JPH06176639A - Manufacture of superconductive raw material and nb-al superconductive wire - Google Patents
Manufacture of superconductive raw material and nb-al superconductive wireInfo
- Publication number
- JPH06176639A JPH06176639A JP4350503A JP35050392A JPH06176639A JP H06176639 A JPH06176639 A JP H06176639A JP 4350503 A JP4350503 A JP 4350503A JP 35050392 A JP35050392 A JP 35050392A JP H06176639 A JPH06176639 A JP H06176639A
- Authority
- JP
- Japan
- Prior art keywords
- wire
- superconducting
- layer
- core
- primary
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Wire Processing (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、伸線加工時の断線を防
止して長尺細線化を可能とした超電導素材の製造方法、
及びかかる素材からなる臨界電流密度等の超電導特性に
優れるNb−Al系超電導線に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a superconducting material capable of preventing wire breakage during wire drawing and enabling long thin wires,
And a Nb-Al superconducting wire made of such a material, which is excellent in superconducting properties such as critical current density.
【0002】[0002]
【従来の技術】従来、Al又はAl合金からなるAl系コ
アをNb層で被覆した一次素線の束をNb管内に収容後伸
線加工して多芯構造の二次素線としたのち、その二次素
線の束をNb管内に収容して伸線加工し得られた三次素
線を次の素線とする如く、前工程で形成した細線を次工
程の素線に用いる方式にて素線の束をNb管内に収容し
伸線加工する操作を繰り返して一次素線の所定数を多芯
化してなる超電導素材を製造する方法が知られていた。
Nb−Al系超電導線は、かかる超電導素材を加熱処理し
てNb3Al系の超電導相を生成させることにより得られ
る。2. Description of the Related Art Conventionally, a bundle of primary wires made of an Al-based core made of Al or an Al alloy coated with an Nb layer is housed in an Nb tube and then drawn to form a secondary wire having a multi-core structure. The thin wire formed in the previous step is used as the next strand so that the bundle of the secondary strands is housed in the Nb tube and the third strand obtained by wire drawing is used as the next strand. There has been known a method of manufacturing a superconducting material in which a predetermined number of primary strands are multicore by repeating an operation of accommodating a bundle of strands in an Nb tube and performing a wire drawing process.
Nb-Al-based superconducting wire is obtained by forming a Nb 3 Al superconducting phase by heat treatment such superconducting materials.
【0003】前記のAl合金としては、Al又はAl−
(5,7,10)Mg合金、Al−3Ag合金、Al−2C
u合金、Al−1Cu−1Ge合金、Al−1.5Ag−1.
5Ge合金等が用いられる。しかしながら、伸線加工
時、特に二次素線以降の伸線加工時に断線問題が多発す
る問題点があった。As the Al alloy, Al or Al-
(5,7,10) Mg alloy, Al-3Ag alloy, Al-2C
u alloy, Al-1Cu-1Ge alloy, Al-1.5Ag-1.
5Ge alloy or the like is used. However, there has been a problem that a wire disconnection problem frequently occurs during wire drawing, particularly during the wire drawing after the secondary strand.
【0004】[0004]
【発明が解決しようとする課題】前記に鑑みて本発明者
は、Al−Nb合金でコアを形成してなる一次素線の使用
を試みた。しかし加工性に乏しく、より断線問題を生じ
やすいことが判明した。従って本発明は、断線を生じる
ことなく一次素線の多芯化を繰り返して高次の素線を効
率よく得ることができる超電導素材の製造方法、及び臨
界電流密度等の超電導特性に優れるNb−Al系超電導線
の開発を課題とする。In view of the above, the present inventor has attempted to use a primary element wire having a core made of an Al-Nb alloy. However, it has been found that the workability is poor and a disconnection problem is more likely to occur. Therefore, the present invention is a method for producing a superconducting material capable of efficiently obtaining a higher-order element wire by repeating the multicore of the primary element wire without causing a wire break, and Nb- which has excellent superconducting characteristics such as critical current density. The subject is the development of Al-based superconducting wires.
