JPH06333450A - Manufacture of superconductive material and nb-al group superconductive wire - Google Patents
Manufacture of superconductive material and nb-al group superconductive wireInfo
- Publication number
- JPH06333450A JPH06333450A JP5146870A JP14687093A JPH06333450A JP H06333450 A JPH06333450 A JP H06333450A JP 5146870 A JP5146870 A JP 5146870A JP 14687093 A JP14687093 A JP 14687093A JP H06333450 A JPH06333450 A JP H06333450A
- Authority
- JP
- Japan
- Prior art keywords
- wire
- layer
- composite
- superconducting
- superconductive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Wire Processing (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、Nb3Al系超電導相の
占有面積が多くて臨界電流密度等の超電導特性に優れる
超電導線を加工性よく得ることができる超電導素材の製
造方法、及びそのNb-Al系超電導線に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a superconducting material which has a large occupation area of Nb 3 Al type superconducting phase and is excellent in superconducting properties such as critical current density and the like, and a method for producing the superconducting material. Nb-Al system superconducting wire.
【0002】[0002]
【従来の技術】従来、Alやその合金からなるAl系コア
をNb層で被覆した一次素線の束をNb管内に収容後伸線
加工して多芯構造の二次の複合素線とし、それを開始素
線として素線束のNb管内への収容及び伸線加工を必要
回数繰り返す超電導素材の製造方法が知られていた。か
かる管収容方式(複合加工法ないしニオブチューブ法)
は、素線の高次多芯化を容易に行いうる利点を有し、超
電導線は多芯化した素材を加熱処理してNb3Al系の超
電導相を生成させることにより得られる。2. Description of the Related Art Conventionally, a bundle of primary wires made of an Al-based core made of Al or its alloy coated with an Nb layer is housed in an Nb tube and then drawn to form a secondary composite element wire having a multi-core structure, There has been known a method for manufacturing a superconducting material in which a wire bundle is housed in a Nb tube and a wire drawing process is repeated as necessary as a starting wire. Such tube accommodation method (composite processing method or niobium tube method)
Has the advantage that the multifilamentary strands can be easily made higher, and the superconducting wire can be obtained by heat-treating a multifilarized material to generate a Nb 3 Al-based superconducting phase.
【0003】しかしながら、超電導相の生成に際して二
次の複合素線以上、特に三次の複合素線以上の各素線の
外周に位置するNb層がNb3Al系超電導相の形成に寄与
せず、従って素線束をNb管内に収容して伸線加工を繰
り返し一次素線を高次に多芯化するほど超電導相の形成
に寄与しないNb層が増大し、超電導線の断面積に占め
るNb3Al系超電導相の面積が飛躍的に減少する問題点
があつた。However, when the superconducting phase is generated, the Nb layer located on the outer periphery of each of the secondary composite wires or more, especially the tertiary composite wires or more does not contribute to the formation of the Nb 3 Al type superconducting phase, Therefore, the Nb layer that does not contribute to the formation of the superconducting phase increases as the wire bundle is housed in the Nb tube and the wire drawing process is repeated to increase the number of cores in the higher order, and the Nb 3 Al occupying the cross-sectional area of the superconducting wire increases. There was a problem that the area of the superconducting phase of the system was drastically reduced.
【0004】ちなみに、三次の複合素線を用いた四次複
合の超電導素材では、超電導相の形成に寄与しないNb
層の断面占有面積が約90%にも及ぶときがあり、従っ
て超電導相の断面占有面積が約10%程度となる。By the way, in a quaternary composite superconducting material using a tertiary composite element wire, Nb which does not contribute to the formation of a superconducting phase
The cross-sectional area of the layer may reach as high as about 90%, so that the cross-sectional area of the superconducting phase is about 10%.
【0005】[0005]
【発明が解決しようとする課題】本発明は、一次素線の
多芯化を繰り返して高次の複合素線としてもNb3Al系
超電導相の断面占有面積に優れて臨界電流密度等の超電
導特性に優れるNb-Al系超電導線を加工性よく形成し
うる超電導素材の製造方法の開発を課題とする。DISCLOSURE OF THE INVENTION The present invention has an advantage in that the cross-sectional occupancy area of the Nb 3 Al-based superconducting phase is excellent and the superconductivity of the critical current density or the like is excellent even if a high-order composite element wire is obtained by repeating the multicore of the primary element wire. It is an object of the present invention to develop a method for producing a superconducting material capable of forming an Nb-Al superconducting wire having excellent characteristics with good workability.
【0006】[0006]
【課題を解決するための手段】本発明は、Nb層で被覆
したAl系コア線をNb包囲層内に多芯状態で有する二次
以上の複合素線の外周にAl系層を設け、その外側にNb
層とAl系層を対とするペア層を少なくとも1層設けて
その複数本をサポート管内に収容し、それを伸線加工し
て高次の複合多芯線とすることを特徴とする超電導素材
の製造方法、及び前記二次以上の複合素線を開始の素線
として、素線の外周にAl系層を設け、その外側にNb層
とAl系層を対とするペア層を少なくとも1層設けてそ
の複数本をサポート管内に収容し、それを伸線加工して
高次の複合多芯線としその複合多芯線を次の素線に用い
て前記の操作を必要回数繰り返すことを特徴とする超電
導素材の製造方法、並びに前記の超電導素材の加熱処理
物からなることを特徴とするNb-Al系超電導線を提供
するものである。According to the present invention, an Al-based layer is provided on the outer periphery of a secondary or more composite element wire having an Al-based core wire coated with an Nb layer in a multi-core state in the Nb surrounding layer. Nb on the outside
Of a superconducting material, characterized in that at least one pair layer consisting of a layer and an Al-based layer is provided, a plurality of the layers are accommodated in a support tube, and the wire is drawn into a high-order composite multicore wire. Manufacturing method and Al-based layer is provided on the outer periphery of the elemental wire with the composite wire of the secondary or higher order as the starting elemental wire, and at least one pair layer of Nb layer and Al-based layer is provided outside the Al-based layer A plurality of wires are housed in a support tube, which is drawn to form a higher-order composite multicore wire, and the composite multicore wire is used for the next strand, and the above-mentioned operation is repeated a required number of times. It is intended to provide a Nb-Al-based superconducting wire comprising a method for producing a material and a heat-treated product of the above-mentioned superconducting material.
