JPH0322004B2 - - Google Patents
Info
- Publication number
- JPH0322004B2 JPH0322004B2 JP55144715A JP14471580A JPH0322004B2 JP H0322004 B2 JPH0322004 B2 JP H0322004B2 JP 55144715 A JP55144715 A JP 55144715A JP 14471580 A JP14471580 A JP 14471580A JP H0322004 B2 JPH0322004 B2 JP H0322004B2
- Authority
- JP
- Japan
- Prior art keywords
- wire
- segments
- sncu
- cross
- wires
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910008433 SnCU Inorganic materials 0.000 claims description 16
- 239000010949 copper Substances 0.000 claims description 16
- 239000000956 alloy Substances 0.000 claims description 11
- 229910045601 alloy Inorganic materials 0.000 claims description 11
- 238000004519 manufacturing process Methods 0.000 claims description 9
- 229910052802 copper Inorganic materials 0.000 claims description 8
- 238000000034 method Methods 0.000 claims description 8
- 229910052782 aluminium Inorganic materials 0.000 claims description 7
- 230000009467 reduction Effects 0.000 claims description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 6
- 150000001875 compounds Chemical class 0.000 claims description 6
- 238000010438 heat treatment Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 4
- 230000000087 stabilizing effect Effects 0.000 description 4
- 239000002887 superconductor Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 229910020888 Sn-Cu Inorganic materials 0.000 description 1
- 229910019204 Sn—Cu Inorganic materials 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000011946 reduction process Methods 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
- 238000005491 wire drawing Methods 0.000 description 1
Landscapes
- Superconductors And Manufacturing Methods Therefor (AREA)
Description
【発明の詳細な説明】
本発明は強磁場発生装置に用いられるNb3Sn超
電導体よりなる極細多芯化合物超電導線の製造方
法に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing an ultrafine multicore compound superconducting wire made of Nb 3 Sn superconductor used in a strong magnetic field generator.
Nb3Sn化合物超電導材料は臨界温度、臨界磁
場、臨界電流などの超電導特性が優れていること
から、高磁界発生用マグネツト巻線として実用化
されている。高磁界発生用のマグネツトを作製す
る際、注意すべき点の1つとしてフラツクスジヤ
ンプの発生により材料の臨界電流値付近でマグネ
ツトを安定に作動させることが困難となることを
改善する必要がある。その方法として極細多芯線
化する方法が行なわれている。 Nb 3 Sn compound superconducting materials have excellent superconducting properties such as critical temperature, critical magnetic field, and critical current, and have been put into practical use as magnet windings for generating high magnetic fields. When producing a magnet for generating a high magnetic field, one of the things to keep in mind is that it is difficult to operate the magnet stably near the material's critical current value due to flux jumps, which needs to be improved. . As a method for this purpose, a method of forming ultra-fine multifilamentary wires has been used.
従来、行なわれている極細多芯Nb3Sn系複合超
電導線の製造方法としては、例えば第1図に一例
を示すような方法がある。この方法はNb線1と
SnCu合金線2を複数本づつ撚り合せるか、束ね
たものを安定化Cu又はAlパイプ3に嵌合して減
面加工した後、熱処理してNb3Sn層を生成せしめ
る方法である。この製造方法においてSnCu合金
線もしくは棒がCu1〜40重量%を含む場合には優
れたNb3Sn超電導線が得られる特長があるが第2
図に示す如く、導体の構成に用いられているCu、
Nb、SnCuの間の機械的強度、特に加工硬化特性
が大きく異なるため、ある程度までの減面加工は
可能であるが加工度を大きくすると断線してしま
う。さらに、断線の原因を詳しく検討してみると
安定化銅又はアルミパイプ中に嵌合した時点での
配列が長さ方向に一定でないことが断線の原因で
あることを見出した。すなわち、機械的強度の差
は嵌合時にNb線が容易に軟らかいSnCu合金線と
交差することを許し欠陥の発生や断線の原因とな
る。 As a conventional method for manufacturing an ultrafine multifilamentary Nb 3 Sn composite superconducting wire, there is a method as shown in FIG. 1, for example. This method uses Nb wire 1 and
In this method, a plurality of SnCu alloy wires 2 are twisted together or bundled together, fitted into a stabilized Cu or Al pipe 3, subjected to area reduction processing, and then heat treated to generate a Nb 3 Sn layer. This manufacturing method has the advantage that when the SnCu alloy wire or rod contains 1 to 40% by weight of Cu, an excellent Nb 3 Sn superconducting wire can be obtained.
