JPH06333774A - Method for forming electrode of stacked porcelain capacitor and manufacture of stacked porcelain capacitor using the method - Google Patents
Method for forming electrode of stacked porcelain capacitor and manufacture of stacked porcelain capacitor using the methodInfo
- Publication number
- JPH06333774A JPH06333774A JP12124693A JP12124693A JPH06333774A JP H06333774 A JPH06333774 A JP H06333774A JP 12124693 A JP12124693 A JP 12124693A JP 12124693 A JP12124693 A JP 12124693A JP H06333774 A JPH06333774 A JP H06333774A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- dielectric layer
- internal electrode
- dielectric
- support
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
- Ceramic Capacitors (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、積層磁器コンデンサの
内部電極を形成する方法およびその方法を用いた積層磁
器コンデンサの製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of forming an internal electrode of a laminated ceramic capacitor and a method of manufacturing a laminated ceramic capacitor using the method.
【0002】[0002]
【従来の技術】近年、ラジオ、マイクロカセットレコー
ダ、電子チューナ、ビデオカメラなどの超小型、薄型軽
量電子機器の発展にともない回路素子として使用される
積層磁器コンデンサの小型、大容量化が強く要求される
ようになってきた。積層磁器コンデンサの小型、大容量
化をはかるには誘電体層の薄層化が不可欠である。従来
の積層磁器コンデンサは誘電体グリーンシート上に直接
電極ペーストをスクリーン印刷法で所望の形状となるよ
う電極層を形成していた。この方法は湿式であるため電
極ペーストの溶剤が誘電体グリーンシートのバインダ成
分を再溶解し、誘電体グリーンシートが局所的に膨潤、
変形したりする。また誘電体層が薄くなるほどピンホー
ルが発生しやすくなり、スクリーン印刷においてスキー
ジで電極ペーストを圧接すると、このピンホールに電極
ペーストが侵入しショート不良が生じていた。2. Description of the Related Art In recent years, with the development of ultra-small, thin and lightweight electronic devices such as radios, microcassette recorders, electronic tuners, video cameras, etc., there has been a strong demand for miniaturization and large capacity of laminated porcelain capacitors used as circuit elements. It started to come. In order to reduce the size and increase the capacity of the laminated ceramic capacitor, it is essential to make the dielectric layer thinner. In the conventional laminated porcelain capacitor, an electrode layer is formed directly on a dielectric green sheet by a screen printing method so as to have a desired shape. Since this method is wet, the solvent of the electrode paste redissolves the binder component of the dielectric green sheet, and the dielectric green sheet swells locally,
It transforms. Further, as the dielectric layer becomes thinner, pinholes are more likely to occur, and when the electrode paste is pressed into contact with the squeegee in screen printing, the electrode paste penetrates into this pinhole, causing a short circuit defect.
【0003】一方、高積層化が進むとスクリーン印刷法
などで電極を形成した場合、電極厚みがかなり大きくな
ることから、電極を形成した部分と形成していない部分
とでは、電極厚みの分だけ電極を形成した部分の方が電
極を形成していない部分よりも厚くなる。従ってプレス
などの平盤で加熱圧着した場合、電極を形成した部分の
方が電極を形成していない部分に比べ積層圧力が高くな
るので、積層圧力が不均一となり内部構造欠陥を生じて
いた。On the other hand, when electrodes are formed by a screen printing method or the like as the number of layers is increased, the electrode thickness becomes considerably large. The portion where the electrode is formed is thicker than the portion where the electrode is not formed. Therefore, in the case of thermocompression bonding with a flat plate such as a press, the laminating pressure becomes higher in the portion where the electrodes are formed than in the portion where the electrodes are not formed, so that the laminating pressure becomes non-uniform and internal structural defects occur.
【0004】これらの改善策としてスクリーン印刷法よ
りも格段に電極厚みを薄くし、かつ乾式で電極形成する
熱転写法、またその内部電極の精度を良くする発明がな
されている(たとえば特開昭64−42809号公報,
特開平3−108709号公報参照)。As a countermeasure for these problems, a thermal transfer method in which the electrode thickness is remarkably thinner than that in the screen printing method and the electrode is formed by a dry method, and an invention for improving the accuracy of the internal electrode has been made (for example, JP-A-64). -42809 publication,
See Japanese Patent Laid-Open No. 3-108709).
