JPH0676663A - Manufacture of superconducting material and nb-al superconducting wire - Google Patents

Manufacture of superconducting material and nb-al superconducting wire

Info

Publication number
JPH0676663A
JPH0676663A JP4252099A JP25209992A JPH0676663A JP H0676663 A JPH0676663 A JP H0676663A JP 4252099 A JP4252099 A JP 4252099A JP 25209992 A JP25209992 A JP 25209992A JP H0676663 A JPH0676663 A JP H0676663A
Authority
JP
Japan
Prior art keywords
superconducting
wire
layer
powder
strand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4252099A
Other languages
Japanese (ja)
Inventor
Akira Kano
陽 狩野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP4252099A priority Critical patent/JPH0676663A/en
Publication of JPH0676663A publication Critical patent/JPH0676663A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To provide a method of manufacture of superconducting material from which an Nb3Al superconducting wire excellent in both the rate of area of an Nb.Al superconducting phase in its cross section and superconducting characteristics such as critical current density can be formed, even as an element wire of higher degree which is obtainable by repeating of a process for making a primary element wire multicored. CONSTITUTION:Starting with secondary element wire 3 having in an Nb layer a number of primary element wires 3 each comprising an Al core covered with an Nb layer, a plurality of secondary element wires are either enclosed in an Nb tube 1 with an Nb and Al powder mixture 2 filling the space therein, or enclosed in the Nb tube while being surrounded by a layer of Nb and Al powder mixture. A process for forming a next element wire by drawing of the element wires enclosed is repeated by a required number of times. The ratio of a superconducting phase to a matrix phase which occupy the cross section of the superconducting wire can then readily be controlled, and the drawing process is so easy that the process of making the element wire multicored to a higher degree can efficiently and stably be performed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、Nb3Al系超電導相の
占有面積が多くて臨界電流密度等の超電導特性に優れる
超電導線を得ることができる超電導素材の製造方法、及
びそのNb・Al系超電導線に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a superconducting material which has a large occupied area of Nb 3 Al-based superconducting phase and which is excellent in superconducting properties such as critical current density, and a method for producing the Nb · Al. System superconducting wire.

【0002】[0002]

【従来の技術】従来、Alやその合金からなるAl系コア
をNb層で被覆した一次素線の束をNb管内に収容後伸線
加工して多芯構造の二次素線とし、それを開始素線とし
て素線束のNb管内への収容及び伸線加工を必要回数繰
り返す超電導素材の製造方法が知られていた。かかる複
合加工法(ニオブチューブ法)は、素線の高次多芯化を
容易に行いうる利点を有し、超電導線は多芯化した素材
を加熱処理してNb3Al系の超電導相を生成させること
により得られる。
2. Description of the Related Art Conventionally, a bundle of primary wires made by coating an Al-based core made of Al or an alloy thereof with an Nb layer is housed in an Nb tube and drawn to form a secondary wire having a multi-core structure. There has been known a method of manufacturing a superconducting material in which a wire bundle is housed in a Nb tube as a starting wire and wire drawing is repeated a required number of times. Such a composite processing method (niobium tube method) has an advantage that it is possible to easily make higher-order multifilamentary wires, and the superconducting wire is subjected to heat treatment of the multifilarized material to form a Nb 3 Al-based superconducting phase. It is obtained by generating.

