JPH06326429A - Composition for ceramic board - Google Patents

Composition for ceramic board

Info

Publication number
JPH06326429A
JPH06326429A JP5111341A JP11134193A JPH06326429A JP H06326429 A JPH06326429 A JP H06326429A JP 5111341 A JP5111341 A JP 5111341A JP 11134193 A JP11134193 A JP 11134193A JP H06326429 A JPH06326429 A JP H06326429A
Authority
JP
Japan
Prior art keywords
solid solution
composition
titanate
glass frit
tcc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5111341A
Other languages
Japanese (ja)
Inventor
Hiroharu Nishimura
弘治 西村
Hiromi Tokunaga
裕美 徳永
Kenichi Hasegawa
健一 長谷川
Koichi Watanabe
浩一 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5111341A priority Critical patent/JPH06326429A/en
Publication of JPH06326429A publication Critical patent/JPH06326429A/en
Pending legal-status Critical Current

Links

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Inorganic Insulating Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To make it possible to fire the title composition at a very low temperature, to use paste as an inner electrode, and to satisfy various kinds of characteristics requied for a calcined body by a method wherein the above- mentioned composition is composed of glass frit of specific weight percent and the solid solution consisting of strontium titanate and calcium titanate. CONSTITUTION:The title composition for a ceramic board is composed of glass frit of 60 to 95wt.% consisting of Al2O3 of 50 to 60wt.%, SiO2 of 25 to 30wt.%, PbO of 7.8 to 8.3wt.%, CaO of 3.3 to 3.8wt.%, B2O3 of 2.5 to 3.0wt.%, MgO of 1.1 to 1.5wt.%, Na2O of 1.1 to 1.5wt.% and K2O of 0.8 to 1.1wt.%, and the solid solution of 5 to 40wt.% consisting of strontium titanate and calcium titanate. The solid solution consists of strontium titanate of 55 to 75mol% and calcium titanate of 25 to 45mol%. In the above-mentioned constitution, the adding quantity of Al2O3 is small, and a titanate solid solution, having high reactivity with glass frit, is used. As a result, firing temperature can be decreased remarkably.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は導体、抵抗体等の電子回
路を多層に形成する多層配線基板に良好なセラミック基
板用組成物に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composition for a ceramic substrate, which is suitable for a multilayer wiring substrate for forming electronic circuits such as conductors and resistors in multiple layers.

【0002】[0002]

【従来の技術】近年、電子回路を多層に形成した多層配
線基板が各種電気機器に使用されている。多層配線用の
セラミック基板の製造には次の2種類の方法が採用され
ている。第1の方法は多層配線用に調整されたセラミッ
ク基板用組成物を焼成したセラミック基板上に回路、絶
縁層を交互に印刷し、これを焼成することによって製造
する方法であり、第2の方法は未焼成のセラミック基板
に回路を印刷し、互いに回路が接触しないようにこれを
積層し、プレスした後、焼成して製造する方法である。
第1の方法のものは、回路の影響によってその上に形成
する絶縁層に凹凸が生じ、それは上層ほど大きくなる。
この凹凸が大きくなると、この上に次の回路を印刷する
ことは難しくなり、通常10層前後が限度とされてい
る。これに対し、第2の方法のものは、回路の印刷は常
に平面に近い状態の基板に対して行うために、積層数の
多いものを製造することができ、高密度の集積回路の形
成が行える。この第2の方法の多層配線用に使用される
セラミック基板用組成物としては、Al2 3 粉末と1
5wt%以下のガラス粉末を無機バインダーで固定したも
のや、Al2 3 −SiO2 系に鉛化合物やホウ素化合
物を混入させ低温で焼成したものが知られている。
2. Description of the Related Art In recent years, multilayer wiring boards having electronic circuits formed in multiple layers have been used in various electric devices. The following two types of methods are used to manufacture a ceramic substrate for multilayer wiring. The first method is a method in which a circuit and an insulating layer are alternately printed on a ceramic substrate obtained by firing a composition for a ceramic substrate prepared for multilayer wiring, and the resulting product is fired to produce the second method. Is a method in which a circuit is printed on an unfired ceramic substrate, the circuits are laminated so that the circuits do not contact each other, pressed, and then fired.
In the case of the first method, the insulating layer formed thereon has irregularities due to the influence of the circuit, and the unevenness becomes larger in the upper layer.
When this unevenness becomes large, it becomes difficult to print the next circuit on it, and the limit is usually around 10 layers. On the other hand, in the second method, since the circuit printing is always performed on the substrate in a state close to a plane, it is possible to manufacture one having a large number of stacked layers and to form a high-density integrated circuit. You can do it. The composition for the ceramic substrate used for the multilayer wiring of the second method includes Al 2 O 3 powder and 1
It is known that 5 wt% or less of glass powder is fixed with an inorganic binder, and that a mixture of a lead compound and a boron compound is mixed in an Al 2 O 3 —SiO 2 system and fired at a low temperature.