【0005】以下に従来の積層磁器コンデンサの電極形
成方法について説明する。図6に示すように、支持フィ
ルム21上に所望形状の薄膜電極層22を形成した電極
材料供給帯23を用意した後、誘電体層上24に熱プレ
ス25等を用いて熱転写により薄膜からなる内部電極2
6を形成するものである。A method of forming electrodes of a conventional laminated ceramic capacitor will be described below. As shown in FIG. 6, after preparing an electrode material supply zone 23 in which a thin film electrode layer 22 having a desired shape is formed on a support film 21, a thin film is formed on the dielectric layer 24 by thermal transfer using a heat press 25 or the like. Internal electrode 2
6 is formed.
【0006】[0006]
【発明が解決しようとする課題】しかしながら上記の従
来の方法では、薄膜電極層22を形成した電極材料供給
帯23の支持体である支持フィルム21の面に直接加熱
するため一旦熱転写し、薄膜電極層22を誘電体層24
上に形成した後では、支持フィルム21に縮みやしわが
生じ再利用ができずコスト高になるという問題点、また
支持フィルム21が変形するので、内部電極26の位置
精度が悪くなるという問題点を有していた。However, in the above-described conventional method, the surface of the support film 21 which is the support of the electrode material supply zone 23 on which the thin film electrode layer 22 is formed is directly heated for thermal transfer, and the thin film electrode is then transferred. Layer 22 to dielectric layer 24
After being formed on the support film 21, there is a problem that the support film 21 shrinks and wrinkles and cannot be reused, resulting in high cost, and the support film 21 is deformed, so that the positional accuracy of the internal electrodes 26 deteriorates. Had.
【0007】本発明は上記従来の問題点を解決するもの
で、内部電極の位置精度が良く、かつ、コストの低減が
可能な積層磁器コンデンサの電極形成方法およびその方
法を用いた積層磁器コンデンサの製造方法を提供するこ
とを目的とする。The present invention solves the above-mentioned problems of the prior art, and is a method for forming an electrode of a laminated ceramic capacitor which has good internal electrode position accuracy and can reduce cost, and a laminated ceramic capacitor using the method. It is intended to provide a manufacturing method.
【0008】[0008]
【課題を解決するための手段】この目的を達成するため
に本発明の積層磁器コンデンサの電極形成法およびその
方法を用いた積層磁器コンデンサの製造方法は、剥離層
を有する剛板製の支持体パレット上に所定の形状に形成
した薄膜電極を支持体パレットを加熱しながら圧着し
て、誘電体層の表面に熱転写して内部電極層を形成する
方法、および支持フィルム上にあらかじめ加熱圧着によ
り被写物に転写が可能となるようにした誘電体層を複数
枚積み重ねた誘電体層の表面に前述の支持体パレット上
の薄膜電極を重ね合わせ、薄膜電極が形成されていない
面側から加熱圧着して熱転写により誘電体層の表面に内
部電極層を形成した後、その上から誘電体グリーンシー
ト上の誘電体層のみを電極形成した誘電体層の表面上に
熱転写積層後、再度支持体パレット上の薄膜電極を誘電
体層上に熱転写により内部電極層を形成する操作を繰り
返し行い、所定の積層数まで内部電極層と誘電体層の積
層を繰り返し行い、その後さらに誘電体グリーンシート
上の誘電体層を複数枚積み重ねて得られた積層成形体、
もしくは、あらかじめ加熱圧着により被写物に転写が可
能となるようにした支持フィルム上の誘電体層の表面上
に支持体パレット上の薄膜電極を形成した後、支持フィ
ルム面側から加熱圧着して支持フィルム上の電極が形成
された誘電体層を、別の電極が形成された誘電体層に薄
膜電極と誘電体層を同時に熱転写して所定の積層数とな
るまで繰り返し積層して得られた積層成形体をチップ状
に切断、焼成後、外部電極を形成して積層磁器コンデン
サとする方法である。In order to achieve this object, an electrode forming method of a laminated ceramic capacitor of the present invention and a manufacturing method of a laminated ceramic capacitor using the method are a support made of a rigid plate having a peeling layer. A thin film electrode formed in a predetermined shape on the pallet is pressure-bonded while heating the support pallet, and is thermally transferred to the surface of the dielectric layer to form the internal electrode layer. The thin film electrodes on the above-mentioned support pallet are superposed on the surface of the dielectric layers that are made by stacking multiple dielectric layers so that they can be transferred to an object, and then heat compression is applied from the side where the thin film electrodes are not formed. After forming the internal electrode layer on the surface of the dielectric layer by thermal transfer, heat transfer lamination is performed again on the surface of the dielectric layer on which only the dielectric layer on the dielectric green sheet is electrode-formed. The operation of forming the internal electrode layer by thermal transfer of the thin film electrode on the carrier pallet onto the dielectric layer is repeated, and the internal electrode layer and the dielectric layer are repeatedly laminated up to a predetermined number of layers, and then the dielectric green sheet. A laminated molded body obtained by stacking a plurality of upper dielectric layers,
Alternatively, after forming a thin film electrode on the support pallet on the surface of the dielectric layer on the support film that enables transfer to the object by thermocompression in advance, heat pressing from the support film surface side A thin film electrode and a dielectric layer were simultaneously transferred by thermal transfer to a dielectric layer on which another electrode was formed, and the dielectric layer on the supporting film was repeatedly laminated until a predetermined number of laminated layers were obtained. This is a method in which a laminated molded body is cut into chips and fired, and then external electrodes are formed to obtain a laminated ceramic capacitor.