【0007】[0007]
【作用】素線をAl系層及びNb層とAl系層とのペア層
で包囲してサポート管内に収容し伸線加工する上記の方
法により、サポート管を介した優れた伸線加工性により
素線を容易に高次化できて一次素線の多芯化を効率的に
行うことができ、かつ素線の高次化に際して前記のAl
系層やペア層をNb3Al系超電導相の形成に寄与させる
ことができる。By the above-described method in which the wire is surrounded by the Al-based layer and the paired layer of the Nb layer and the Al-based layer and accommodated in the support pipe and wire-drawn, excellent wire drawability through the support pipe is achieved. The strands can be easily made high-order, and the primary strands can be made multi-core efficiently, and at the time of making the strands higher-order,
The system layer and the pair layer can contribute to the formation of the Nb 3 Al-based superconducting phase.
【0008】従って、超電導相の形成に寄与しない部分
の介在を低減でき、一次素線の多芯化を繰り返して高次
の素線としてもNb3Al系超電導相の断面占有面積に優
れて臨界電流密度等の超電導特性に優れるNb-Al系超
電導線を形成しうる超電導素材が得られ、超電導線の断
面積に占める超電導相比を容易に制御することができ
る。Therefore, it is possible to reduce the interposition of the portion that does not contribute to the formation of the superconducting phase, and to repeat the multi-core of the primary elemental wire to form a higher-order elemental wire, which is excellent in the cross-sectional occupying area of the Nb 3 Al-based superconducting phase and is critical. A superconducting material capable of forming an Nb-Al-based superconducting wire having excellent superconducting properties such as current density can be obtained, and the superconducting phase ratio in the cross-sectional area of the superconducting wire can be easily controlled.
【0009】なお、前記の素線そのものに対してAl系
層やペア層を付設する方式は、素線の束に対してそれら
を付設する方式に比べて伸線加工性が特段に優れ、Nb
管を介してAl系コア線を多芯化する従来方法に匹敵す
る良好な伸線加工性を示す。The method of attaching the Al-based layer or the pair layer to the above-mentioned strand itself has particularly excellent wire drawing workability as compared with the method of attaching them to the bundle of strands.
It shows good wire drawability comparable to the conventional method of making Al-based core wire multi-core through a tube.
【0010】[0010]
【実施例】本発明の製造方法は、二次以上の複合素線の
外周にAl系層を設け、その外側にNb層とAl系層を対
とするペア層を少なくとも1層設けてその複数本を必要
に応じNb管に装填してサポート管内に収容し、それを
伸線加工して高次の複合多芯線としその複合多芯線より
必要に応じ外層のサポート層を除去して超電導素材を得
るものである。EXAMPLES The manufacturing method of the present invention is such that an Al-based layer is provided on the outer periphery of a secondary or higher-order composite element wire, and at least one pair layer consisting of a Nb layer and an Al-based layer is provided on the outer side of the Al-based layer, and a plurality of such A book is loaded into a Nb tube as needed and accommodated in a support tube, and then drawn to form a higher-order composite multicore wire, and the outer support layer is removed from the composite multicore wire as needed to obtain a superconducting material. I will get it.
【0011】また本発明の他の製造方法は、前記で得た
高次の複合多芯線を次の素線に用いて前記のAl系層と
ペア層による包囲、その複数本を必要に応じNb管に装
填してのサポート管内への収容、及び伸線加工の操作を
必要回数繰り返して超電導素材を得るものである。In another manufacturing method of the present invention, the high-order composite multifilamentary wire obtained above is used as the next strand to be surrounded by the Al-based layer and the paired layer, and a plurality of the layers are surrounded by Nb as necessary. The superconducting material is obtained by repeating the operation of loading the tube into the support tube and the operation of wire drawing.
【0012】図1(A),(B)に本発明の製造工程途
中の状態を示した。図1(A)は、素線1の外周にAl
系層2と、その外側にAl系層31とNb層32を対とす
るペア層3を設けたものを例示したものであり、このよ
うに外周にAl系層とペア層を設けた素線4が本発明に
おいてはサポート管内に収容する対象となる。なおAl
系層2を省略して、これを図3に例示の如くペア層3に
おけるAl系層31で代替した構成としてもよい。1 (A) and 1 (B) show a state during the manufacturing process of the present invention. FIG. 1 (A) shows that the outer circumference of the wire 1 is Al.
This is an exemplification of a system layer 2 and a pair layer 3 having a pair of an Al system layer 31 and a Nb layer 32 provided on the outer side thereof. In the present invention, 4 is the object to be housed in the support tube. Al
The system layer 2 may be omitted and replaced with the Al system layer 31 in the pair layer 3 as illustrated in FIG.