As shown in the figure, Cu used in the structure of the conductor,
Since the mechanical strength, especially the work hardening properties, is significantly different between Nb and SnCu, it is possible to reduce the area to a certain extent, but if the degree of processing is increased, the wire will break. Further, when the cause of wire breakage was investigated in detail, it was found that the cause of wire breakage was that the arrangement at the time of fitting into the stabilized copper or aluminum pipe was not constant in the length direction. That is, the difference in mechanical strength allows the Nb wire to easily intersect with the soft SnCu alloy wire during fitting, causing defects and wire breakage.
本発明はこれらの欠点を解消するために成され
たものであつて、複数本のSnCu線と複数本のNb
線を密に束ね、あるいは撚り合せて引伸された線
材に熱処理を施してNb3Sn化合物層を生成せしめ
て成るNb3Sn超電導線の製造方法において、まず
1本のSnCu線のまわりにほぼ同じサイズの6本
のNb線が配置されたセグメントを作成し、これ
を束ねあるいは撚り合せてあることを特徴とする
多芯Nb3Sn超電導線の製造方法であり、かつ、1
つのセグメントが束ねられる前に引伸された断面
減少率が、束ねられて後Nb3Snが生成されるま
で、引伸加工された断面減少率よりも大なること
を特徴とする多芯Nb3Sn超電導線の製造方法であ
る。 The present invention was made in order to eliminate these drawbacks, and is intended to solve these drawbacks.
In the manufacturing method of Nb 3 Sn superconducting wire, which consists of tightly bundling or twisting wires and heat-treating the drawn wire to generate an Nb 3 Sn compound layer, first, approximately the same layer is formed around one SnCu wire. 1. A method for producing a multicore Nb 3 Sn superconducting wire, characterized in that a segment in which six Nb wires of the same size are arranged is created, and the segments are bundled or twisted together, and 1.
A multi-filamentary Nb 3 Sn superconductor characterized in that the cross-sectional reduction rate of the two segments stretched before they are bundled is greater than the cross-sectional reduction ratio of the stretched segments until Nb 3 Sn is produced after the two segments are bundled. This is a method of manufacturing wire.
本発明の目的は性能の良い多芯Nb3Sn超電導線
を断線することなく、又、高度の嵌合のスキルを
要することなく容易に工業的に安価に製造するこ
とである。 An object of the present invention is to easily produce a multi-core Nb 3 Sn superconducting wire with good performance at low cost without causing wire breakage or requiring advanced fitting skills.
すなわち、1本のSnCu合金線のまわりにほぼ
同じサイズの6本のNb線を配置しこれを引伸す
ることにより容易に第3図に示す様な単芯Nb被
覆SnCu合金線のセグメントが効果なNb管を使用
することなく得られる。Nb金属は表面を酸洗等
により清浄にして第3図の如く引伸加工すると
Nb/Nbの界面が非常に密着しやすい性質を利用
して高価なNb管の代わりにNb棒を使用すること
が可能になつた。さらにSnCu合金線はNbによつ
て囲まれているためこのセグメントを束ねる時に
は同じ機械的強度をもつセグメント同志を束ねる
ことになるため、安定化銅パイプ、又はアルミパ
イプ3中に嵌合した時点での配列が長さ方向に均
一となり引伸加工時に断線することがない。 In other words, by placing six Nb wires of approximately the same size around one SnCu alloy wire and stretching them, a segment of single-core Nb-coated SnCu alloy wire as shown in Figure 3 can be easily created. Obtained without using Nb tubes. When the surface of Nb metal is cleaned by pickling, etc., and enlarged as shown in Figure 3,
Taking advantage of the fact that the Nb/Nb interface is very likely to adhere, it has become possible to use Nb rods instead of expensive Nb tubes. Furthermore, since the SnCu alloy wire is surrounded by Nb, when these segments are bundled, segments with the same mechanical strength are bundled together, so when fitted into the stabilized copper pipe or aluminum pipe 3, The arrangement of wires is uniform in the length direction, and there is no disconnection during stretching.
また第3図にみられる様にセグメントの状態に
おいては対称性が非常によいため第2図に示した
機械的強度の差にかかわらず、伸線加工限界を広
げることができる。従つて1つのセグメントが束
ねられる前に引伸された断面減少率が、安定化銅
あるいはアルミパイプ中に束ねられて嵌合されて
のちNb3Sn生成されるまでの断面減少率よりも大
きくとることにより断線なく品質の良い多芯
Nb3Sn超電導製造し得る。 Furthermore, as shown in FIG. 3, the symmetry of the segments is very good, so that the limits of wire drawing can be expanded regardless of the difference in mechanical strength shown in FIG. Therefore, the cross-sectional reduction rate by which one segment is stretched before it is bundled must be greater than the cross-sectional reduction rate after it is bundled and fitted into a stabilized copper or aluminum pipe until Nb 3 Sn is generated. High quality multi-core with no disconnection
Nb 3 Sn superconductor can be manufactured.