【0009】[0009]
【作用】この方法において、内部電極用の薄膜電極を形
成した支持体パレットが剛板製であるので、加熱による
変形が生じず内部電極の位置精度が向上することとな
り、支持体パレットの再利用が可能となる。In this method, since the support pallet on which the thin film electrode for the internal electrode is formed is made of a rigid plate, deformation due to heating does not occur and the positional accuracy of the internal electrode is improved, so that the support pallet can be reused. Is possible.
【0010】[0010]
(実施例1)以下本発明の一実施例について図面を参照
しながら説明する。(Embodiment 1) An embodiment of the present invention will be described below with reference to the drawings.
【0011】図1に示すように、厚み1mmの耐熱樹脂で
あるポリイミド樹脂製の剛板1の片面にメラミン系の材
料で剥離層2を形成した支持体パレット3の剥離層2の
表面にスパッタ法で所定の内部電極の形状となるよう
に、厚み0.1μmのニッケル製の薄膜電極4を形成す
る。また、図2に示すように、ポリエステル製の支持フ
ィルム5の片面に軟化点の低いバインダ成分および可塑
剤を適量含有させて熱転写を可能としたドクターブレー
ド法で厚み15μmの誘電体層6を形成して誘電体グリ
ーンシート7とする。As shown in FIG. 1, a rigid plate 1 made of a polyimide resin, which is a heat-resistant resin having a thickness of 1 mm, has a release layer 2 formed of a melamine-based material on one side thereof. The thin film electrode 4 made of nickel and having a thickness of 0.1 μm is formed by the method so as to have a predetermined internal electrode shape. Further, as shown in FIG. 2, a dielectric layer 6 having a thickness of 15 μm is formed on one side of the polyester support film 5 by a doctor blade method which enables thermal transfer by containing an appropriate amount of a binder component having a low softening point and a plasticizer. Then, the dielectric green sheet 7 is obtained.
【0012】図3(a)に示すように、誘電体グリーン
シート7を20枚熱転写で積層した誘電体層8の表面8
aと支持体パレット3上の薄膜電極4を向かい合わせ、
図3(b)に示すように、薄膜電極4が形成されていな
い支持体パレット3の面9側から熱プレス10により1
30℃で加熱しながら白抜き矢印の方向に圧着する。つ
いで、図3(c)に示すように、支持体パレット3が冷
却した後、支持体パレット3を剥離すると支持体パレッ
ト3上の薄膜電極4が誘電体層8に熱転写され、内部電
極11が形成される。ついで図3(d)に示すように、
内部電極11が形成された誘電体層8上に誘電体グリー
ンシート7の誘電体層6を向かい合わせ、熱プレス10
により誘電体層6のみを熱転写により積層し、この誘電
体層6上に別の支持体パレットに形成された薄膜電極を
熱転写により電極形成する。さらに、この上に誘電体グ
リーンシートの誘電体層を上述と同様にして熱転写で積
層する。この操作を繰り返し行い積層数が150層から
なる積層成形体を作製した。これをチップ状に切断した
後、各チップ状の成形体を還元雰囲気中で1300℃、
2時間保持する焼成条件で焼成した焼結体に通常の方法
によって外部電極を形成して積層磁器コンデンサを作製
した。As shown in FIG. 3A, the surface 8 of the dielectric layer 8 in which 20 dielectric green sheets 7 are laminated by thermal transfer.
a and the thin film electrode 4 on the support pallet 3 face each other,
As shown in FIG. 3 (b), the hot press 10 is applied to the surface 9 side of the support pallet 3 on which the thin film electrodes 4 are not formed.