【0013】一方、図1(B)は、前記収容対象の素線
4の複数本をサポート管6の内部に収容した状態を例示
したものであり、このように外周にAl系層とペア層を
設けた素線の複数をサポート管内に収容したものが本発
明においては伸線加工によるより高次の複合多芯線化の
対象とされる。On the other hand, FIG. 1 (B) shows an example of a state in which a plurality of wires 4 to be housed are housed inside a support tube 6, and in this way, an Al series layer and a pair layer are formed on the outer circumference. In the present invention, a plurality of strands provided with a plurality of strands are accommodated in a support tube, and in the present invention, a higher-order composite multicore wire is made by drawing.
【0014】なお図1(B)中の5はNb管である。こ
れは、得られる超電導線におけるマトリクスとして残存
して機械的強度や安定性の向上、交流損失の防止などに
寄与する。またサポート管を除去して次の本発明による
複合多芯線化の素線として供する場合には、その外周に
設けるAl系層(2)と反応して超電導相の形成に寄与
する。従って前記のNb管は、素線をサポート管内に収
容する際の素線装填用などとして必要に応じて用いられ
る。Reference numeral 5 in FIG. 1 (B) is an Nb tube. This remains as a matrix in the obtained superconducting wire and contributes to improvement of mechanical strength and stability and prevention of AC loss. Further, when the support tube is removed and is used as an elemental wire for forming a composite multifilamentary wire according to the present invention, it reacts with the Al-based layer (2) provided on the outer periphery thereof to contribute to the formation of a superconducting phase. Therefore, the Nb tube is used as necessary for loading the wire when the wire is housed in the support tube.
【0015】本発明による複合多芯線化に用いる素線と
しては、図1(A)における例の如く、Alやその合金
からなるAl系コア11をNb層12で被覆したAl系コ
ア線(一次素線)13をNb包囲層の内部に多芯状態で
有する二次以上の複合素線が用いられる。As an element wire used for forming a composite multifilamentary wire according to the present invention, an Al-based core wire (primary wire) in which an Al-based core 11 made of Al or an alloy thereof is covered with an Nb layer 12 as in the example shown in FIG. A secondary or higher-order composite strand having multiple strands 13 inside the Nb envelope layer in a multi-core state is used.
【0016】従って前記の複合素線は、図1(A)に例
示の如く一次素線13をNb包囲層14の内部に多芯状
態で有する二次の複合素線1であってもよいし、更にそ
の二次の複合素線をNb包囲層の内部に多芯状態で有す
る三次の複合素線、更にはその三次の複合素線をNb包
囲層の内部に多芯状態で有する四次の複合素線などの適
宜な段階のものであってよい。Therefore, the composite strand may be a secondary composite strand 1 having the primary strand 13 inside the Nb surrounding layer 14 in a multi-core state as illustrated in FIG. 1 (A). A third-order composite wire having the secondary composite wire in the Nb envelope layer in a multi-core state, and a quaternary composite wire having the tertiary composite wire in the Nb envelope layer in a multi-core state. It may be an appropriate stage such as a composite strand.
【0017】一方、本発明の方法による操作を繰り返す
場合においても、その開始素線は二次以上の複合素線の
適宜な複合次数段階のものであってよい。一般には、四
次の複合化程度の素線が超電導線とされることから三次
の複合素線以下、就中二次の複合素線が開始素線とされ
る。On the other hand, even when the operation according to the method of the present invention is repeated, the starting strand may be one having an appropriate composite order of a composite strand of the second or higher order. Generally, since a quaternary composite wire is a superconducting wire, a composite wire below the tertiary composite wire, especially a secondary composite wire is regarded as a starting wire.
【0018】複合素線は、円形以外の適宜な断面外形を
有していてもよい。図2に例示の六角形断面の如く、サ
ポート管内に可及的に少ない空隙で収容できる断面外形
が有利である。なお図2の複合化用の素線41におい
て、17はAl系コア線の多芯層15とNb層16からな
る複合素線、18はNb包囲層である。The composite wire may have an appropriate cross-sectional outer shape other than the circular shape. A cross-sectional profile, such as the hexagonal cross-section illustrated in FIG. 2, that can be accommodated in the support tube with as little void space as possible is advantageous. In the composite wire 41 of FIG. 2, 17 is a composite wire composed of the multi-core layer 15 of the Al-based core wire and the Nb layer 16, and 18 is an Nb surrounding layer.
【0019】前記の一次素線13は、例えばAl系線を
Nb管内に収容して伸線処理する方式やNb管内にAl系
融液を充填する方式などにより得ることができる。二次
の複合素線1は、例えば一次素線13の多数本をNb管
の内部に収容して伸線処理する方式などにより得ること
ができる。さらに、Nb包囲層の内部にAl系コア線を多
芯状態で有する三次以上の複合素線は、例えば前記に準
じて得た二次以上の複合素線の多数本をNb管内に収容
して伸線処理する方式などにより得ることができる。The primary wire 13 can be obtained by, for example, a method of accommodating an Al-based wire in an Nb tube and a wire drawing treatment, or a method of filling an Al-based melt in the Nb tube. The secondary composite element wire 1 can be obtained by, for example, a method in which a large number of primary element wires 13 are housed inside an Nb tube and a wire drawing process is performed. Further, a composite wire of the third order or higher having Al-based core wires in the multi-core state inside the Nb envelope layer is obtained by, for example, accommodating a large number of the composite wires of the second order or higher obtained according to the above in an Nb tube. It can be obtained by a method of wire drawing.