【0005】[0005]
【課題を解決するための手段】本発明は、Nbを合金化
させることなく分散含有させたAl系コアをNb層で被覆
した一次素線の束をNb層による包囲下に伸線加工して
細線とし、その細線を開始素線として前工程で形成した
細線を次工程の素線に用いて素線の束をNb層による包
囲下に伸線加工する操作を繰り返して、前記一次素線を
多芯化した素材を形成することを特徴とする超電導素材
の製造方法、及びかかる超電導素材を加熱処理してNb3
Al系の超電導相を形成させたことを特徴とするNb−A
l系超電導線を提供するものである。According to the present invention, a bundle of primary wires obtained by coating an Al-based core containing Nb in a dispersed state without alloying with Nb is drawn by wire-drawing under the surrounding of the Nb layer. A thin wire is used as a starting wire, and the thin wire formed in the previous step is used as a wire in the next step to repeat the operation of wire-drawing a bundle of wires under the surrounding of the Nb layer to obtain the primary wire. A method for producing a superconducting material, which comprises forming a multi-core material, and heat-treating the superconducting material to produce Nb 3
Nb-A characterized by forming an Al-based superconducting phase
l-type superconducting wire is provided.
【0006】[0006]
【作用】Al又はAl合金中にNbを合金化させることな
く分散含有させたAl系コアを用いる前記の方法によ
り、コアの硬度等の物性をNbのそれに近付けることが
できて加工性を高めることができ伸線加工時における断
線を防止できて効率よく長尺細線化することができる。
そして得られた超電導素材においては、Al系コア中に
分散させたNbも超電導相の形成に寄与し、加熱処理時
に拡散速度の差によるカーケンダルボイドや異相生成に
よる反応拡散阻害も発生しにくく、臨界電流密度等の超
電導特性に優れるNb−Al系超電導線が得られる。By the above-mentioned method using an Al-based core in which Nb is dispersed and contained in Al or an Al alloy without alloying, the physical properties such as hardness of the core can be made close to that of Nb and the workability is enhanced. It is possible to prevent wire breakage during wire drawing and to efficiently make long thin wires.
In the obtained superconducting material, Nb dispersed in the Al-based core also contributes to the formation of the superconducting phase, and Kirkendall voids due to the difference in diffusion rate during the heat treatment and reaction diffusion inhibition due to the formation of different phases are less likely to occur. An Nb-Al based superconducting wire having excellent superconducting properties such as critical current density can be obtained.
【0007】[0007]
【実施例】本発明の製造方法は、Nbを合金化させるこ
となく分散含有させたAl系コアをNb層で被覆した一次
素線の束をNb層による包囲下に伸線加工して細線と
し、その細線を開始素線として前工程で形成した細線を
次工程の素線に用いる方式にて素線の束をNb層による
包囲下に伸線加工する操作を繰り返して、前記一次素線
の所定数を多芯化してなる超電導素材を得るものであ
る。かかる超電導素材の例を図1に示した。1が一次素
線を高次に多芯化した素線、2が最終包囲層からなるN
b層である。EXAMPLE A manufacturing method of the present invention is to draw a bundle of primary wires in which an Al-based core in which Nb is dispersed and contained without alloying with an Nb layer is drawn under the surrounding of the Nb layer to form a thin wire. , The thin wire formed in the previous step is used as the starting wire for the thin wire as a starting wire, and the operation of drawing a bundle of wire wires under the surrounding of the Nb layer is repeated by the method of using the thin wire It is intended to obtain a superconducting material having a predetermined number of multicores. An example of such a superconducting material is shown in FIG. 1 is a wire obtained by increasing the number of cores of a primary wire to a higher order, and 2 is N composed of a final envelope layer.
It is layer b.
【0008】本発明において用いるAl系コアは、Al又
はAl合金中に適宜な形態のNbを合金化させることなく
分散させたものである。Nbの分散は、Al系コアの引張
強度ないし硬度を向上させてそれを包囲するNb層、ひ
いては被伸線処理物の各構成層の伸線加工性を可及的に
均等化することを目的とする。図2〜図4に本発明で用
いるAl系コア3を例示した。図2のものは粉末状のNb
31を分散させたものであり、図3のものは短繊維状の
Nb32を分散させたものである。図4のものは長繊維
状のNb33を分散させたものである。The Al-based core used in the present invention is obtained by dispersing Nb in an appropriate form in Al or an Al alloy without alloying it. Dispersion of Nb is intended to improve the tensile strength or hardness of the Al-based core and to make the wire-drawing workability of the Nb layer surrounding the Al-based core, and by extension, the respective constituent layers of the object to be drawn, as uniform as possible. And 2 to 4 illustrate the Al-based core 3 used in the present invention. Fig. 2 shows Nb in powder form
31 is dispersed, and FIG. 3 is one in which short fiber Nb 32 is dispersed. In FIG. 4, long fiber Nb33 is dispersed.