While heating at 30 ° C., pressure is applied in the direction of the white arrow. Then, as shown in FIG. 3C, when the support pallet 3 is cooled and then the support pallet 3 is peeled off, the thin film electrode 4 on the support pallet 3 is thermally transferred to the dielectric layer 8 and the internal electrode 11 is removed. It is formed. Then, as shown in FIG.
The dielectric layer 6 of the dielectric green sheet 7 is opposed to the dielectric layer 8 on which the internal electrodes 11 are formed, and the heat press 10 is performed.
Thus, only the dielectric layer 6 is laminated by thermal transfer, and a thin film electrode formed on another support pallet is formed on the dielectric layer 6 by thermal transfer. Further, the dielectric layer of the dielectric green sheet is laminated thereon by thermal transfer in the same manner as described above. By repeating this operation, a laminated molded body having 150 layers was produced. After cutting this into chips, each chip-shaped molded body was subjected to 1300 ° C. in a reducing atmosphere,
External electrodes were formed on the sintered body that had been fired under the firing conditions of holding for 2 hours by a usual method to produce a laminated ceramic capacitor.
【0013】以上のように本実施例によれば、内部電極
11として厚み0.5μmの薄膜電極4を使用しているの
で、内部電極11の形成部分と形成しない部分との段差
が極めて小さいことから150層の高積層の積層成形体
が作製可能となる。また薄膜電極4を印刷する支持体パ
レット3に耐熱樹脂製の剛板1を用いるので130℃の
加熱でも大きな熱歪を受けることなく誘電体層8に電極
形成が可能となるため、電極の位置ずれが生じない。し
たがって、150層からなる高積層の積層成形体におい
ても、切断時に電極位置ずれによる切断不良が全く生じ
ず生産歩留りが向上できる。As described above, according to this embodiment, since the thin film electrode 4 having a thickness of 0.5 μm is used as the internal electrode 11, the step between the portion where the internal electrode 11 is formed and the portion where it is not formed is extremely small. It is possible to produce a highly laminated laminate of 150 layers. Further, since the rigid plate 1 made of heat-resistant resin is used for the support pallet 3 on which the thin film electrodes 4 are printed, it is possible to form electrodes on the dielectric layer 8 without receiving large thermal strain even when heated at 130 ° C. There is no deviation. Therefore, even in the case of a highly-laminated molded body having 150 layers, the cutting yield due to the displacement of the electrodes does not occur at the time of cutting, and the production yield can be improved.
【0014】比較例として、前述の従来法すなわち図6
に示すように50μm厚みのポリエステルの支持フィル
ム21上に所定の電極形状となるように薄膜電極22を
形成した電極材料供給帯23を、熱プレス25により1
30℃で加熱圧着して誘電体層24上に内部電極26を
形成する方法では、ポリエステルの支持フィルム21に
熱による縮みやしわが生じて、所望する正確な電極位置
に内部電極26を形成することができず、位置精度の悪
い内部電極26を形成した誘電体層24を積層すると内
部電極26の位置ずれが大きくなり、積層成形体の切断
時に約60〜80%の切断不良が発生した。As a comparative example, the above-mentioned conventional method, that is, FIG.
As shown in FIG. 1, an electrode material supply band 23 in which a thin film electrode 22 is formed on a polyester support film 21 having a thickness of 50 μm so as to have a predetermined electrode shape
In the method of forming the internal electrodes 26 on the dielectric layer 24 by thermocompression bonding at 30 ° C., shrinkage and wrinkles due to heat are generated in the polyester support film 21, and the internal electrodes 26 are formed at desired accurate electrode positions. However, when the dielectric layers 24 having the internal electrodes 26 with poor positional accuracy were stacked, the positional displacement of the internal electrodes 26 increased, and a cutting failure of about 60 to 80% occurred when the laminated molded body was cut.