【0020】複合素線の外周に設けるAl系層や、Nb層
とAl系層とのペア層は、箔を用いてロール巻方式、縦
添え方式、横巻方式等により包囲する方式などの任意な
方式で形成してよい。ペア層においては、素線の直上に
設けるAl系層を含めてAl系層を内側、Nb層を外側と
する交互配置が超電導相の生成の点より好ましい。The Al-based layer or the paired layer of the Nb layer and the Al-based layer provided on the outer periphery of the composite element wire may be surrounded by a roll winding method, a vertical attachment method, or a horizontal winding method using foil. It may be formed by any method. In the pair layers, an alternate arrangement in which the Al-based layers including the Al-based layers provided immediately above the wires are inside and the Nb layers are outside is preferable from the viewpoint of generation of the superconducting phase.
【0021】また、本発明による複合化を二次の複合素
線とその三次の複合素線にも適用する場合の如く、目的
の超電導素材を得るまでに複数回にわたり適用する場合
には、前記のペア層におけるNb層とAl系層との配置は
同じ素材内では統一されていることが超電導相の生成に
有利である。When the composite according to the present invention is applied to the secondary composite wire and its tertiary composite wire a plurality of times until the desired superconducting material is obtained, It is advantageous for the generation of the superconducting phase that the Nb layer and the Al-based layer in the paired layer are unified in the same material.
【0022】前記において素線の直上に設けるAl系層
は、その内側の素線におけるNb層との反応によるNb3
Al系超電導相の生成に主に寄与させることを目的とす
るものである。従って従来方法において超電導相の形成
に寄与しなかったNb層部分の超電導相化を前記のAl系
層は主な目的とする。なおかかるAl系層は上記したよ
うに、それをペア層におけるAl系層で代替した形態と
することもできる。In the above, the Al-based layer provided immediately above the strand is Nb 3 due to the reaction with the Nb layer in the inner strand.
It is intended to mainly contribute to the generation of the Al-based superconducting phase. Therefore, the Al-based layer has a main purpose of converting the Nb layer portion, which has not contributed to the formation of the superconducting phase in the conventional method, to the superconducting phase. The Al-based layer may be replaced with the Al-based layer in the pair layer as described above.
【0023】一方、ペア層は、対を形成するNb層とAl
系層の反応によるNb3Al系超電導相の生成に主に寄与
させることを目的とするものである。従って、このペア
層の多少で超電導線の断面における超電導相の占有率を
効率よく制御することができる。よって、ペア層は1層
又は2層以上の適宜な層数を設けることができる。なお
2層以上のペア層を設ける場合には、図3に例示の如く
例えばAl系箔31とNb箔32の重畳箔等をロール状に
巻回するロール巻方式が作業効率などの点より有利であ
る。On the other hand, the pair layer is an Nb layer and Al forming a pair.
The purpose is to mainly contribute to the generation of the Nb 3 Al-based superconducting phase by the reaction of the system layer. Therefore, the occupancy rate of the superconducting phase in the cross section of the superconducting wire can be controlled efficiently depending on the number of the pair layers. Therefore, the pair layer can be provided with an appropriate number of layers such as one layer or two or more layers. When two or more pair layers are provided, a roll winding method of winding, for example, a superposed foil of Al-based foil 31 and Nb foil 32 in a roll shape as shown in FIG. 3 is advantageous in terms of work efficiency. Is.
【0024】前記において、Nb層の厚さは、超電導相
を生成させる際には薄いほど好ましいことから、一般に
は10〜2000μm、就中150〜1100μmの厚さ
とされるがこれに限定されない。一方、Al系層の厚さ
は、Nb層との効率的なNb3Al系超電導相の形成の点よ
り、反応対象のNb層の1/2以下、就中1/3〜1/
4とすることが好ましい。In the above description, the thickness of the Nb layer is preferably 10 to 2000 μm, especially 150 to 1100 μm, since the thinner it is, the more preferable it is when the superconducting phase is generated. However, the thickness is not limited to this. On the other hand, the thickness of the Al-based layer is 1/2 or less of the Nb layer to be reacted, and especially 1/3 to 1/1 / from the viewpoint of efficient formation of the Nb 3 Al-based superconducting phase with the Nb layer.
4 is preferable.
【0025】特に好ましい方式は、各Al系層を複合対
象の素線における一次素線のAl系コア径と同じ厚さと
する方式である。これにより、Nb3Al系超電導相を生
成させるための加熱処理条件を素材内で統一化すること
ができる。A particularly preferred method is a method in which each Al-based layer has the same thickness as the Al-based core diameter of the primary wire in the wire to be composited. As a result, the heat treatment conditions for producing the Nb 3 Al-based superconducting phase can be unified within the material.
【0026】ちなみに、前記のAl系コア径と異なる厚
さのAl系層の場合、超電導相を生成させるための加熱
条件がAl系コア部とAl系層部で相違し、そのためいず
れか一方に加熱処理不足によるNb3Al系超電導相の未
生成問題、又は加熱処理過剰によるNb3Al系超電導相
の結晶粒の粗大化による超電導特性の低下問題を誘発し
やすくなる。By the way, in the case of the Al-based layer having a thickness different from the Al-based core diameter, the heating conditions for generating the superconducting phase are different between the Al-based core portion and the Al-based layer portion. It is easy to induce a problem of non-generation of Nb 3 Al based superconducting phase due to insufficient heat treatment, or a problem of deterioration of superconducting properties due to coarsening of crystal grains of Nb 3 Al based superconducting phase due to excessive heat treatment.