【0009】Al系コアの形成は、例えば溶融法や粉末
冶金法等の適宜な複合化法にて行うことができる。その
場合、Alと分散Nbとの界面で合金化しないように複合
化させることが必要である。Alと分散Nbの合金化は、
強度は向上するものの伸線加工性が低下し断線しやすく
なる。前記の複合化に際しては、Nbを可及的に均質に
分散させることが強度の向上の点より好ましい。The Al-based core can be formed by an appropriate compounding method such as a melting method or a powder metallurgy method. In that case, it is necessary to form a composite so as not to alloy at the interface between Al and dispersed Nb. The alloying of Al and dispersed Nb is
Although the strength is improved, the wire drawing workability is lowered and the wire is easily broken. At the time of forming the composite, it is preferable to disperse Nb as homogeneously as possible from the viewpoint of improving the strength.
【0010】ちなみに溶融法によるAl系コアの形成
は、例えば融点〜900℃、就中800〜850℃の溶
融Al又は溶融Al合金に分散用のNbを添加して1〜1
0分間撹拌混合し、それを鋳形凝固させて芯材とする方
法などにより行うことができる。また粉末冶金法による
Al系コアの形成は、例えばAl又はAl合金とNbの混合
粉末を芯材に成形し、それを融点〜900℃、就中80
0〜850℃で加熱処理する方法などにより行うことが
できる。Incidentally, the formation of the Al-based core by the melting method is performed by adding Nb for dispersion to molten Al or a molten Al alloy having a melting point of 900 ° C. to 800 ° C. to 850 ° C.
It can be carried out by a method of stirring and mixing for 0 minutes, and solidifying it by casting to form a core material. Further, the Al-based core is formed by the powder metallurgy method, for example, a mixed powder of Al or Al alloy and Nb is molded into a core material, and the core material is melted at a temperature of 900 ° C., especially 80 ° C.
It can be performed by a method such as heat treatment at 0 to 850 ° C.
【0011】前記のAl合金としては、例えばAl−Mg
合金、Al−Ag合金、Al−Cu合金、Al−Cu−Ge合
金、Al−Ag−Ge合金などの適宜なものを用いてよい
が、Al合金の場合には得られるNb−Al系超電導線の
臨界電流密度等の超電導特性の低下原因となる、超電導
相の形成に寄与しない少量の合金成分を含むこと、拡散
速度の差によりカーケンダルボイドが発生しやすいこ
と、異相の生成により反応拡散が阻害されやすいことな
どから本発明においてはAl系コアの形成にはAlを用い
ることが好ましい。Examples of the Al alloy include Al-Mg
Alloys, Al-Ag alloys, Al-Cu alloys, Al-Cu-Ge alloys, Al-Ag-Ge alloys and the like may be used as appropriate, but in the case of Al alloys, the obtained Nb-Al-based superconducting wire Contains a small amount of alloying components that do not contribute to the formation of the superconducting phase, which causes the deterioration of superconducting properties such as critical current density, the tendency to generate Kirkendall voids due to the difference in diffusion rate, and the reaction diffusion due to the formation of a different phase. In the present invention, Al is preferably used for forming the Al-based core because it is easily inhibited.
【0012】Al系コアにおけるNbの分散量は、目的と
する強度等の物性に応じて適宜に決定することができ
る。一般には、Al又はAl合金100重量部あたり1〜
30重量部、就中3〜15重量部のNbが用いられる。
分散用のNbの形態は任意であるが、小サイズであるほ
ど寸法効果が発揮されて強度の向上の点より好ましい。
分散用のNbは、Al系母材との親和性を高めるため例え
ばCVD方式、PVD方式、メッキ(電解、無電解)方
式、溶射方式等の適宜な方式でAlによりコーティング
されていてもよい。The amount of Nb dispersed in the Al-based core can be appropriately determined according to the desired physical properties such as strength. Generally, 1 to 100 parts by weight of Al or Al alloy
30 parts by weight, especially 3 to 15 parts by weight of Nb are used.
The form of Nb for dispersion is arbitrary, but a smaller size is preferable from the viewpoint of exerting a dimensional effect and improving the strength.
The Nb for dispersion may be coated with Al by an appropriate method such as a CVD method, a PVD method, a plating (electrolytic or electroless) method, and a thermal spraying method in order to enhance the affinity with the Al base material.