【0003】しかしながら、素線をNb管内に収容する
際に例えその断面を高充填に有利な六角形に成形したと
しても素線間や素線・Nb管間に隙間が発生して充填率
に乏しく、一次素線を所定径、例えば100nm程度とす
るまでに要する素線の複合回数(高次多芯化)が増大し
多工程を要する問題点があった。また隙間の発生が伸線
加工度を低下させるなど加工性を害し、さらに三次素線
以上の各素線の外周に位置するNb管に基づくNb層がN
b3Al系超電導相の形成に寄与せず、従って複合化を繰
り返して一次素線を高次に多芯化するほど超電導相の形
成に寄与しないNb層が増大し、超電導線の断面積に占
めるNb3Al系超電導相の面積が飛躍的に減少し、単位
断面積あたりの臨界電流値を低下させる問題点があつ
た。ちなみに三次素線を用いた四次の超電導素材では、
超電導相の形成に寄与しないNb層の断面占有面積が約
90%にも及ぶときがある。
However, when the wire is housed in the Nb tube, even if the cross section is formed into a hexagonal shape, which is advantageous for high packing, a gap is generated between the wire or between the wire and the Nb tube, and the filling rate is increased. There is a problem in that the number of composite strands required to bring the primary strand to a predetermined diameter, for example, about 100 nm (higher multicore) is increased, and multiple steps are required. In addition, the occurrence of a gap impairs the workability such as a reduction in the wire drawing workability, and further, the Nb layer based on the Nb pipe located on the outer periphery of each of the tertiary wires and above has an Nb layer.
The Nb layer that does not contribute to the formation of the superconducting phase increases as the primary strands are made to have a higher number of cores by repeating the compounding, and thus the Nb layer that does not contribute to the formation of the b 3 Al superconducting phase increases. There has been a problem that the area of the Nb 3 Al superconducting phase occupying is drastically reduced and the critical current value per unit cross section is lowered. By the way, in the fourth-order superconducting material using the third strand,
The sectional area of the Nb layer, which does not contribute to the formation of the superconducting phase, sometimes reaches about 90%.

【0004】[0004]

【発明が解決しようとする課題】本発明は、一次素線の
多芯化を繰り返して高次の素線としてもNb3Al系超電
導相の断面占有面積に優れて臨界電流密度等の超電導特
性に優れるNb・Al系超電導線を形成しうる超電導素材
の製造方法の開発を課題とする。
DISCLOSURE OF THE INVENTION The present invention has an advantage that the cross-sectional occupying area of the Nb 3 Al based superconducting phase is excellent even when a multifilamentary primary wire is repeatedly used and the superconducting characteristics such as critical current density are excellent. The task is to develop a method of manufacturing a superconducting material capable of forming a superb Nb / Al-based superconducting wire.

【0005】[0005]

【課題を解決するための手段】本発明は、Al系コアを
Nb層で被覆した一次素線をNb層内に多芯状態で有する
二次素線を開始の素線として、素線の複数本をNb管内
に隙間がNb粉とAl系粉との混合粉末で充填された状態
に収容するか、素線の束をNb粉とAl系粉との混合粉末
層で包囲してNb管内に収容するかし、その収容体を伸
線加工して次の素線とする操作を必要回数繰り返すこと
を特徴とする超電導素材の製造方法、及び該超電導素材
の加熱処理物からなることを特徴とするNb・Al系超電
導線を提供するものである。
According to the present invention, a plurality of strands are formed by using as a starting strand a secondary strand having a primary strand in which an Al-based core is coated with an Nb layer in a multi-core state in the Nb layer. The book is housed in the Nb tube with the gap filled with the mixed powder of Nb powder and Al-based powder, or the bundle of wires is surrounded by the mixed powder layer of Nb powder and Al-based powder and placed in the Nb tube. A method of manufacturing a superconducting material, characterized by accommodating, and repeating the operation of wire-drawing the accommodating body to obtain the next strand a necessary number of times, and comprising a heat-treated product of the superconducting material. The present invention provides Nb / Al-based superconducting wires.

【0006】[0006]

【作用】Nb管内における管・素線間や素線間をNb粉と
Al系粉からなる混合粉末で充填する上記の方法によ
り、隙間の発生を防止できて伸線加工等の加工性を向上
でき一次素線を所定径に少ない複合回数で効率よく細線
化でき、当該混合粉末がNb3Al系超電導相の形成に寄
与して超電導素材の断面積における、機械的強度や安定
性、交流損失等に影響するマトリクスとAl系の含有割
合、ひいては超電導層比を容易に制御することができ
る。その結果、素線の高次化に際してNb3Al系超電導
相の形成に寄与しない部分の介在を低減でき、Nb3Al
系超電導相の形成に寄与する部分が多く占めて一次素線
の多芯化を繰り返して高次の素線としてもNb3Al系超
電導相の断面占有面積に優れて臨界電流密度等の超電導
特性に優れるNb・Al系超電導線を形成しうる超電導素
材が得られる。
[Function] By the above method of filling the space between the pipes and the strands and between the strands in the Nb pipe with the mixed powder of Nb powder and Al-based powder, the formation of gaps can be prevented and the workability such as wire drawing is improved. As a result, the primary wire can be efficiently thinned to a predetermined diameter with a small number of compounding times, and the mixed powder contributes to the formation of the Nb 3 Al-based superconducting phase, and the mechanical strength, stability, and AC loss in the cross-sectional area of the superconducting material. It is possible to easily control the matrix and Al-based content ratio, which influences the above, and thus the superconducting layer ratio. As a result, it is possible to reduce the interposition of the portion that does not contribute to the formation of the Nb 3 Al-based superconducting phase in increasing the order of the strand, and to improve the Nb 3 Al
A large number of parts contribute to the formation of the system superconducting phase, and the multiple cores of the primary wire are repeated, and even if it is a higher-order wire, the cross-sectional area occupied by the Nb 3 Al system superconducting phase is excellent and the superconducting characteristics such as critical current density. A superconducting material capable of forming a superb Nb / Al superconducting wire is obtained.