【0015】また従来法では薄膜電極22を印刷したポ
リエステルの支持フィルム21は熱で縮みやしわが生じ
再利用が不可能となるが、本実施例では熱収縮などの問
題が全く無い耐熱材料を使用することから、再利用が可
能で低コスト化が可能となり、工業的価値は極めて高
い。In the conventional method, the polyester support film 21 on which the thin film electrodes 22 are printed shrinks and wrinkles due to heat and cannot be reused. In this embodiment, however, a heat-resistant material having no problem such as heat shrinkage is used. Since it is used, it can be reused and reduced in cost, and its industrial value is extremely high.
【0016】(実施例2)以下本発明の第2の実施例に
ついて、図面を参照しながら説明する。(Second Embodiment) A second embodiment of the present invention will be described below with reference to the drawings.
【0017】図4(a)に示すように、前述実施例1で
説明した誘電体グリーンシート7の誘電体層6に実施例
1で説明した支持体パレット3の薄膜電極4を向かい合
わせた後、図4(b)に示すように、熱プレス10によ
り薄膜電極4が形成されていない支持体パレット3の面
9側から130℃で加熱しながら白抜き矢印の方向に圧
着する。ついで、図4(c)に示すように、支持体パレ
ット3が冷却した後、支持体パレット3を剥離すると支
持体パレット3上の薄膜電極4が誘電体層6に熱転写さ
れ、内部電極11が形成される。As shown in FIG. 4A, after the thin film electrode 4 of the support pallet 3 described in the first embodiment is opposed to the dielectric layer 6 of the dielectric green sheet 7 described in the first embodiment, As shown in FIG. 4B, the support pallet 3 on which the thin film electrodes 4 are not formed is heated by a heat press 10 at 130 ° C. from the side of the support pallet 3 and pressure-bonded in the direction of the white arrow. Then, as shown in FIG. 4C, after the support pallet 3 is cooled, when the support pallet 3 is peeled off, the thin film electrode 4 on the support pallet 3 is thermally transferred to the dielectric layer 6, and the internal electrode 11 is removed. It is formed.
【0018】図5(a)に示すように、内部電極11が
形成されたグリーンシート7を前述実施例1で説明した
誘電体層8と向かい合わせた後、支持フィルム5の面側
から熱プレス10を用いて130℃で加熱しながら白抜
き矢印の方向に圧着する。ついで、図5(b)に示すよ
うに、支持フィルム5が冷却した後、支持フィルム5を
剥離して支持フィルム5の内部電極11および誘電体層
6を同時に熱転写により誘電体層8上に形成する。この
操作を繰り返し行い150層からなる積層成形体を作製
した。これをチップ状に切断した後、各チップ状の成形
体を還元雰囲気中で1300℃、2時間保持する焼成条
件で焼成した焼結体に通常の方法によって外部電極を形
成して積層磁器コンデンサを作製した。As shown in FIG. 5 (a), after the green sheet 7 having the internal electrodes 11 formed thereon faces the dielectric layer 8 described in the first embodiment, the surface of the support film 5 is hot pressed. While heating at 130 ° C. using No. 10, pressure is applied in the direction of the white arrow. Then, as shown in FIG. 5B, after the supporting film 5 is cooled, the supporting film 5 is peeled off to simultaneously form the internal electrodes 11 and the dielectric layer 6 of the supporting film 5 on the dielectric layer 8 by thermal transfer. To do. This operation was repeated to produce a laminated molded body having 150 layers. After cutting this into chips, the external electrodes are formed by a normal method on the sintered body obtained by firing the respective chip-shaped formed bodies in a reducing atmosphere at 1300 ° C. for 2 hours to form a laminated ceramic capacitor. It was made.
【0019】以上のように本実施例によれば、前述実施
例1と同様の効果が得られる。なお、第1および第2の
実施例において、薄膜電極4を印刷する支持体パレット
3として耐熱樹脂を使用したが、ステンレスなどの金属
製の剛板を用いても何等差し支えがない。また、支持体
パレット3への印刷法としてスパッタ法を使用したが、
真空蒸着等による薄膜形成法を用いても全く同様の効果
が得られる。さらに、積層成形体の作製に対し熱プレス
10を使用したが熱ロールを使用しても同等の効果が得
られる。As described above, according to this embodiment, the same effect as that of the first embodiment can be obtained. In the first and second embodiments, the heat-resistant resin is used as the support pallet 3 on which the thin film electrodes 4 are printed, but a rigid plate made of metal such as stainless steel may be used without any problem. Further, the sputtering method was used as a printing method for the support pallet 3,
The same effect can be obtained by using a thin film forming method such as vacuum deposition. Further, although the hot press 10 was used for the production of the laminated molded body, the same effect can be obtained even if a hot roll is used.