【0013】本発明における開始素線は、図5に例示の
如くNb分散のAl系コア41をNb層42で被覆した一
次素線4の束をNb層51による包囲下に伸線加工して
細線5としたものである。その開始素線5(二次素線)
は、例えば一次素線4の多数本をNb管内に収容して伸
線加工する方式などにより得ることができる。一次素線
4、すなわちAl系コア41をNb層42で被覆した素線
は、例えばAl系コアをNb管内に装填して伸線処理する
方式などにより得ることができる。The starting strand in the present invention is formed by wire-drawing a bundle of primary strands 4 in which an Nb-dispersed Al-based core 41 is covered with an Nb layer 42 as shown in FIG. It is a thin wire 5. The starting strand 5 (secondary strand)
Can be obtained by, for example, a method in which a large number of primary wires 4 are housed in a Nb tube and wire drawing is performed. The primary strand 4, that is, the strand in which the Al-based core 41 is covered with the Nb layer 42 can be obtained by, for example, a method in which the Al-based core is loaded in the Nb tube and a wire drawing treatment is performed.
【0014】伸線加工は適宜な方式で行ってよいが、一
般には加熱によるNbAl3やNb2Al等の加工性や超電導
特性等を阻害する物質の生成を防止できる冷間伸線方式
が好ましい。冷間伸線方式としては、ダイス方式や、ス
エージング方式、ホージング方式等の冷間鍛造方式、そ
れらを併用する方式などがあげられる。The wire drawing may be carried out by an appropriate method, but in general, the cold wire drawing method is preferable because it can prevent the formation of a substance such as NbAl 3 or Nb 2 Al which inhibits the workability and the superconducting property by heating. . Examples of the cold wire drawing method include a die method, a cold forging method such as a swaging method and a hosing method, and a method using them in combination.
【0015】伸線加工では素線が複数のダイスや冷間鍛
造機等を介して順次細くされるが、その際の一加工あた
りにおける減面率は適宜に決定してよい。一般的には5
〜25%の減面率とされる。細線化の程度も適宜に決定
してよいが、一般には0.1〜2mmとされ、これが次の
伸線加工用の素線として、あるいは超電導素材としてN
b−Al系超電導線の形成に供される。In the wire drawing process, the wire is successively thinned through a plurality of dies, a cold forging machine, etc., and the area reduction rate per one process may be appropriately determined. Generally 5
The area reduction rate is -25%. Although the degree of thinning may be appropriately determined, it is generally set to 0.1 to 2 mm, which is used as a wire for the next wire drawing or as a superconducting material.
It is used to form b-Al superconducting wires.
【0016】図6に伸線加工の工程例を示した。これに
よれば、伸線対象の素材7が送出ロール6より供給され
つつダイス8,81,82,83を介し細線化されて細
線71,72,73へと順次細くされ、その細線73が
鍛造機9を介し冷間鍛造されて素線10とされ巻取ロー
ル11に巻取られる。巻取られた素線10は、次の伸線
加工用の素線として、あるいは所定数の一次素線の多芯
化が達成されている場合には超電導素材としてNb−Al
系超電導線の形成に供される。FIG. 6 shows an example of the wire drawing process. According to this, the material 7 to be drawn is thinned through the dies 8, 81, 82, 83 while being supplied from the delivery roll 6, and is gradually thinned into fine wires 71, 72, 73, and the fine wire 73 is forged. The wire is cold forged through the machine 9 to form the wire 10 and is wound on the winding roll 11. The wound wire 10 is Nb-Al as a wire for the next wire drawing, or as a superconducting material when a predetermined number of primary wires have been multicore.
Used to form superconducting wires.
【0017】本発明においては前記の開始素線の形成に
準じ、前工程で形成した細線を次工程の素線に用いて素
線の束をNb層で包囲して伸線加工する操作を必要回数
繰り返して図7に例示の如き、前工程素線の細線化物1
2をNb層13内に多芯状態で有するより高次の素線1
4を得、一次素線が所定数多芯化した目的の超電導素材
を形成する。In the present invention, in accordance with the formation of the starting strands described above, it is necessary to use the thin wires formed in the previous step as the strands in the next step and surround the bundle of strands with the Nb layer to perform wire drawing. Repeated a number of times, as shown in FIG.
Higher order strand 1 having 2 in the Nb layer 13 in a multi-core state
4 is obtained to form a desired superconducting material in which a predetermined number of primary strands have a multicore structure.