【0007】[0007]

【実施例】本発明の製造方法は、図1に例示の如くAl
・Nb系の多芯素線からなる二次素線3を開始の素線と
して、素線の複数本をNb管1内に収容し、かつ隙間を
Nb粉とAl系粉からなる混合粉末2で充填した状態の収
容体を伸線加工して次の素線とする操作を必要回数繰り
返して超電導素材を得るものである。
EXAMPLE As shown in FIG. 1, the manufacturing method of the present invention is
A plurality of strands are accommodated in the Nb tube 1 with the secondary strand 3 made of Nb-based multi-core strand as a starting strand, and the gap is a mixed powder 2 made of Nb powder and Al-based powder. The superconducting material is obtained by repeating the operation of drawing the container filled with the step 1 to draw the next strand.

【0008】開始素線のAl・Nb系の多芯素線として
は、図3に例示の如くAlやその合金からなるAl系コア
34をNb層33で被覆した一次素線32をNb層31の
内部に多芯状態で有する二次素線3が用いられる。一次
素線32は、例えばAl系線をNb管内に装填して伸線処
理する方式などにより得ることができ、二次素線3は当
該一次素線の多数本をNb管の内部に収容して伸線処理
する方式などにより得ることができる。一次素線や二次
素線、さらには二次素線を高次多芯化してなるNb管収
容用の素線は、任意な断面形態とすることができるが、
Nb管内への高充填性の点よりは六角形が好ましい。
As the Al / Nb-based multifilamentary starting wire, as shown in FIG. 3, an Al-based core 34 made of Al or an alloy thereof is covered with a Nb layer 33 to form a primary wire 32 and an Nb layer 31. The secondary strand 3 having a multi-core state is used inside the. The primary wire 32 can be obtained by, for example, a method of loading an Al system wire into an Nb tube and performing a wire drawing process, and the secondary wire 3 accommodates a large number of the primary wire inside the Nb tube. It can be obtained by a method of wire drawing treatment. The primary strand, the secondary strand, and the strand for accommodating the Nb tube, which is formed by making the secondary strand higher-order multicore, can have any cross-sectional shape,
The hexagonal shape is preferable from the viewpoint of high filling property in the Nb tube.

【0009】素線の複数本をNb管内に、素線・Nb管間
や素線間の隙間がNb粉とAl系粉の混合粉末2で充填さ
れた状態で収容する方式は、例えば素線収容後その隙間
に混合粉末を充填する方式など任意である。収容する素
線の数は適宜に決定してよいが一般には10〜300本
程度とされる。
A method for accommodating a plurality of strands in a Nb pipe in a state where the gaps between the strands and the Nb pipes and the gaps between the strands are filled with the mixed powder 2 of Nb powder and Al-based powder is, for example, A method of filling the gap with the mixed powder after accommodation is arbitrary. The number of wires to be accommodated may be appropriately determined, but is generally about 10 to 300.

【0010】充填する混合粉末におけるNb粉とAl系粉
の混合割合については適宜に決定してよいが、Nb粉と
Al系粉との間でNb3Al系超電導相を効率よく形成させ
る点よりNb粉の1/3、就中1/4程度とすることが
好ましい。
The mixing ratio of the Nb powder and the Al-based powder in the mixed powder to be filled may be appropriately determined, but from the viewpoint of efficiently forming the Nb 3 Al-based superconducting phase between the Nb powder and the Al-based powder. It is preferable that the amount is 1/3 of Nb powder, especially about 1/4.

