出を行うことになる。
By the way, in the vaporizer described above, the relationship between the can water temperature (θs), the low temperature fluid flow rate (G), the low temperature fluid inlet temperature (θi) and the outlet gas temperature (θ) is in the can. By solving a differential equation obtained from the heat balance of minute elements and obtaining a steady solution, it can be expressed as the following equation. θ = (1−f (G)) θs + f (G) θi (1) where f (G) is a monotonically increasing function having the heat transfer area as a parameter. In the above equation, since θs> θi,
If the can water temperature (θs) is constant, the outlet gas temperature (θ) decreases monotonically with an increase in the low temperature fluid flow rate (G). Further, the temperature of the heat transfer tube 2 also decreases as the temperature of the discharged gas decreases. Therefore, the reference value of the surface temperature detected as the retention of the non-condensable gas may be set differently in accordance with the flow rate, or may be set as a value lower than the minimum temperature which is decreased by the increase of the flow rate. In the former case, the switching control means 17 performs the above detection by referring to the flow rate signal from the controller 11b on the low temperature fluid side.

【0019】上述した如く切替制御手段17が空気の滞
留を検出した際には、この切替制御手段17は、切替手
段16を動作して第一の設定手段13による調節計11
aの制御に切り替えて所定のバックアップ運転を行うこ
とができる。このようなバックアップ運転に於いては、
缶水温度と缶内圧力との一対一の対応関係が崩れていて
も直接的に缶水温度を設定温度とするように適切に制御
することができる。
As described above, when the switching control means 17 detects the retention of air, the switching control means 17 operates the switching means 16 to operate the controller 11 by the first setting means 13.
A predetermined backup operation can be performed by switching to the control of a. In such backup operation,
Even if the one-to-one correspondence between the can water temperature and the can internal pressure is broken, the can water temperature can be directly controlled to the set temperature.

【0020】尚、本発明の不凝縮性ガスの検出方法は、
缶水温度の検出による制御のみを行う従来の減圧ボイラ
式気化器の制御方法にも適用し得ることは勿論であり、
この場合は不凝縮性ガスの滞留を検出して真空ポンプ6
を動作させて、滞留による不都合を解消することができ
る。
The method for detecting a non-condensable gas according to the present invention is
Of course, it can also be applied to the control method of the conventional decompression boiler type carburetor that performs only the control by detecting the temperature of the can water,
In this case, the non-condensable gas is detected to stay and the vacuum pump 6
Can be operated to eliminate the inconvenience caused by staying.

【0021】[0021]

【発明の効果】本発明は以上の通り、減圧ボイラ式気化
器に於いて、伝熱管の表面温度の低下や出ガス温度の低
下をもたらす空気等の不凝縮性ガスの滞留を検出するこ
とができ、この検出に基づいて所定の処理を行うことに
より、氷結等の発生や熱効率の悪化を防止することがで
きるという効果がある。
INDUSTRIAL APPLICABILITY As described above, the present invention can detect the retention of non-condensable gas such as air which causes a decrease in the surface temperature of the heat transfer tube and a decrease in the temperature of the discharged gas in the decompression boiler type vaporizer. By performing a predetermined process based on this detection, it is possible to prevent the occurrence of icing and the like and the deterioration of thermal efficiency.