【0018】前記において三次以降の高次素線の形成に
際しては、素線の束をNb管に代えてNb箔で包囲しサポ
ート管内に収容して伸線加工を施し、形成素線より外層
のサポート層を除去して次の素線とすることもできる。
この場合には、三次以降の高次素線の外層を占めるNb
層を薄肉化でき、超電導相の形成に寄与しないNb層部
分を排除できて超電導相の占有面積が大きく、臨界電流
密度等の超電導特性に優れるNb−Al系超電導線を得る
ことができる。In forming the higher-order strands of the third or higher order, the bundle of strands is surrounded by Nb foil instead of the Nb pipe, housed in the support pipe, and subjected to wire drawing to form a layer outside the formed strand. The support layer can be removed to obtain the next strand.
In this case, Nb occupies the outer layer of higher-order strands after the third
The layer can be thinned, the Nb layer portion that does not contribute to the formation of the superconducting phase can be eliminated, the superconducting phase occupies a large area, and an Nb-Al-based superconducting wire having excellent superconducting properties such as critical current density can be obtained.
【0019】また前記のNb箔に加えてAl系箔も包囲す
ることができる。この場合にはさらに、Alやその合金
からなるAl系箔に基づく層も超電導相の形成に寄与し
て超電導線の断面積に占める超電導相比を容易に制御す
ることもできる。なお前記のNb箔やAl系箔に代えて、
Nb粉末とAl系粉末の混合粉末をNb管と素線の間隙に
充填する方式によっても超電導相の占有面積の増大化を
はかることができる。In addition to the Nb foil described above, an Al-based foil can also be enclosed. In this case, the Al-based foil layer made of Al or its alloy also contributes to the formation of the superconducting phase, and the superconducting phase ratio in the cross-sectional area of the superconducting wire can be easily controlled. In addition, instead of the Nb foil or Al-based foil described above,
The area occupied by the superconducting phase can also be increased by filling the gap between the Nb tube and the element wire with a mixed powder of Nb powder and Al-based powder.
【0020】前記の箔包囲方式で用いるサポート管は、
伸線加工を素線や包囲箔の破損なく効率的に行うための
ものであり従って銅や銅合金等の、伸線加工に耐え、か
つ伸線加工後に硝酸等の薬剤による溶解方式やエッチン
グ方式などで適宜に除去できるものが用いられる。なお
かかるサポート管は、上記のNb管を用いる方式におい
て破損防止等を目的にNb管の外側に設けて伸線加工に
供することもできる。The support tube used in the foil enclosing method is
It is for efficiently performing wire drawing without damaging the wires or surrounding foil, and therefore it can withstand wire drawing of copper, copper alloys, etc., and dissolves or etches with a chemical such as nitric acid after wire drawing. What can be removed appropriately is used. The support pipe may be provided outside the Nb pipe for wire drawing for the purpose of preventing damage in the system using the Nb pipe.
【0021】本発明において超電導素材の断面形状や
径、あるいは芯数等については任意に決定でき、従って
前記操作の繰り返し回数も任意である。一般には、Nb
−Al系超電導相でないマトリクス部分の不足による機
械的強度や安定性の低下防止又は交流損失の点より、1
0〜300本程度の素線を単位として順次多芯化した構
造とされ、断面におけるAl系/Nb面積比が0.2〜2
0%/99.8〜80%の二次素線を10芯〜1万芯、
直径0.1〜10mm、断面積に占める二次素線部分/そ
の他の部分の面積比1/20〜20/1程度のものから
なる超電導素材とされる。In the present invention, the cross-sectional shape and diameter of the superconducting material, the number of cores, etc. can be arbitrarily determined, and therefore the number of times of repeating the above operation is also arbitrary. Generally, Nb
-From the viewpoint of prevention of deterioration of mechanical strength and stability due to lack of matrix portion that is not an Al-based superconducting phase, or AC loss, 1
The structure is such that about 0 to 300 strands are sequentially made multi-core, and the Al system / Nb area ratio in the cross section is 0.2 to 2
10% to 10,000 cores of 0% / 99.8-80% secondary strands,
It is a superconducting material having a diameter of 0.1 to 10 mm and an area ratio of the secondary strand portion / other portion of the cross-sectional area of about 1/20 to 20/1.