【0011】用いるNb粉、Al系粉の粒径は適宜に決定
してよいが、一般には超電導相の生成の点より特にAl
系粉について、伸線加工対象の各段階の素線における一
次素線のAl系コアと可及的に等しい径のものが好まし
い。これによりNb3Al系超電導相を生成させるための
加熱処理条件を素材内で統一化することができる。ちな
みに、前記のAl系コア径と異なる径のAl系粉を用いた
場合、超電導相を生成させるための加熱条件がAl系コ
ア部とAl系粉部で相違し、そのためいずれか一方に加
熱処理不足によるNb3Al系超電導相の未生成問題、又
は加熱処理過剰によるNb3Al系超電導相の結晶粒の粗
大化による超電導特性の低下問題を誘発しやすくなる。
The particle diameters of the Nb powder and the Al-based powder to be used may be appropriately determined, but in general, from the viewpoint of the formation of the superconducting phase, Al is particularly preferable.
It is preferable that the powder of the system has a diameter as equal as possible to the Al-based core of the primary wire in the wire at each stage of wire drawing. As a result, the heat treatment conditions for producing the Nb 3 Al-based superconducting phase can be unified within the material. By the way, when an Al-based powder having a diameter different from the above-mentioned Al-based core diameter is used, the heating conditions for producing the superconducting phase are different between the Al-based core portion and the Al-based powder portion. A problem that the Nb 3 Al-based superconducting phase is not generated due to a shortage or a problem that the superconducting characteristic is deteriorated due to coarsening of crystal grains of the Nb 3 Al-based superconducting phase due to excessive heat treatment is easily induced.

【0012】本発明においては、Nb管内に素線の複数
本と当該混合粉末を収容して伸線加工する操作を、先ず
は上記した開始素線に対して行ったのち、それにより得
られた伸線加工物を次の素線に用いて必要回数繰り返し
て、従って開始素線のAl系芯径を順次細線化しつつそ
の高次多芯化を図って、目的とするAl系芯径等を有す
る超電導素材とされる。伸線加工は、例えばスエージン
グ方式、溝ロール方式、ダイス方式などの適宜な方式で
行ってよく、形成する断面形状は上記したように任意で
ある。
In the present invention, an operation of accommodating a plurality of strands and the mixed powder in a Nb tube and performing wire drawing is first performed on the above-mentioned starting strand, and then obtained. Repeat the required number of times by using the wire drawing product for the next strand, and thus make the Al-based core diameter of the starting strand one by one, while making the Al-based core diameter higher It is considered to be a superconducting material. The wire drawing process may be performed by an appropriate method such as a swaging method, a groove roll method, or a die method, and the cross-sectional shape to be formed is arbitrary as described above.

【0013】本発明の他の製造方法は、図2に例示の如
く上記した二次素線3を開始の素線として、素線の束を
Nb粉とAl系粉との混合粉末層2で包囲してNb管4内
に収容し、その収容体を伸線加工して次の素線とする操
作を必要回数繰り返して超電導素材を得るものである。
従って、素線の束をNb粉とAl系粉との混合粉末の層で
包囲する点を除き前記した方法に準じて超電導素材を得
るものである。
In another manufacturing method of the present invention, as shown in FIG. 2, the secondary wire 3 described above is used as a starting wire, and the bundle of the wire is a mixed powder layer 2 of Nb powder and Al-based powder. The superconducting material is obtained by surrounding and accommodating it in the Nb tube 4 and drawing the accommodating body into the next strand to repeat the necessary number of times.
Therefore, a superconducting material is obtained according to the method described above except that the bundle of strands is surrounded by a layer of mixed powder of Nb powder and Al powder.