本発明においてSnCu合金線はCu1〜40重量%
を含む合金であることが生成されるNb3Snの性能
の点から望ましく、またSnCu合金と束ねられる
Nb線は900℃以上で1時間以上の熱処理して軟化
されているものが望ましい。Cuの割合が1%未
満では、熱処理においてNbとSnの反応が800℃
以下では進みにくいため、熱処理に長い時間を必
要とし、そのためNb3Sn化合物の臨界電流密度が
低くなつてしまうので、反応の触媒としてCuが
1%以上必要であり、又40%を越えると、Nb3Sn
生成に必要なSnが足りず、熱処理においてある
程度Nb3Sn層が生成するとそれ以上反応が進まな
くなり、導体断面に占めるNb3Sn化合物の占積率
が小さくなるので、Sn中のCuの割合は1〜40%
が適当で、この範囲の成分のSn−Cu合金とNbの
反応により、高い電流密度をもつた厚いNb3Sn層
が得られる。 In the present invention, the SnCu alloy wire has a Cu content of 1 to 40% by weight.
It is desirable from the performance point of view of the produced Nb 3 Sn to be an alloy containing
It is desirable that the Nb wire be softened by heat treatment at 900°C or higher for 1 hour or more. When the proportion of Cu is less than 1%, the reaction between Nb and Sn occurs at 800℃ during heat treatment.
If Cu is less than 1%, the heat treatment will take a long time, and the critical current density of the Nb 3 Sn compound will be low. Nb 3 Sn
When the Sn necessary for formation is insufficient and a certain amount of Nb 3 Sn layer is formed during heat treatment, the reaction no longer progresses and the space factor of the Nb 3 Sn compound in the conductor cross section becomes small, so the proportion of Cu in Sn is 1-40%
is appropriate, and a thick Nb 3 Sn layer with high current density can be obtained by reaction of Nb with a Sn-Cu alloy with a composition in this range.
また、セグメントを束ねて安定化銅又はアルミ
パイプ中に嵌合して引伸する時、セグメントの束
と安定化パイプの間に熱処理の拡散障壁として
Nb又はTaを配することは何ら差つかえない。 Also, when the segments are bundled and stretched into a stabilized copper or aluminum pipe, it can be used as a diffusion barrier during heat treatment between the segment bundle and the stabilized pipe.
There is no difference in disposing Nb or Ta.
また、第1図の前記セグメントの嵌合およびそ
の後の減面加工により所定の芯線数の超電導線が
得られない場合には、必要により安定化された拡
散熱処理前の複合材をさらに複数本束ねて別の安
定化パイプ中に嵌合し、減面加工の工程を繰り返
してもよい。 In addition, if a superconducting wire with a predetermined number of cores cannot be obtained by fitting the segments shown in FIG. The stabilizing pipe may then be fitted into another stabilizing pipe and the area reduction process may be repeated.
以上述べた様に本発明はあらかじめ対称性のよ
い、かつ断線なく加工しやすいSnCuとNbのセグ
メントを作成しておき、セグメントは安定化材中
に嵌合される後よりも前のほうが大きく減面加工
することによつて高価なNb管を使用することな
く安価に、長さ方向に断面形状均一で断線しにく
く、また嵌合作業にスキルを要さず、性能のよい
多芯Nb3Sn超電導線の製造を可能とするもので工
業的応用価値は多大である。 As described above, in the present invention, segments of SnCu and Nb are created in advance with good symmetry and are easy to process without disconnection, and the segments are significantly reduced before being fitted into the stabilizing material than after being fitted into the stabilizing material. By surface processing, it is possible to use multi-core Nb 3 Sn at a low cost without using expensive Nb pipes.It has a uniform cross-sectional shape in the length direction and is difficult to break, and does not require any skill for the mating work. It enables the production of superconducting wires and has great industrial application value.
第1図は従来の多芯Nb3Sn超電導線の製造方法
の一例を説明するための断面図である。第2図は
Nb、SnCu、Cuの加工挙動を示すデーターであ
る。第3図は本発明の単芯SnCuをもつ6本のNb
線によるセグメントの断面図である。
1……Nb棒又は線、2……SnCu棒又は線、3
……安定化銅又はアルミパイプ、4……SnCu
(7wt%Cu)の引張り強さ特性、5……Cuの引張
り強さ特性、6……Nbの引張り強さ特性。
FIG. 1 is a cross-sectional view for explaining an example of a conventional method for manufacturing a multicore Nb 3 Sn superconducting wire. Figure 2 is
This is data showing the processing behavior of Nb, SnCu, and Cu. Figure 3 shows six Nb fibers with single-core SnCu of the present invention.