【0022】また、このような不凝縮性ガスの滞留の検
出方法を、缶内圧力による制御と缶水温度による制御を
切替可能に構成した減圧ボイラ式気化器の制御方法に適
用することにより、上記滞留がない場合には、前者の制
御に切り替えて、無駄時間と時定数が共に小さい制御を
行うことができ、従って応答特性の良い制御を行うこと
ができ、外乱に対して、より早く系を安定に導くことが
できると共に、滞留が発生した場合には、後者の制御に
切り替えることにより、缶水温度と缶内圧力との一対一
の対応関係が崩れた場合にも適切な制御を維持すること
ができ、従って前者の制御を安全に、安定して行えると
いう効果がある。
Further, by applying such a method of detecting non-condensable gas retention to a control method of a pressure reducing boiler type carburetor configured to be switchable between control by can pressure and can water temperature, When there is no such retention, the former control can be switched over to control both the dead time and the time constant to be small, and therefore control with good response characteristics can be performed, and the system can be treated faster against disturbance. In addition to the stable control, if the retention occurs, by switching to the latter control, the appropriate control is maintained even if the one-to-one correspondence between the can water temperature and the can pressure is broken. Therefore, there is an effect that the former control can be performed safely and stably.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法を適用する減圧ボイラ式気化器の
構成を制御要素と共に表した系統図である。
FIG. 1 is a system diagram showing the configuration of a decompression boiler type vaporizer to which the method of the present invention is applied together with control elements.

【図2】従来の減圧ボイラ式気化器の構成を制御要素と
共に表した系統図である。
FIG. 2 is a system diagram showing the configuration of a conventional decompression boiler type carburetor together with control elements.

【図3】本発明の方法に於ける温度センサの設置例を表
した説明図である。
FIG. 3 is an explanatory diagram showing an installation example of a temperature sensor in the method of the present invention.

【図4】図3の温度センサによる伝熱管の表面温度の検
出例を示す説明図である。
4 is an explanatory diagram showing an example of detecting the surface temperature of a heat transfer tube by the temperature sensor of FIG.

【図5】本発明の制御方法に於いて、缶内圧力による制
御を行った場合の制御特性を示す説明図である。
FIG. 5 is an explanatory diagram showing a control characteristic in the case where control is performed by the pressure inside the can in the control method of the present invention.

【図6】本発明の制御方法に於いて、従来と同様に缶水
温度による制御を行った場合の制御特性を示す説明図で
ある。
FIG. 6 is an explanatory diagram showing control characteristics in the control method of the present invention in the case where control is performed according to the can water temperature as in the conventional case.

【符号の説明】[Explanation of symbols]

1 缶体 2 伝熱管 3 気化部 4 蒸気往き管 5 凝縮液戻り管 6 真空ポンプ 7 伝熱管 8a 流量調節手段 8b 流量調節手段 9a 流量調節弁 9b 流量調節弁 10a 流量センサ 10b 流量センサ 11a 調節計 11b 調節計 12 温度センサ 13 第一の設定手段(設定手段) 14 第二の設定手段 15 導圧管 16 切替手段 17 切替制御手段 18 第三の設定手段 S 温度センサ DESCRIPTION OF SYMBOLS 1 Can body 2 Heat transfer pipe 3 Vaporization part 4 Steam forward pipe 5 Condensate return pipe 6 Vacuum pump 7 Heat transfer pipe 8a Flow rate adjusting means 8b Flow rate adjusting means 9a Flow rate adjusting valve 9b Flow rate adjusting valve 10a Flow rate sensor 10b Flow rate sensor 11a Regulator 11b Controller 12 Temperature sensor 13 First setting means (setting means) 14 Second setting means 15 Pressure guide tube 16 Switching means 17 Switching control means 18 Third setting means S Temperature sensor

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鯨井 寛司 神奈川県横浜市鶴見区東寺尾5−5−43− 211 (72)発明者 荒川 正裕 千葉県船橋市古作4−8−3 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Kanji Kujii 5-5-43- 211 Higashiterao, Tsurumi-ku, Yokohama-shi, Kanagawa (72) Inventor Masahiro Arakawa 4-8-3, old works, Funabashi, Chiba