【0014】当該混合粉末の層で素線の束を包囲する方
式としては、例えば静水圧モールド方式等で混合粉末層
を高密度化するなどの適宜な方式で行うことができる。
形成する混合粉末層の厚さは任意である。一般には、素
線を10〜100本、就中20〜50本を束ねてその外
周に素線の径の1〜100倍、就中2〜10倍の厚さで
混合粉末の層を有するものとされる。
As a method of enclosing the bundle of strands with the layer of the mixed powder, an appropriate method such as densifying the mixed powder layer by a hydrostatic molding method can be used.
The thickness of the mixed powder layer to be formed is arbitrary. In general, 10 to 100 strands, in particular 20 to 50 strands, are bundled and a mixed powder layer is provided on the outer periphery thereof with a thickness of 1 to 100 times, especially 2 to 10 times the diameter of the strands. It is said that

【0015】本発明において用いる一次素線や二次素
線、さらにはその複合高次化素線を収容するためのNb
管は、必要に応じて銅や銅合金からなるCu系のもので
被覆されていてもよい。Cu系被覆層を設けることによ
り、伸線加工を素線や包囲粉の破損なく効率的に行え、
その優れた伸線加工性により素線を容易に高次化できて
一次素線の多芯化を効率的に行うことができると共に、
機械的強度や安定性の向上、交流損失の防止等に有利な
マトリクスを形成することができる。
Nb for accommodating the primary strands and secondary strands used in the present invention, as well as their composite higher order strands
The tube may be covered with a Cu-based material made of copper or a copper alloy, if necessary. By providing a Cu-based coating layer, wire drawing can be performed efficiently without damaging the wires or surrounding powder,
Due to its excellent wire drawing workability, it is possible to easily increase the order of the wire and efficiently perform the multi-core of the primary wire,
It is possible to form a matrix that is advantageous in improving mechanical strength and stability, preventing AC loss, and the like.

【0016】本発明において、形成する超電導素材は任
意に決定でき、従って前記操作の繰り返し回数も任意で
ある。一般にはNb・Al系超電導相でないマトリクス部
分の不足による機械的強度や安定性の低下防止又は交流
損失の点より、10〜300本程度の一次素線を多芯化
した、断面におけるAl系/Nb面積比が0.2〜20%
/99.8〜80%の二次素線を開始素線として、それ
にNb粉とAl系粉との混合粉末を付加しつつ前記の二次
素線を単位とした芯数10芯〜1万芯、直径0.1〜2
mm、断面積に占める二次素線部分/混合粉末等の付加部
分の面積比1/9〜9/1、断面におけるAl系/Nb面
積比2〜20%/98〜80%程度のものからなる超電
導素材とされる。
In the present invention, the superconducting material to be formed can be arbitrarily determined, and therefore the number of times of repeating the above operation is also arbitrary. Generally, in order to prevent deterioration of mechanical strength and stability due to lack of matrix portion that is not Nb / Al superconducting phase, or to prevent AC loss, about 10 to 300 primary strands are multifilamented. Nb area ratio is 0.2 to 20%
/99.8-80% secondary strand as a starting strand, and mixed powder of Nb powder and Al-based powder is added to it, and the number of cores is 10 core to 10,000 in units of the secondary strand. Core, diameter 0.1-2
mm, area ratio of secondary wire portion / added portion such as mixed powder occupying in the cross-sectional area from 1/9 to 9/1, Al system / Nb area ratio in the cross section of about 2 to 20% / 98 to 80% It is considered to be a superconducting material.

【0017】Nb・Al系超電導線は、超電導素材を必要
に応じ円形、矩形、テープ状等の目的とする断面形状に
加工後、それを加熱処理することにより得ることができ
る。加熱条件は、超電導素材におけるAl系芯径や混合
粉末層の厚さなどにより適宜に決定されるが、一般には
700〜1600℃の温度範囲で加熱される。
The Nb / Al superconducting wire can be obtained by processing the superconducting material into a desired cross-sectional shape such as a circle, a rectangle, or a tape, if necessary, and then heat-treating it. The heating conditions are appropriately determined depending on the Al-based core diameter in the superconducting material, the thickness of the mixed powder layer, etc., but the heating is generally performed in the temperature range of 700 to 1600 ° C.

【0018】加熱処理により、最終的に包囲したNb管
の伸線加工層の内部に存在する、例えば一次素線に基づ
くAl系コア(34)やその被覆Nb層(33)、二次素
線に基づく外周Nb層(31)、Nb粉とAl系粉の混合
粉末層(2)などのNb部とAl系部の隣接部分にそれら
の全部又は一部が反応してNb3Al系超電導相を形成す
る。
By heat treatment, for example, an Al-based core (34) based on, for example, a primary strand, its coated Nb layer (33), and a secondary strand existing inside the wire-drawing layer of the Nb tube finally enclosed. Nb 3 Al-based superconducting phase by reacting all or part of the Nb portion and the Al-based portion adjacent to the Nb portion and the Al-based portion such as the outer peripheral Nb layer (31) and the mixed powder layer (2) of Nb powder and Al-based powder. To form.