【0027】なお本発明において、Al系コアやAl系層
は、Alのほか、Al-Mg、Al-Ag、Al-Cu、Al-Ge
などのAl合金で形成されていてもよい。またNb管やN
b(包囲)層は、Ti、Si、Hf、Ta、Zr、Mg、Be、
W、Moなどの元素を含有していてもよく、それらの元
素と合金を形成していてもよい。In the present invention, the Al-based core and the Al-based layer are, in addition to Al, Al-Mg, Al-Ag, Al-Cu, and Al-Ge.
It may be formed of an Al alloy such as. Also Nb tube and N
The b (enveloping) layer is made of Ti, Si, Hf, Ta, Zr, Mg, Be,
It may contain elements such as W and Mo, and may form an alloy with these elements.
【0028】複合化用の複数の素線を収容するためのサ
ポート管は、伸線加工を素線やその包囲層の破損なく効
率的に行うためのものであり、その優れた伸線加工性に
より素線を容易に高次化できて一次素線の多芯化を効率
的に行うことができる。サポート管に収容する素線の数
は適宜に決定してよいが、一般には10〜300本程度
とされる。The support tube for accommodating a plurality of composite strands is for efficiently performing wire drawing without damaging the strands or the surrounding layer thereof, and has excellent wire drawing workability. Thus, the strands can be easily made high-order, and the primary strands can be efficiently multicore. The number of strands accommodated in the support tube may be appropriately determined, but is generally about 10 to 300.
【0029】サポート管としては、伸線加工に耐える適
宜なものを用いてよい。伸線加工性や伸線加工後におけ
る必要に応じての除去性などの点より好ましく用いうる
サポート管は、銅や銅合金などからなるものである。な
お伸線加工後におけるサポート管の必要に応じての除去
は、エッチング方式や硝酸等の薬剤による溶出方式、切
削方式などの適宜な方式で行ってよい。As the support tube, an appropriate tube that can withstand wire drawing may be used. A support tube that can be preferably used in view of wire drawability and removability as needed after wire drawing is made of copper, copper alloy, or the like. If necessary, the support tube after the wire drawing process may be removed by an appropriate method such as an etching method, an elution method with a chemical such as nitric acid, or a cutting method.
【0030】複数の素線を収容したサポート管の伸線加
工は、適宜な方式で行ってよいが、一般には加熱による
NbAl3やNb2Al等の加工性や超電導特性等を阻害する
物質の生成を防止できる冷間伸線方式が好ましい。冷間
伸線方式としては、ダイス方式、溝ロール方式、スエー
ジング方式やホージング方式等の冷間鍛造方式、それら
を併用する方式などがあげられる。The drawing of the support tube accommodating a plurality of strands may be carried out by an appropriate method, but in general, a material that inhibits the workability such as NbAl 3 or Nb 2 Al by heating and the superconducting property is used. A cold wire drawing method that can prevent generation is preferable. Examples of the cold wire drawing method include a die method, a groove roll method, a cold forging method such as a swaging method and a hosing method, and a method using them in combination.
【0031】伸線加工では通常、複数のダイスや冷間鍛
造機等を介して素線等が順次細くされるが、その際の一
加工あたりにおける減面率は適宜に決定してよい。一般
的には5〜25%の減面率とされる。細線化の程度も適
宜に決定してよいが、一般には0.1〜3mmとされ、こ
れが次の伸線加工用の素線として、あるいは超電導素材
としてNb−Al系超電導線の形成に供される。In the wire drawing process, the wire or the like is usually thinned in sequence through a plurality of dies, a cold forging machine, etc., and the area reduction rate per one process may be appropriately determined. Generally, the area reduction rate is 5 to 25%. Although the degree of thinning may be appropriately determined, it is generally 0.1 to 3 mm, which is used as a wire for the next wire drawing or as a superconducting material for forming an Nb-Al superconducting wire. It
【0032】図4にダイス方式による伸線加工工程を例
示した。これによれば、伸線対象物7が送出ロール8よ
り順次供給されつつ、ダイス76,77,78,79を
介し細線化されて細線71,72,73へと順次細くさ
れ、その細線73が鍛造機74を介し冷間鍛造されて素
線75とされ巻取ロール81に巻取られる。FIG. 4 exemplifies the wire drawing process by the die method. According to this, while the wire drawing target 7 is sequentially supplied from the delivery roll 8, the wire drawing target 7 is thinned through the dice 76, 77, 78, 79 to the thin wires 71, 72, 73, and the thin wire 73 is formed. Cold forging is carried out via the forging machine 74 to form a wire 75, which is wound on a winding roll 81.
【0033】巻取られた素線81は、上記したとおり次
の伸線加工用の素線として、あるいは所定数の一次素線
の多芯化が達成されている場合には超電導素材としてN
b−Al系超電導線の形成に供される。The wound wire 81 is used as a wire for the next wire drawing as described above, or as a superconducting material when a predetermined number of primary wires have been multicore.
It is used to form b-Al superconducting wires.
【0034】上記のように伸線加工後のサポート管は必
要に応じて除去されるが、その除去は一般に、目的とす
る超電導素材における素線の複合化次数に応じ、低次の
素線の段階では行うことが好ましく、最終複合化目的の
次数に近い高次の素線の段階では省略することができ
る。As described above, the support tube after wire drawing is removed if necessary, but the removal is generally performed according to the composite order of the wires in the target superconducting material, and It is preferable to perform it in the step, and it can be omitted in the step of the higher-order strands close to the order of the final composite purpose.