FIG. 3 is a cross-sectional view of a segment along a line; 1...Nb rod or wire, 2...SnCu rod or wire, 3
...Stabilized copper or aluminum pipe, 4...SnCu
(7wt%Cu) tensile strength properties, 5...Cu tensile strength properties, 6...Nb tensile strength properties.
Claims (1)
ズの6本のNb線を配置しこれを引伸することに
よりSnCu合金線のセグメントを形成し、このセ
グメントの複数本を束ねて安定化銅パイプ、又は
アルミパイプ中に嵌合して引伸加工して熱処理を
施してNb3Sn化合物層を生成せしめると共に前記
セグメントの複数本を束ねる前の断面減少率が束
ねられて後Nb3Snが生成されるまで引伸加工され
た断面減少率よりも大なるようにして成る多芯
Nb3Sn超電導線の製造方法。1 Arrange six Nb wires of approximately the same size around one SnCu alloy wire and stretch them to form a segment of SnCu alloy wire, and bundle multiple of these segments to create a stabilized copper pipe, Alternatively, it is fitted into an aluminum pipe, stretched and heat treated to generate a Nb 3 Sn compound layer, and the cross-sectional reduction rate before bundling the plurality of segments is reduced to produce Nb 3 Sn after bundling. A multi-core structure with a cross-sectional reduction rate greater than the
Method for manufacturing Nb 3 Sn superconducting wire.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14471580A JPS5767222A (en) | 1980-10-15 | 1980-10-15 | Method of producing muticore nb3sn superconductor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14471580A JPS5767222A (en) | 1980-10-15 | 1980-10-15 | Method of producing muticore nb3sn superconductor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5767222A JPS5767222A (en) | 1982-04-23 |
JPH0322004B2 true JPH0322004B2 (en) | 1991-03-26 |
Family
ID=15368605
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14471580A Granted JPS5767222A (en) | 1980-10-15 | 1980-10-15 | Method of producing muticore nb3sn superconductor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5767222A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5996608A (en) * | 1982-11-25 | 1984-06-04 | 住友電気工業株式会社 | Method of producing nb3sn compound superconductive wire |
JPH09167531A (en) * | 1996-04-26 | 1997-06-24 | Sumitomo Electric Ind Ltd | Manufacture of multi-conductor nb3sn superconducting wire |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS50155191A (en) * | 1974-06-04 | 1975-12-15 | ||
JPS5424109A (en) * | 1977-07-21 | 1979-02-23 | Sumitomo Chemical Co | Method of thermal copying |
-
1980
- 1980-10-15 JP JP14471580A patent/JPS5767222A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS50155191A (en) * | 1974-06-04 | 1975-12-15 | ||
JPS5424109A (en) * | 1977-07-21 | 1979-02-23 | Sumitomo Chemical Co | Method of thermal copying |
Also Published As
Publication number | Publication date |
---|---|
JPS5767222A (en) | 1982-04-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2007311126A (en) | Compound superconductor, and its manufacturing method | |
JPH0322004B2 (en) | ||
JP2007081128A (en) | Superconductive coil and method of manufacturing same | |
JPS60199522A (en) | Manufacture of superconductive alloy wire | |
JPS63216212A (en) | Nb3sn-based superconductive wire and production of it | |
RU2122253C1 (en) | Composite superconductor manufacturing process | |
JPH09167531A (en) | Manufacture of multi-conductor nb3sn superconducting wire | |
JP3257703B2 (en) | Pulse or AC current lead and method for connecting A15 type compound superconducting stranded wire to said current lead | |
JPS58189909A (en) | Method of producing nb3sn superconductor | |
JPS59209210A (en) | Nb3sn compound superconductive wire and production thereof | |
JPS62240751A (en) | Manufacture of nb3sn super conducting wire by internal diffusion method | |
JPS62270754A (en) | Manufacture of nb-ti alloy superconducting wire rod and nb-ti alloy superconducting wire rod | |
EP0169078A2 (en) | Superconductor prepared from Nb3Sn compound | |
JPH0570887B2 (en) | ||
JPH05334929A (en) | Manufacture of nb3sn superconductor | |
JPS61270357A (en) | Production of nb2sn superconductive wire | |
JPS6228526B2 (en) | ||
JPH07141938A (en) | Manufacture of composite multiple core superconductive wire | |
JPH03283320A (en) | Manufacture of nb3sn multicore superconductor | |
JPS596004B2 (en) | V3SI | |
JPH0423363B2 (en) | ||
JPS60189117A (en) | Nb3sn superconductive lead | |
JPS59108202A (en) | Nb3sn compound superconductive wire and method of producing same | |
JPH02162619A (en) | Manufacture of nb3al superconducting wire | |
JPS61174365A (en) | Manufacture of superconductor wire of nb3sn compound |