【0020】[0020]
【発明の効果】以上の説明からも明らかなように本発明
は剥離層を有する剛板製の支持体パレット上に所定の形
状に形成した薄膜電極を支持体パレットを加熱しながら
圧着して、誘電体層面に熱転写して内部電極層を形成す
る方法および支持フィルム上にあらかじめ加熱圧着によ
り被写物に転写が可能となるようにした誘電体層を複数
枚積み重ねた誘電体層の表面に前述の支持体パレット上
の薄膜電極を重ね合わせ、薄膜電極が形成されていない
面側から加熱圧着して熱転写により誘電体層の表面に内
部電極層を形成した後、その上から誘電体グリーンシー
ト上の誘電体層のみを先ほどの電極形成した誘電体層の
表面上に熱転写で積層後、再度支持体パレット上の薄膜
電極を誘電体層上に熱転写により内部電極層を形成する
操作を繰り返し行い、所定の積層数まで内部電極層と誘
電体層の積層を繰り返し行い、その後、さらに誘電体グ
リーンシート上の誘電体層を複数枚積み重ねて得られた
積層成形体、もしくは、あらかじめ加熱圧着により被写
物に転写が可能となるようにした支持フィルム上の誘電
体層の表面上に支持体パレット上の薄膜電極を形成した
後、支持フィルムの面側から加熱圧着して支持フィルム
上の電極が形成された誘電体層を、別の電極が形成され
た誘電体層に薄膜電極と誘電体層を同時に熱転写して所
定の積層数となるまで繰り返し積層して得られた積層成
形体をチップ状に切断、焼成後、外部電極を形成して積
層磁器コンデンサとする方法により、内部電極の位置精
度が良く、かつ、コストの低減が可能な優れた積層磁器
コンデンサの電極形成方法およびその方法を用いた積層
磁器コンデンサの製造方法を実現できるものである。As is apparent from the above description, according to the present invention, a thin film electrode formed in a predetermined shape is pressure-bonded on a support pallet made of a rigid plate having a release layer while heating the support pallet. A method of forming an internal electrode layer by thermal transfer onto the surface of a dielectric layer, and a method of forming a plurality of dielectric layers on a supporting film that can be transferred to an object by thermocompression beforehand on the surface of the dielectric layer described above. After stacking the thin-film electrodes on the support pallet and heating and pressure bonding from the surface side where the thin-film electrodes are not formed to form the internal electrode layer on the surface of the dielectric layer by thermal transfer, from above it on the dielectric green sheet Only the dielectric layer of the above is laminated by thermal transfer on the surface of the dielectric layer on which the electrodes have been formed, and then the thin film electrode on the support pallet is again thermally transferred on the dielectric layer to form the internal electrode layer. The internal electrode layers and the dielectric layers are repeatedly laminated up to a predetermined number of laminated layers, and thereafter, a laminated molded body obtained by stacking a plurality of dielectric layers on the dielectric green sheet, or by thermocompression bonding in advance. After forming a thin film electrode on the support pallet on the surface of the dielectric layer on the support film that enables transfer to the object, heat and pressure bonding from the surface side of the support film The formed dielectric layer is repeatedly transferred to the dielectric layer on which another electrode is formed by thermal transfer of the thin film electrode and the dielectric layer until the predetermined number of layers is obtained, and the laminated molded body is obtained in a chip shape. By the method of forming an external electrode after cutting and firing into a laminated ceramic capacitor, the method for forming an electrode of a laminated ceramic capacitor is excellent in that the positional accuracy of the internal electrodes is good and the cost can be reduced. The method in which the production method of the multilayer ceramic capacitor can be realized using.
【図1】本発明の一実施例の積層磁器コンデンサの電極
形成方法における支持体パレットの断面略図FIG. 1 is a schematic sectional view of a support pallet in a method for forming electrodes of a laminated ceramic capacitor according to an embodiment of the present invention.
【図2】同積層磁器コンデンサの製造方法における誘電
体グリーンシートの断面略図FIG. 2 is a schematic sectional view of a dielectric green sheet in the method for manufacturing the same laminated ceramic capacitor.