【0035】ちなみに、四次素線の複合化で目的の超電
導素材とする場合、二次の複合素線の複合化段階では超
電導相の生成効率等の点よりそれを行うことが一般に好
ましい。しかし、三次の複合素線の複合化段階では超電
導相の生成効率の低下度も大きくなく、その存在が機械
的強度や安定性の向上、交流損失の防止等に有利なマト
リクスの形成などに寄与することから除去せずに存置さ
せるほうが一般に好ましい。図5に伸線加工後のサポー
ト管を除去した状態を例示した。42が伸線加工で複合
化された素線、51が伸線加工後のNb管(Nb包囲層)
である。By the way, when the desired superconducting material is obtained by compounding the quaternary element wire, it is generally preferable to do so in the compounding step of the secondary compound element wire from the viewpoint of generation efficiency of the superconducting phase. However, the degree of deterioration of the superconducting phase generation efficiency is not great at the stage of compounding the third-order composite element wire, and its presence contributes to the formation of a matrix that is advantageous in improving mechanical strength and stability and preventing AC loss. For this reason, it is generally preferable to leave it unremoved. FIG. 5 illustrates a state in which the support tube after wire drawing is removed. 42 is an element wire compounded by wire drawing, and 51 is a Nb tube after wire drawing (Nb envelope layer)
Is.
【0036】本発明の製造方法においては、二次以上の
複合素線のAl系層とペア層による包囲、その複数本を
必要に応じNb管を介しサポート管に収容しての伸線加
工、形成された伸線加工物よりの外層のサポート層の必
要に応じての除去からなる操作を、必要に応じて2回以
上繰り返してもよい。従ってその場合には、本発明の方
法を適用して開始素線を複合化したのち、得られたその
複合素線が次の複合用の素線に供される。In the manufacturing method of the present invention, the composite wire of the secondary or higher order is surrounded by the Al-based layer and the pair layer, and a plurality of the wires are housed in the support pipe through the Nb pipe, if necessary, The operation of removing the support layer of the outer layer from the formed wire drawing product as necessary may be repeated twice or more as necessary. Therefore, in that case, the method of the present invention is applied to compound the starting element wire, and the obtained elemental wire is then used for the next elemental wire for compounding.
【0037】本発明により製造された超電導素材は、そ
のまま超電導線の形成に供される場合もあるし、さらに
本発明の方法以外によるより高次の複合化用の素線に供
される場合もある。後者の場合には、本発明による複合
素線を束ねてさらに複合細線化しつつより高次の多芯化
を図って、目的とするAl系芯数ないしAl系芯径等を有
する超電導素材とされる。The superconducting material produced by the present invention may be directly used for forming a superconducting wire, or may be further used for a higher-order composite strand by a method other than the method of the present invention. is there. In the latter case, the composite strands according to the present invention are bundled to form a composite fine wire to achieve a higher multicore, and a superconducting material having a desired Al-based core number or an Al-based core diameter is obtained. It
【0038】従って本発明により形成する超電導素材は
任意に決定でき、必要に応じての本発明による操作の繰
り返し回数も任意である。また断面形状も任意である。
加熱処理により超電導線とする対象の一般的な超電導素
材は、Nb-Al系超電導相でないマトリクス部分の不足
による機械的強度や安定性の低下防止又は交流損失の点
より、10〜300本程度の一次素線を多芯化してなる
二次の複合素線を単位として、その芯数10芯〜1万
芯、直径0.1〜10mm、断面積に占める二次の複合素
線部分/Nb層等付加部分の面積比1/9〜9/1、断
面におけるAl系/Nb面積比2〜20%/90〜80%
程度のものとされる。Therefore, the superconducting material formed according to the present invention can be arbitrarily determined, and the number of repetitions of the operation according to the present invention can be arbitrarily determined as required. The cross-sectional shape is also arbitrary.
The general superconducting material to be made into a superconducting wire by heat treatment is about 10 to 300 wires from the viewpoint of prevention of deterioration of mechanical strength and stability due to lack of matrix part which is not Nb-Al superconducting phase or AC loss. The number of cores is 10 to 10,000 cores, the diameter is 0.1 to 10 mm, and the secondary composite strand part / Nb layer occupies the cross-sectional area with the secondary composite strand made of multiple primary strands as a unit. Area ratio of additional parts such as 1/9 to 9/1, Al system / Nb area ratio of cross section 2 to 20% / 90 to 80%
It is considered as a degree.
【0039】なお二次の複合素線そのものの断面におけ
るAl系/Nb面積比は、一般に0.2〜20%/99.
8〜80%程度である。従って本発明においてはAl系
層やペア層の付加で前記の数値が達成されるように調節
される。The Al system / Nb area ratio in the cross section of the secondary composite wire itself is generally 0.2 to 20% / 99.
It is about 8 to 80%. Therefore, in the present invention, the addition of an Al-based layer or a pair layer is adjusted so that the above-mentioned numerical values are achieved.
【0040】Nb−Al系超電導線は、超電導素材を必要
に応じ円形、矩形、テープ状等の目的とする断面形状に
加工後、それを加熱処理することにより得ることができ
る。加熱条件は、超電導素材における一次素線のAl系
コア径やAl系層の厚さなどにより適宜に決定される
が、一般には700〜1600℃の温度範囲で加熱され
る。加熱処理により、Nb3Al系超電導相が形成され
る。The Nb-Al superconducting wire can be obtained by processing the superconducting material into a desired cross-sectional shape such as a circle, a rectangle, or a tape, if necessary, and then heat-treating it. The heating conditions are appropriately determined depending on the Al-based core diameter of the primary strand of the superconducting material, the thickness of the Al-based layer, and the like, but heating is generally performed in the temperature range of 700 to 1600 ° C. By the heat treatment, a Nb 3 Al-based superconducting phase is formed.