【0022】Nb−Al系超電導線は、超電導素材を必要
に応じテープ状等の目的とする断面形状に加工後、それ
を加熱処理してNb3Al系超電導相を生成させることに
より得ることができる。加熱条件は、超電導素材におけ
る二次素線の太さやNb層の厚さなどにより適宜に決定
されるが、一般には700〜1600℃の温度範囲で加
熱される。加熱処理により、Nb層とAl系層の隣接部分
の全部又は一部が反応してNb3Al系超電導相が生成
し、Nb−Al系超電導線が形成される。The Nb-Al-based superconducting wire can be obtained by processing the superconducting material into a desired cross-sectional shape such as a tape, if necessary, and then heat-treating it to generate an Nb 3 Al-based superconducting phase. it can. The heating conditions are appropriately determined depending on the thickness of the secondary element wire and the thickness of the Nb layer in the superconducting material, but generally heating is performed in the temperature range of 700 to 1600 ° C. By the heat treatment, Nb 3 Al superconducting phase is generated all or part of the adjacent portion of the Nb layer and an Al-based layer reacts, Nb-Al-based superconducting wire is formed.
【0023】加熱処理で生成するNb3Al系超電導相は
通例、含有Al成分の4倍程度である。従って超電導素
材の断面積に占めるAl系部分を調節することにより、
得られる超電導線におけるNb3Al系超電導相の含有割
合を制御することができる。ちなみに超電導素材がその
断面積にAl系部分を2〜20%占める場合、それに対
応してNb3Al系超電導相が8〜80%の範囲で断面積
を占める超電導線が得られる。The Nb 3 Al type superconducting phase produced by the heat treatment is usually about 4 times as much as the contained Al component. Therefore, by adjusting the Al-based part in the cross-sectional area of the superconducting material,
The content ratio of the Nb 3 Al-based superconducting phase in the obtained superconducting wire can be controlled. Incidentally, when the superconducting material occupies 2 to 20% of the Al-based portion in its cross-sectional area, a superconducting wire in which the Nb 3 Al-based superconducting phase occupies the cross-sectional area in the range of 8 to 80% is obtained.
【0024】実施例1 100重量部のAlを820℃で加熱溶融させ、それに
平均粒径500μmのNb粉末を添加し、5分間撹拌して
均質分散液としたのちNb管内に注入し、冷却させて直
径0.3mmのAl系コアを、肉厚0.15mmのNb層が被
覆する一次素線を得た。Example 1 100 parts by weight of Al was heated and melted at 820 ° C., Nb powder having an average particle size of 500 μm was added, and the mixture was stirred for 5 minutes to form a homogeneous dispersion, which was then poured into a Nb tube and allowed to cool. As a result, a primary wire was obtained in which an Al-based core having a diameter of 0.3 mm was covered with a Nb layer having a thickness of 0.15 mm.
【0025】ついで前記の一次素線300本を直径15
mm、肉厚1mmのNb管内に収容してNb管内の充填率が1
00%となるよう冷間鍛造処理したのち(直径8mm)、
1ダイスあたりの減面率10%で16個のダイスを介し
伸線加工して直径約1.3mmの二次素線を得た。Then, the above-mentioned 300 primary strands were
The filling rate in the Nb tube is 1 when it is housed in the Nb tube with a thickness of 1 mm and a wall thickness of 1 mm.
After cold forging treatment (diameter 8mm) so that it becomes 00%,
Wire drawing was performed through 16 dies with a surface reduction rate of 10% per die to obtain a secondary strand having a diameter of about 1.3 mm.
【0026】次に前記の二次素線を開始素線として前工
程で形成した細線を次工程の素線に用いて、前記二次素
線の形成方法に準じた操作を3回繰り返し三次素線、四
次素線、五次素線を順次えて一次素線の多芯化をはかり
目的の超電導素材(五次素線)を得た。従って二次素線
形成後におけるダイス通過回数は48回であり、得られ
た超電導素材の直径は約1.3mmである。前記において
は目的物の超電導素材を得るまでに断線は一度も生じな
かった。Next, using the thin wire formed in the previous step as the starting wire with the secondary wire as the starting wire, the operation according to the method for forming the secondary wire is repeated three times and the tertiary wire is used. The target superconducting material (fifth element wire) was obtained by making the primary wire multicore by sequentially connecting the wire, the fourth element wire, and the fifth element wire. Therefore, the number of passing through the die after forming the secondary strands was 48, and the diameter of the obtained superconducting material was about 1.3 mm. In the above, disconnection never occurred until the desired superconducting material was obtained.