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 減圧ボイラ式気化器に於ける低温流体の
伝熱管に温度センサを設置して表面温度を監視し、その
表面温度の所定以上の低下により不凝縮性ガスの滞留を
検出することを特徴とする減圧ボイラ式気化器に於ける
不凝縮性ガスの検出方法
1. A temperature sensor is installed in a heat transfer pipe for a low temperature fluid in a decompression boiler type vaporizer to monitor the surface temperature, and the retention of the non-condensable gas is detected by lowering the surface temperature more than a predetermined value. Method for Detecting Noncondensable Gas in Decompression Boiler Vaporizer
【請求項2】 減圧ボイラ式気化器に於ける低温流体の
伝熱管に、その上流側から下流側に複数の温度センサを
設置してそれらの個所間の表面温度差を監視し、所定以
上の表面温度差により不凝縮性ガスの滞留を検出するこ
とを特徴とする減圧ボイラ式気化器に於ける不凝縮性ガ
スの検出方法
2. A heat transfer pipe for a low temperature fluid in a decompression boiler type carburetor is provided with a plurality of temperature sensors from the upstream side to the downstream side thereof to monitor the surface temperature difference between those points, and to detect the temperature difference above a predetermined level. Method for detecting noncondensable gas in a decompression boiler type vaporizer characterized by detecting retention of noncondensable gas by surface temperature difference
【請求項3】 減圧ボイラ式気化器に於ける低温流体の
伝熱管に、その上流側から下流側に複数の温度センサを
設置してそれらの個所の表面温度と、それらの個所間の
表面温度差を監視し、いずれかの個所の表面温度の所定
以上の低下、または所定以上の表面温度差により不凝縮
性ガスの滞留を検出することを特徴とする減圧ボイラ式
気化器に於ける不凝縮性ガスの検出方法
3. A heat transfer pipe for a low temperature fluid in a decompression boiler type vaporizer is provided with a plurality of temperature sensors from the upstream side to the downstream side thereof, and the surface temperature of those points and the surface temperature between those points. Non-condensation in a decompression boiler type vaporizer characterized by monitoring the difference and detecting a decrease in the surface temperature at any point above a predetermined level, or detecting the retention of non-condensable gas due to a difference in surface temperature above a predetermined level. Method for detecting volatile gas
【請求項4】 缶水温度を所定温度とするように加熱用
熱媒体の供給量をフィードバック制御して減圧蒸気の発
生量を調節する減圧ボイラ式気化器に缶水温度センサと
缶内圧力センサを設けると共に、これらの夫々のセンサ
の検出値と設定値とから上記加熱用熱媒体の流量調節手
段の調節計の目標値を導出する流量設定手段と、これら
の流量設定手段の切替手段と、この切替手段を制御する
切替制御手段とを構成し、該切替制御手段は請求項1、
2または3の検出方法により不凝縮性ガスの滞留を検出
して切替手段を制御して、缶内圧力による制御から缶水
温度による制御に切り替えることを特徴とする不凝縮性
ガスの検出を伴う減圧ボイラ式気化器の制御方法
4. A can water temperature sensor and a can pressure sensor in a decompression boiler type carburetor that controls the amount of heating medium supplied by feedback so that the temperature of the can water becomes a predetermined temperature and adjusts the amount of depressurized steam generated. With the provision of a flow rate setting means for deriving the target value of the controller of the flow rate adjusting means of the heating heat medium from the detected value and the set value of each of these sensors, and a switching means of these flow rate setting means, And a switching control means for controlling the switching means, the switching control means comprising:
Accompanied by detection of the non-condensable gas, which is characterized by detecting the retention of the non-condensable gas by the detection method 2 or 3 and controlling the switching means to switch from control by the pressure inside the can to control by the temperature of the can water. Control method of decompression boiler type vaporizer
JP3065489A 1991-03-06 1991-03-06 Method of detecting non-condensable gas in decompression boiler type vaporizer and method of controlling decompression boiler type vaporizer with detection of non-condensable gas Expired - Lifetime JP2725716B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3065489A JP2725716B2 (en) 1991-03-06 1991-03-06 Method of detecting non-condensable gas in decompression boiler type vaporizer and method of controlling decompression boiler type vaporizer with detection of non-condensable gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3065489A JP2725716B2 (en) 1991-03-06 1991-03-06 Method of detecting non-condensable gas in decompression boiler type vaporizer and method of controlling decompression boiler type vaporizer with detection of non-condensable gas