【0041】図6にNb-Al系超電導線を例示した。9
が高次に多芯化した素線の伸線加工物の加熱処理体、1
0が最終的に包囲したNb層等の外層の加熱処理体であ
る。Nb3Al系超電導相は、超電導素材においてNb層と
Al系層が隣接していた部分にそれらの層の全部又は一
部が反応に関与した状態で生成している。FIG. 6 illustrates the Nb-Al type superconducting wire. 9
Is a heat-treated body of a wire-drawing work of a wire having a higher number of cores, 1
Reference numeral 0 is the heat-treated body of the outer layer such as the Nb layer finally enclosed. The Nb 3 Al-based superconducting phase is generated in a portion where the Nb layer and the Al-based layer were adjacent to each other in the superconducting material in a state in which all or part of these layers participate in the reaction.
【0042】加熱処理で生成するNb3Al系超電導相は
通例、含有Al系成分の4倍程度である。従って超電導
素材の断面積に占めるAl系部分を調節することによ
り、得られる超電導線におけるNb3Al系超電導相の含
有割合を制御することができる。例えば、二次の複合素
線そのものによるAl分の含有比を2%、Al系層やペア
層の付加後におけるAl分の含有比を20%と仮定する
と、Al系層やペア層の付加割合の制御で三次の複合素
線におけるAl分の含有比を2〜20%の範囲で変える
ことができ、それに対応してNb3Al系超電導相を8〜
80%の断面積範囲で調節することができる。The Nb 3 Al type superconducting phase produced by the heat treatment is usually about 4 times as much as the contained Al type component. Therefore, the content of the Nb 3 Al-based superconducting phase in the obtained superconducting wire can be controlled by adjusting the Al-based portion in the cross-sectional area of the superconducting material. For example, assuming that the Al content ratio due to the secondary composite wire itself is 2% and the Al content ratio after the addition of the Al-based layer or the pair layer is 20%, the addition ratio of the Al-based layer or the pair layer. The content ratio of Al in the third-order composite element wire can be changed within the range of 2 to 20% by controlling the above, and correspondingly, the Nb 3 Al superconducting phase can be changed from 8 to 8%.
It can be adjusted in the area of 80% cross section.
【0043】[0043]
【発明の効果】本発明によれば、容易に伸線加工できて
断線を大幅に抑制できると共に、素線の高次多芯化を効
率的に安定して行うことができる。また超電導相の生成
に寄与するAl系物質の含有割合が多く、一次素線の多
芯化を繰り返して高次の素線としてもNb3Al系超電導
相の占有面積に優れて臨界電流密度等の超電導特性に優
れるNb-Al系超電導線を得ることができる。EFFECTS OF THE INVENTION According to the present invention, wire drawing can be easily carried out, wire breakage can be greatly suppressed, and higher-order multi-filarization of the wire can be carried out efficiently and stably. In addition, the content of the Al-based substance that contributes to the formation of the superconducting phase is high, and even if the primary wire is repeatedly multicore, the area occupied by the Nb 3 Al-based superconducting phase is excellent and the critical current density etc. It is possible to obtain a Nb-Al-based superconducting wire having excellent superconducting properties.
【図1(A)】Al系層とペア層を設けた状態の説明断
面図FIG. 1 (A) is an explanatory sectional view showing a state in which an Al-based layer and a pair layer are provided.
【図1(B)】サポート管内に収容した状態の説明断面
図FIG. 1 (B) is an explanatory cross-sectional view of a state in which the support tube is accommodated
【図2】複合化用の素線を例示した説明断面図FIG. 2 is an explanatory cross-sectional view showing an example of a composite wire.
【図3】ペア層形成方式の説明断面図FIG. 3 is an explanatory sectional view of a pair layer forming method.
【図4】伸線加工工程の説明図。FIG. 4 is an explanatory view of a wire drawing process.
【図5】サポート層を除去した状態の説明断面図FIG. 5 is an explanatory sectional view showing a state in which a support layer is removed.
【図6】Nb-Al系超電導線の構造を例示した説明断面
図FIG. 6 is an explanatory cross-sectional view illustrating the structure of an Nb-Al-based superconducting wire.
4,41:複合化用の素線 1:二次の複合素線 13:一次素線(Al系コア線) 11:Al系コア 12:Nb層 14,18:Nb包囲層 17:二次以上の複合素線 15:Al系コア線の多芯層 16:Nb層 2:Al系層 3:ペア層 31:Al系層 32:Nb層 5:Nb管 6:サポート管 9:高次に多芯化した素線の伸線加工物の加熱処理体 10:最終的に包囲した外層の加熱処理体 4, 41: Elementary wire for compounding 1: Secondary elemental wire 13: Primary elemental wire (Al-based core wire) 11: Al-based core 12: Nb layer 14, 18: Nb surrounding layer 17: Secondary or higher Composite wire 15: Multi-core layer of Al-based core wire 16: Nb layer 2: Al-based layer 3: Pair layer 31: Al-based layer 32: Nb layer 5: Nb tube 6: Support tube 9: Higher number Heat-treated body of cored wire drawn product 10: Heat-treated body of outer layer finally enclosed
Claims (6)
層内に多芯状態で有する二次以上の複合素線の外周にA
l系層を設け、その外側にNb層とAl系層を対とするペ
ア層を少なくとも1層設けてその複数本をサポート管内
に収容し、それを伸線加工して高次の複合多芯線とする
ことを特徴とする超電導素材の製造方法。1. An A-based core wire coated with an Nb layer is provided on the outer periphery of a composite wire of a secondary or more order having a multi-core state in the Nb surrounding layer.