【0027】比較例1 Al系コアに代えてNbを含有しないAlコアとしたほか
は実施例1に準じて超電導素材を得た。この場合には、
三次素線を形成する際に5回、四次素線を形成する際に
8回、目的物の超電導素材を得る際に5回の断線を生じ
た。Comparative Example 1 A superconducting material was obtained in the same manner as in Example 1 except that an Al core containing no Nb was used instead of the Al core. In this case,
The disconnection occurred 5 times when forming the tertiary element wire, 8 times when forming the quaternary element wire, and 5 times when obtaining the target superconducting material.
【0028】比較例2 Alコアに代えてNbを含有しないAl−2Cu合金コアと
したほかは比較例1に準じて超電導素材を得た。この場
合には、三次素線を形成する際に1回、四次素線を形成
する際に5回、目的物の超電導素材を得る際に3回の断
線を生じた。Comparative Example 2 A superconducting material was obtained according to Comparative Example 1 except that an Al-2Cu alloy core containing no Nb was used instead of the Al core. In this case, disconnection occurred once when forming the tertiary element wire, five times when forming the quaternary element wire, and three times when obtaining the target superconducting material.
【0029】[0029]
【発明の効果】本発明によれば、Nb分散のAl系コアを
用いたので断線を防止しつつ、一次素線の多芯化を繰り
返して高次の素線の長尺細線体を効率よく容易に得るこ
とができる。また加工性に優れて多芯化時に一次素線か
らなるフィラメントの断線も抑制でき、超電導フィラメ
ントを長さ方向に連続して均一性よく形成できて臨界電
流密度に優れるNb−Al系超電導線を得ることができ
る。According to the present invention, since the Nb-dispersed Al-based core is used, it is possible to efficiently cut a long thin wire of a higher order wire by repeating the multi-core of the primary wire while preventing the wire breakage. Can be easily obtained. In addition, the Nb-Al superconducting wire, which has excellent workability and can suppress the breakage of the filament composed of primary strands when it is multicore, can form the superconducting filament continuously in the length direction with good uniformity and has an excellent critical current density, Obtainable.
【図1】超電導素材の構造を例示した説明断面図FIG. 1 is an explanatory sectional view illustrating the structure of a superconducting material.
【図2】Al系コアの構造を例示した斜視説明図FIG. 2 is a perspective explanatory view illustrating the structure of an Al-based core.
【図3】他のAl系コアの構造を例示した斜視説明図FIG. 3 is a perspective explanatory view illustrating the structure of another Al-based core.
【図4】さらに他のAl系コアの構造を例示した斜視説
明図FIG. 4 is a perspective explanatory view illustrating the structure of yet another Al-based core.
【図5】二次素線の構造を例示した説明断面図FIG. 5 is an explanatory cross-sectional view illustrating the structure of a secondary wire.
【図6】伸線工程を例示した説明断面図FIG. 6 is an explanatory sectional view illustrating a wire drawing process.
【図7】高次に多芯化した素線の説明断面図FIG. 7 is an explanatory cross-sectional view of a high-order and multi-core strand.