【0019】加熱処理で生成するNb3Al系超電導相は
通例、含有Al系成分の4倍程度である。従って超電導
素材の断面積に占めるAl系部分を調節することによ
り、得られる超電導線におけるNb3Al系超電導相の含
有割合を制御することができる。例えば、多芯素線層の
Nb/Al比を98%/2%、Nb−Al混合粉末層のNb
/Al比を80%/20%と仮定すると、Nb−Al混合
粉末層の充填割合を変化させることにより、Al比を2
〜20%の範囲で可変できるので、それに対応してNb3
Al系超電導相が8〜80%の範囲で断面積を占める超
電導線が得られる。
The Nb 3 Al type superconducting phase produced by the heat treatment is usually about 4 times as much as the contained Al type component. Therefore, the content of the Nb 3 Al-based superconducting phase in the obtained superconducting wire can be controlled by adjusting the Al-based portion in the cross-sectional area of the superconducting material. For example, the Nb / Al ratio of the multifilamentary wire layer is 98% / 2%, and the Nb / Al mixed powder layer is Nb / Al.
Assuming that the Al ratio is 80% / 20%, the Al ratio is changed to 2 by changing the filling ratio of the Nb-Al mixed powder layer.
Since it can be varied within the range of up to 20%, Nb 3
A superconducting wire in which the Al superconducting phase occupies a cross-sectional area in the range of 8 to 80% is obtained.

【0020】[0020]

【発明の効果】本発明によれば、超電導相の形成に寄与
するAl系物質の含有割合を容易に調節できて超電導線
の断面積に占める超電導相と、強度等に関係するマトリ
クス相との割合を容易に制御でき、しかも管方式により
容易に伸線加工できて素線の高次多芯化を効率的に安定
して行うことができる。その結果、一次素線の多芯化を
繰り返して高次の素線としてもNb3Al系超電導相の占
有面積に優れて臨界電流密度等の超電導特性に優れるN
b・Al系超電導線を効率よく得ることができる。
According to the present invention, the content ratio of the Al-based substance that contributes to the formation of the superconducting phase can be easily adjusted so that the superconducting phase occupies the cross-sectional area of the superconducting wire and the matrix phase related to the strength and the like. The ratio can be easily controlled, moreover, the wire drawing can be easily performed by the pipe system, and the higher-order multicore of the wire can be efficiently and stably performed. As a result, the Nb 3 Al-based superconducting phase occupies a large area even if a high-order element is obtained by repeating the multi-core structure of the primary element, and the superconducting characteristics such as the critical current density are excellent.
b · Al superconducting wire can be obtained efficiently.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例の説明断面図FIG. 1 is an explanatory sectional view of an embodiment.

【図2】他の実施例の説明断面図FIG. 2 is an explanatory sectional view of another embodiment.

【図3】二次素線の構造を例示した説明断面図FIG. 3 is an explanatory cross-sectional view illustrating the structure of a secondary wire.

【符号の説明】 1:Nb管 2:Nb粉とAl系粉の混合粉末層 3:二次素線(開始素線) 31:Nb層 32:一次素線 33:Nb層 34:Al系コア 4:Nb管[Explanation of Codes] 1: Nb tube 2: Mixed powder layer of Nb powder and Al-based powder 3: Secondary strand (starting strand) 31: Nb layer 32: Primary strand 33: Nb layer 34: Al-based core 4: Nb tube