【図3】(a),(b),(c),(d)は、それぞれ
本発明の第1の実施例の積層磁器コンデンサの製造方法
における積層成形体の作製段階を示す要部断面図3 (a), (b), (c), and (d) are cross-sectional views of essential parts showing the steps of producing a laminated body in the method for producing a laminated ceramic capacitor according to the first embodiment of the present invention.
【図4】(a),(b),(c)は、それぞれ本発明の
第2の実施例の積層磁器コンデンサの製造方法における
誘電体グリーンシートの誘電体層に内部電極層の作製段
階を示す要部断面図4 (a), (b) and (c) show the steps of producing an internal electrode layer on a dielectric layer of a dielectric green sheet in the method for producing a laminated ceramic capacitor according to the second embodiment of the present invention. Sectional view
【図5】(a),(b)は、それぞれ同積層磁器コンデ
ンサの製造方法における積層成形体の作製段階を示す要
部断面図5 (a) and 5 (b) are cross-sectional views of a main part showing a step of producing a laminated compact in the method for producing a laminated ceramic capacitor, respectively.
【図6】従来の積層磁器コンデンサの電極形成方法を示
す要部断面図FIG. 6 is a sectional view of an essential part showing a method for forming electrodes of a conventional laminated ceramic capacitor.
1 剛板 2 剥離層 3 支持体パレット 4 薄膜電極 5 支持フィルム 6 誘電体層 10 熱プレス(加熱手段) 11 内部電極層 1 Rigid Plate 2 Release Layer 3 Support Palette 4 Thin Film Electrode 5 Support Film 6 Dielectric Layer 10 Heat Press (Heating Means) 11 Internal Electrode Layer
Claims (3)
に所定の形状に形成した薄膜電極を前記支持体パレット
を加熱手段により加熱しながら圧着して、誘電体層の表
面に熱転写して内部電極層を形成することを特徴とした
積層磁器コンデンサの電極形成方法。1. A thin film electrode formed in a predetermined shape on a support pallet made of a rigid plate having a peeling layer is pressure-bonded while heating the support pallet by a heating means to thermally transfer to the surface of a dielectric layer. An electrode forming method for a laminated ceramic capacitor, which comprises forming an internal electrode layer by using the following method.
ようにした支持フィルム上の一層の誘電体を複数層積み
重ねて形成した誘電体層の表面に剥離層を有する剛板製
の支持体パレット上に所定の形状に形成した薄膜電極を
重ね合わせ、熱転写により前記誘電体層の表面に内部電
極層を形成した後、前記内部電極層を形成した誘電体層
の表面に熱転写により前記支持フィルム上の一層の誘電
体を積層した後、再度前記支持体パレット上に所定の形
状に形成した薄膜電極を重ね合わせ、熱転写して内部電
極層を形成する操作を繰り返し行い、所定の積層数にな
るまで内部電極層と誘電体層を繰り返し積層した後、前
記支持フィルム上の一層の誘電体を複数層積み重ねて形
成した積層成形体をチップ状に切断、焼成し、外部電極
を形成することを特徴とした積層磁器コンデンサの製造
方法。2. A support made of a rigid plate having a peeling layer on the surface of a dielectric layer formed by stacking a plurality of dielectric layers on a support film capable of being transferred to an object by thermocompression bonding. A thin film electrode formed in a predetermined shape is superposed on a body pallet, an internal electrode layer is formed on the surface of the dielectric layer by thermal transfer, and then the support is formed by thermal transfer on the surface of the dielectric layer on which the internal electrode layer is formed. After laminating one layer of the dielectric on the film, repeat the operation of stacking the thin film electrodes formed in the predetermined shape on the support pallet again and thermally transferring to form the internal electrode layer, and repeating the operation to obtain the predetermined number of layers. After repeatedly stacking the internal electrode layer and the dielectric layer until the above, a laminated molded body formed by stacking a plurality of dielectric layers on the supporting film is cut into chips and fired to form external electrodes. Method of manufacturing a multilayer ceramic capacitor and symptoms.