Publications (2)

Publication Number Publication Date
JPH06265211A true JPH06265211A (en) 1994-09-20
JP2725716B2 JP2725716B2 (en) 1998-03-11

Family

ID=13288564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3065489A Expired - Lifetime JP2725716B2 (en) 1991-03-06 1991-03-06 Method of detecting non-condensable gas in decompression boiler type vaporizer and method of controlling decompression boiler type vaporizer with detection of non-condensable gas

Country Status (1)

Country Link
JP (1) JP2725716B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104089180A (en) * 2014-07-27 2014-10-08 苟仲武 Novel liquid gasification device and work method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59158945U (en) * 1983-04-11 1984-10-25 三浦工業株式会社 Vacuum hot water can extraction device
JPS60233444A (en) * 1984-05-07 1985-11-20 Matsushita Electric Ind Co Ltd Hot water supplier
JPH01208652A (en) * 1988-02-15 1989-08-22 Tlv Co Ltd Temperature controller for fluid continuous-heating apparatus
JPH029755U (en) * 1988-06-29 1990-01-22
JPH0285948U (en) * 1988-12-16 1990-07-06
JPH0285947U (en) * 1988-12-16 1990-07-06

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59158945U (en) * 1983-04-11 1984-10-25 三浦工業株式会社 Vacuum hot water can extraction device
JPS60233444A (en) * 1984-05-07 1985-11-20 Matsushita Electric Ind Co Ltd Hot water supplier
JPH01208652A (en) * 1988-02-15 1989-08-22 Tlv Co Ltd Temperature controller for fluid continuous-heating apparatus
JPH029755U (en) * 1988-06-29 1990-01-22
JPH0285948U (en) * 1988-12-16 1990-07-06
JPH0285947U (en) * 1988-12-16 1990-07-06

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104089180A (en) * 2014-07-27 2014-10-08 苟仲武 Novel liquid gasification device and work method
CN104089180B (en) * 2014-07-27 2016-03-09 苟仲武 A kind of new liquid gasification installation and method of work

Also Published As

Publication number Publication date
JP2725716B2 (en) 1998-03-11

Similar Documents

Publication Publication Date Title
US5619859A (en) Absorption refrigeration unit
JPH06265211A (en) Method for sensing non-condensed gas in pressure reduced boiler type gasification device and method for controlling pressure reduced boiler type gasification device
JPH0942606A (en) Once-through boiler steam temperature control device
JP4115064B2 (en) Steam heating method for cryogenic fluid
KR860000505B1 (en) Method for regulating the pressure of the primary circuit during the shut-down phases of a pressurized water nuclear reactor
JP2000161084A (en) Fuel heating device
JP2725715B2 (en) Control device for decompression boiler type vaporizer
JP2758245B2 (en) Drain water level control device for feed water heater
JPH06341601A (en) Pressure reducing boiler type vaporizer and control thereof
JPH06341602A (en) Pressure reducing boiler type vaporizer and control thereof
JPH06265209A (en) Method for controlling pressure reducing boiler type gasification device
JPS6237210B2 (en)
JPS582403A (en) Control method and its equipment of steam separating reheater
JPH06323507A (en) Steam supplying device
JPH0429197Y2 (en)
JP3308601B2 (en) Chilled water temperature control device of absorption refrigerator
JPH0454204A (en) Control device for gas-extraction and condensation type turbine
JPH0410361B2 (en)
JPH0461241B2 (en)
JPH03199892A (en) Control of amount of supply gas for waste heat boiler
JPH10110907A (en) Overheating adjusting device in boiler
JPH0694208A (en) Water level controller for deaerator
JPH0368284B2 (en)
JPH09145004A (en) Emergency shutdown control of device pressurized fluidized bed boiler
JPH0220595A (en) Liquefied gas evaporator