An l-type layer is provided, and at least one pair layer of Nb layer and Al-type layer is provided on the outer side of the l-type layer, and a plurality of them are accommodated in a support pipe. A method of manufacturing a superconducting material, comprising:
層内に多芯状態で有する二次以上の複合素線を開始の素
線として、素線の外周にAl系層を設け、その外側にNb
層とAl系層を対とするペア層を少なくとも1層設けて
その複数本をサポート管内に収容し、それを伸線加工し
て高次の複合多芯線としその複合多芯線を次の素線に用
いて前記の操作を必要回数繰り返すことを特徴とする超
電導素材の製造方法。2. An Al-based layer is provided on the outer circumference of a strand of which a secondary or higher-order composite wire having an Al-based core wire coated with an Nb layer in a Nb surrounding layer in a multicore state is used as a starting wire. Nb on the outside
Layer and at least one pair of Al-based layers are provided, and a plurality of them are accommodated in a support pipe, which is wire-drawn to form a higher-order composite multicore wire, and the composite multicore wire is the next strand. A method for manufacturing a superconducting material, characterized in that the above operation is repeated a required number of times.
とを特徴とする請求項1又は2に記載の製造方法。3. The manufacturing method according to claim 1, wherein the pair layer is formed by winding it in a roll shape.
サポート管内に収容することを特徴とする請求項1ない
し3のいずれかに記載の製造方法。4. The manufacturing method according to claim 1, wherein a plurality of strands of wire are loaded into the Nb tube and the Nb tube is housed in the support tube.
る工程を有することを特徴とする請求項1ないし4のい
ずれかに記載の製造方法。5. The manufacturing method according to claim 1, further comprising a step of removing an outer support layer after wire drawing.
造方法で得た超電導素材の加熱処理物からなることを特
徴とするNb-Al系超電導線。6. An Nb-Al-based superconducting wire comprising a heat-treated product of a superconducting material obtained by the manufacturing method according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5146870A JPH06333450A (en) | 1993-05-25 | 1993-05-25 | Manufacture of superconductive material and nb-al group superconductive wire |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5146870A JPH06333450A (en) | 1993-05-25 | 1993-05-25 | Manufacture of superconductive material and nb-al group superconductive wire |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06333450A true JPH06333450A (en) | 1994-12-02 |
Family
ID=15417435
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5146870A Pending JPH06333450A (en) | 1993-05-25 | 1993-05-25 | Manufacture of superconductive material and nb-al group superconductive wire |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06333450A (en) |
-
1993
- 1993-05-25 JP JP5146870A patent/JPH06333450A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5127149A (en) | Method of production for multifilament niobium-tin superconductors | |
JPH06333450A (en) | Manufacture of superconductive material and nb-al group superconductive wire | |
JPH06333451A (en) | Manufacture of superconductive material and nb-al group superconductive wire | |
JP4742843B2 (en) | Core wire for Nb3Sn superconducting wire, Nb3Sn superconducting wire, and manufacturing method thereof | |
JPH0636629A (en) | Manufacture of superconducting material and nb-al superconducting wire | |
JP3736425B2 (en) | Manufacturing method of oxide superconducting multi-core wire | |
JPH08138469A (en) | Manufacture of superconductive material and nb-al superconductive wire | |
JPH0855528A (en) | Fabrication of superconducting material and nb-al superconducting wire | |
JPH0636626A (en) | Manufacture of superconducting material | |
JPH06176638A (en) | Manufacture of superconductive raw material | |
JPH0896634A (en) | Manufacture of superconducting raw material and nb-al type superconducting wire | |
JP3124448B2 (en) | Method for manufacturing Nb (3) Sn superconducting wire | |
RU2122253C1 (en) | Composite superconductor manufacturing process | |
JP3757617B2 (en) | Oxide superconducting billet, oxide superconducting wire, and manufacturing method thereof | |
JPH04277409A (en) | Compound superconducting wire and manufacture thereof | |
JP4687438B2 (en) | Core wire for Nb3Sn superconducting wire, Nb3Sn superconducting wire, and manufacturing method thereof | |
JPH0676663A (en) | Manufacture of superconducting material and nb-al superconducting wire | |
JPH06295630A (en) | Primary complex body for nb3al superconducting wire and its manufacture, and manufacture of the wire | |
JPH11353961A (en) | Precursor wire material of nb3sn compound superconductor and its manufacture, manufacture of nb3sn compound superconductor, and manufacture of nb3sn compound superconducting coil | |
JPH09139124A (en) | Composite multiple-core superconductive wire and manufacture thereof | |
JPH06176639A (en) | Manufacture of superconductive raw material and nb-al superconductive wire | |
JPH06176640A (en) | Manufacture of superconductive raw material and nb-al superconductive wire | |
JPH04132108A (en) | Nb3al superconductor | |
JPH08339728A (en) | Manufacture of nb3sn system superconductive wire | |
JPH08212854A (en) | Manufacture of compound superconducting wire |