ようにした支持フィルム上の一層の誘電体の表面に請求
項1記載の方法を用いて形成した内部電極層を前記支持
フィルム上の一層の誘電体を複数層積み重ねて形成した
誘電体層の表面に重ね合わせ、前記支持フィルム上の内
部電極層と誘電体層を同時に熱転写する操作を所定の積
層数になるまで繰り返し積層した後、前記支持フィルム
上の一層の誘電体を複数層積み重ねて形成した積層成形
体をチップ状に切断、焼成し、外部電極を形成すること
を特徴とした積層磁器コンデンサの製造方法。3. An internal electrode layer formed by the method according to claim 1 on the surface of one layer of a dielectric material on a supporting film which can be transferred to an object by thermocompression bonding. After stacking a plurality of one-layered dielectrics on the surface of the dielectric layer and repeatedly thermally transferring the internal electrode layer and the dielectric layer on the support film at the same time until a predetermined number of layers are laminated, A method for manufacturing a laminated porcelain capacitor, characterized in that a laminated molded body formed by stacking a plurality of one-layered dielectrics on the support film is cut into chips and fired to form external electrodes.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12124693A JPH06333774A (en) | 1993-05-24 | 1993-05-24 | Method for forming electrode of stacked porcelain capacitor and manufacture of stacked porcelain capacitor using the method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12124693A JPH06333774A (en) | 1993-05-24 | 1993-05-24 | Method for forming electrode of stacked porcelain capacitor and manufacture of stacked porcelain capacitor using the method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06333774A true JPH06333774A (en) | 1994-12-02 |
Family
ID=14806523
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12124693A Pending JPH06333774A (en) | 1993-05-24 | 1993-05-24 | Method for forming electrode of stacked porcelain capacitor and manufacture of stacked porcelain capacitor using the method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06333774A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5573808A (en) * | 1995-03-16 | 1996-11-12 | Robert Bosch Gmbh | Method for producing a multilayer circuit |
WO2001008177A1 (en) * | 1999-07-28 | 2001-02-01 | Matsushita Electric Industrial Co., Ltd. | Method of manufacturing ceramic electronic components |
-
1993
- 1993-05-24 JP JP12124693A patent/JPH06333774A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5573808A (en) * | 1995-03-16 | 1996-11-12 | Robert Bosch Gmbh | Method for producing a multilayer circuit |
WO2001008177A1 (en) * | 1999-07-28 | 2001-02-01 | Matsushita Electric Industrial Co., Ltd. | Method of manufacturing ceramic electronic components |
US6602370B1 (en) | 1999-07-28 | 2003-08-05 | Matsushita Electric Industrial Co., Ltd. | Method of manufacturing ceramic electronic components |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0562860A (en) | Manufacture of laminated electronic component | |
JPH05159966A (en) | Laminating method for ceramic green sheets | |
JPH06333774A (en) | Method for forming electrode of stacked porcelain capacitor and manufacture of stacked porcelain capacitor using the method | |
JPH118156A (en) | Manufacture of laminated ceramic electronic part | |
JP2000315618A (en) | Manufacture of laminated ceramic electronic parts | |
JP2998476B2 (en) | Method of manufacturing green body for multilayer ceramic capacitor | |
JPH04328814A (en) | Electrode formation of laminated ceramic capacitor | |
JPH07169641A (en) | Formation of electrode of multilayer porcelain capacitor and manufacture of stacked porcelain capacitor | |
JPH0374820A (en) | Manufacture of laminated porcelain capacitor and manufacture of green sheet used therefor | |
JPH0396207A (en) | Manufacture of laminated ceramic electronic part | |
JPS61253811A (en) | Manufacture of laminate ceramic capacitor | |
JPS6159653B2 (en) | ||
JPH0536568A (en) | Manufacture of laminated ceramic electronic component | |
JPH08279438A (en) | Method of manufacturing ceramic multilayer electronic part | |
JPH05101969A (en) | Manufacture of monolithic ceramic capacitor | |
JPH06295841A (en) | Electrode forming method for layered ceramic capacitor and fabrication thereof | |
JPH09213563A (en) | Manufacture of laminated ceramic electronic component | |
JPH09153429A (en) | Manufacture of laminated ceramic electronic component | |
JPH1126279A (en) | Manufacture of laminated ceramic electronic parts | |
JP2001057317A (en) | Method for manufacturing laminated ceramic capacitor | |
JPH05299287A (en) | Laminated porcelain capacitor green sheet and manufacture of the capacitor using the green sheet | |
JPS63188926A (en) | Manufacture of laminated porcelain capacitor | |
JPH0640535B2 (en) | Method for manufacturing monolithic ceramic capacitor | |
JPH02117117A (en) | Manufacture of laminated ceramic capacitor | |
JPH05198459A (en) | Manufacture of laminated ceramic electronic part |