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 Al系コアをNb層で被覆した一次素線を
Nb層内に多芯状態で有する二次素線を開始の素線とし
て、素線の複数本をNb管内に隙間がNb粉とAl系粉と
の混合粉末で充填された状態に収容し伸線加工して次の
素線とする操作を必要回数繰り返すことを特徴とする超
電導素材の製造方法。
1. A secondary strand having a primary strand in which an Al-based core is coated with an Nb layer in a multi-core state in the Nb layer is used as a starting strand, and a plurality of strands are provided in a Nb tube with a gap of Nb. A method for producing a superconducting material, characterized in that the operation of accommodating in a state of being filled with a mixed powder of powder and Al-based powder and drawing it to obtain the next strand is repeated a necessary number of times.
【請求項2】 Al系コアをNb層で被覆した一次素線を
Nb層内に多芯状態で有する二次素線を開始の素線とし
て、素線の束をNb粉とAl系粉との混合粉末層で包囲し
てNb管内に収容し伸線加工して次の素線とする操作を
必要回数繰り返すことを特徴とする超電導素材の製造方
法。
2. A secondary strand having a primary strand in which an Al-based core is covered with an Nb layer in a multi-core state in the Nb layer is used as a starting strand, and a bundle of strands is composed of Nb powder and Al-based powder. The method for producing a superconducting material, which is characterized in that the operation of enclosing the mixed powder layer in a Nb tube, accommodating it in a Nb tube, and drawing it to obtain the next strand is repeated a necessary number of times.
【請求項3】 請求項1又は2に記載の製造方法で得た
超電導素材の加熱処理物からなることを特徴とするNb・
Al系超電導線。
3. A Nb · comprising a heat-treated material of a superconducting material obtained by the manufacturing method according to claim 1 or 2.
Al-based superconducting wire.
JP4252099A 1992-08-26 1992-08-26 Manufacture of superconducting material and nb-al superconducting wire Pending JPH0676663A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4252099A JPH0676663A (en) 1992-08-26 1992-08-26 Manufacture of superconducting material and nb-al superconducting wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4252099A JPH0676663A (en) 1992-08-26 1992-08-26 Manufacture of superconducting material and nb-al superconducting wire

Publications (1)

Publication Number Publication Date
JPH0676663A true JPH0676663A (en) 1994-03-18

Family

ID=17232507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4252099A Pending JPH0676663A (en) 1992-08-26 1992-08-26 Manufacture of superconducting material and nb-al superconducting wire

Country Status (1)

Country Link
JP (1) JPH0676663A (en)

Similar Documents

Publication Publication Date Title
US11491543B2 (en) Method for producing an Nb3Sn superconductor wire
JPS62170111A (en) Manufacture of multicore fine wire super conductor
JPH0676663A (en) Manufacture of superconducting material and nb-al superconducting wire
RU2122253C1 (en) Composite superconductor manufacturing process
JPH0636629A (en) Manufacture of superconducting material and nb-al superconducting wire
JP2007165151A (en) CORE WIRE FOR Nb3Sn SUPERCONDUCTIVE WIRE, Nb3Sn SUPERCONDUCTIVE WIRE, AND METHOD OF MANUFACTURING SAME
JP4476800B2 (en) Method for producing Nb3Sn superconducting wire
JP4687438B2 (en) Core wire for Nb3Sn superconducting wire, Nb3Sn superconducting wire, and manufacturing method thereof
JPS58106704A (en) Litz wire and coil using same
JPH06176639A (en) Manufacture of superconductive raw material and nb-al superconductive wire
JPH06333450A (en) Manufacture of superconductive material and nb-al group superconductive wire
JPH06176640A (en) Manufacture of superconductive raw material and nb-al superconductive wire
JPH0644834A (en) Ceramics superconductive conductor
JP4476755B2 (en) Method for producing Nb3Sn superconducting wire and composite wire therefor
JPH06176638A (en) Manufacture of superconductive raw material
JP3265618B2 (en) Composite billet for compound superconducting wire and method for producing compound superconducting wire
JPH1079206A (en) Hct multi-conductor wire having deviated inner arrangement
JPH0636626A (en) Manufacture of superconducting material
Thoener et al. Method for producing an Nb 3 Sn superconductor wire
JPH06333451A (en) Manufacture of superconductive material and nb-al group superconductive wire
JPH11149834A (en) Oxide superconducting wire and its manufacture
JPH0322004B2 (en)
JPH02152119A (en) Manufacture of nb3al superconducting wire
JPH03257716A (en) Superconductor
JPH03283320A (en) Manufacture of nb3sn multicore superconductor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050309

A977 Report on retrieval

Effective date: 20070206

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070209

A02 Decision of refusal

Effective date: 20070607

Free format text: JAPANESE INTERMEDIATE CODE: A02