1:一次素線を高次に多芯化した素線 2:最終包囲層からなるNb層 3:Al系コア 31,32,33:分散させたNb 4:一次素線 41:Al系コア 42:Nb層 5:開始素線 14:高次に多芯化した素線 1: Elementary wire in which the primary elemental wire is made higher in number of cores 2: Nb layer consisting of the final surrounding layer 3: Al-based core 31, 32, 33: Dispersed Nb 4: Primary elemental wire 41: Al-based core 42 : Nb layer 5: Starting wire 14: Higher-order multi-core wire
Claims (2)
せたAl系コアをNb層で被覆した一次素線の束をNb層
による包囲下に伸線加工して細線とし、その細線を開始
素線として前工程で形成した細線を次工程の素線に用い
て素線の束をNb層による包囲下に伸線加工する操作を
繰り返して、前記一次素線を多芯化した素材を形成する
ことを特徴とする超電導素材の製造方法。1. A bundle of primary wires in which an Al-based core in which Nb is dispersed and contained without alloying is coated with an Nb layer is drawn into a thin wire by being surrounded by the Nb layer, and the thin wire is a starting element. The thin wire formed in the previous step is used as the wire for the wire in the next step, and the operation of drawing a bundle of wire wires under the surrounding of the Nb layer is repeated to form a material in which the primary wire has multiple cores. A method for manufacturing a superconducting material, which is characterized in that
してNb3Al系の超電導相を形成させたことを特徴とす
るNb−Al系超電導線。2. A Nb—Al-based superconducting wire, characterized in that the superconducting material according to claim 1 is heat-treated to form an Nb 3 Al-based superconducting phase.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4350503A JPH06176639A (en) | 1992-12-03 | 1992-12-03 | Manufacture of superconductive raw material and nb-al superconductive wire |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4350503A JPH06176639A (en) | 1992-12-03 | 1992-12-03 | Manufacture of superconductive raw material and nb-al superconductive wire |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06176639A true JPH06176639A (en) | 1994-06-24 |
Family
ID=18410935
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4350503A Pending JPH06176639A (en) | 1992-12-03 | 1992-12-03 | Manufacture of superconductive raw material and nb-al superconductive wire |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06176639A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007132713A1 (en) * | 2006-05-12 | 2007-11-22 | National Institute For Materials Science | Nb3Al SUPERCONDUCTING WIRE AND METHOD FOR PRODUCING THE SAME |
-
1992
- 1992-12-03 JP JP4350503A patent/JPH06176639A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007132713A1 (en) * | 2006-05-12 | 2007-11-22 | National Institute For Materials Science | Nb3Al SUPERCONDUCTING WIRE AND METHOD FOR PRODUCING THE SAME |
JP5207304B2 (en) * | 2006-05-12 | 2013-06-12 | 独立行政法人物質・材料研究機構 | Nb3Al superconducting wire manufacturing method |
JP2013140801A (en) * | 2006-05-12 | 2013-07-18 | National Institute For Materials Science | Nb3Al SUPERCONDUCTING WIRE AND MANUFACTURING METHOD THEREFOR |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2002121629A (en) | Super-extra-fine copper-alloy wire, copper-alloy stranded-wire conductor, extra-fine coaxial cable, and method for manufacturing super-extra-fine copper-alloy wire | |
KR20060100421A (en) | Method for producing (nb, ti)3sn wire by use of ti source rods | |
GB1561751A (en) | Superconductor composite and method of making the same | |
JPH06176639A (en) | Manufacture of superconductive raw material and nb-al superconductive wire | |
WO2017141410A1 (en) | Superconductive wire material precursor and superconductive wire material production method | |
JP4742843B2 (en) | Core wire for Nb3Sn superconducting wire, Nb3Sn superconducting wire, and manufacturing method thereof | |
JP4687438B2 (en) | Core wire for Nb3Sn superconducting wire, Nb3Sn superconducting wire, and manufacturing method thereof | |
JPH06176640A (en) | Manufacture of superconductive raw material and nb-al superconductive wire | |
JP3866969B2 (en) | Manufacturing method of Nb (3) Sn superconducting wire | |
JPH0636626A (en) | Manufacture of superconducting material | |
JPH11353961A (en) | Precursor wire material of nb3sn compound superconductor and its manufacture, manufacture of nb3sn compound superconductor, and manufacture of nb3sn compound superconducting coil | |
JPS62267050A (en) | Production of in-situ rod for fiber dispersion type superconducting wire | |
JPH06176638A (en) | Manufacture of superconductive raw material | |
JPH06275145A (en) | Nbti superconducting wire and manufacture thereof | |
JP3265618B2 (en) | Composite billet for compound superconducting wire and method for producing compound superconducting wire | |
JPS6347086B2 (en) | ||
JPH0676663A (en) | Manufacture of superconducting material and nb-al superconducting wire | |
JPS62270754A (en) | Manufacture of nb-ti alloy superconducting wire rod and nb-ti alloy superconducting wire rod | |
JP3780332B2 (en) | Compounding method of Nb and Al eutectic alloy | |
JPS6037568B2 (en) | Method for manufacturing Al-stabilized superconducting cable | |
JP2006185861A (en) | Nb3Sn SUPERCONDUCTING WIRE ROD AND ITS MANUFACTURING METHOD | |
JPH03145015A (en) | Manufacture of copper-stabilized nb-ti superconductive wire | |
JPH0419919A (en) | Manufacture of nb3sn superconductor wire | |
JPH06330210A (en) | Copper alloy wire | |
JP2003223823A (en) | Nb3Al-BASED COMPOUND SUPERCONDUCTING WIRE AND MANUFACTURING METHOD THEREFOR |