【0003】[0003]

【発明が解決しようとする課題】しかしながら上記従来
の構成では、第2の方法のAl2 3 粉末と15wt%以
下のガラス粉末を無機バインダーで固定したものは、焼
成温度が1450〜1600℃と極めて高く作業性、生
産性に欠けるという問題点があった。また、回路を構成
する材料もこの焼成温度で劣化しないMo、W等の高価
なものを使用しなければならずコスト高になり、また、
還元雰囲気下で焼成しなければならず材料の選択性や量
産性に欠けるという問題点があった。Al2 3 −Si
2 系に鉛化合物やホウ素化合物を10wt%以上混入さ
せ低温で焼成したものは、温度変化に対する静電容量の
変化率(以下、TCCと記す)が大きく信頼性に欠ける
という問題点があった。
However, in the above conventional structure, the Al 2 O 3 powder of the second method and the glass powder of 15 wt% or less fixed by an inorganic binder have a firing temperature of 1450 to 1600 ° C. There was a problem that the workability and productivity were extremely high. In addition, as the material for forming the circuit, it is necessary to use expensive materials such as Mo and W that do not deteriorate at this firing temperature, resulting in high cost.
There was a problem that the material had to be fired in a reducing atmosphere, and the material selectivity and mass productivity were lacking. Al 2 O 3 -Si
The O 2 system mixed with a lead compound or a boron compound in an amount of 10 wt% or more and fired at a low temperature has a problem that the rate of change in capacitance with temperature change (hereinafter referred to as TCC) is large and lacks reliability. .

【0004】本発明は上記従来の問題点を解決するもの
で、750〜950℃の極めて低い温度で焼成でき、A
u,Ag,Ag−Pd,Cu等のペーストを内部電極と
して使用することが可能でしかも体積固有抵抗率、誘電
率、誘電正接、絶縁破壊強度、曲げ強度等多層配線用の
基板としての諸特性を十分充たし、更にTCCが±0p
pm/℃〜±100ppm/℃と調整可能なセラミック
基板用組成物を提供することを目的とする。
The present invention solves the above-mentioned problems of the prior art. It can be fired at an extremely low temperature of 750 to 950 ° C.
Various properties such as volume resistivity, dielectric constant, dielectric loss tangent, dielectric breakdown strength, bending strength, etc. as a substrate for multi-layer wiring that can use paste of u, Ag, Ag-Pd, Cu, etc. as internal electrodes Is satisfied, and TCC is ± 0p
It is an object to provide a composition for a ceramic substrate that can be adjusted to pm / ° C to ± 100 ppm / ° C.

【0005】[0005]

【課題を解決するための手段】この目的を達成するため
に本発明の請求項1に記載のセラミック基板用組成物
は、成分組成が重量%で、Al2 3 が50〜60、S
iO2 が25〜30、PbOが7.8〜8.3、CaO
が3.3〜3.8、B2 3 が2.5〜3.0、MgO
が1.1〜1.5、Na2 Oが1.1〜1.5、K2
が0.8〜1.1、で構成されるガラスフリット60〜
95wt%と、チタン酸ストロンチウムとチタン酸カルシ
ウムとの固溶体5〜40wt%とからなる構成を有してい
る。
In order to achieve this object, the composition for a ceramic substrate according to claim 1 of the present invention has a composition of wt%, Al 2 O 3 of 50 to 60, S.
iO 2 is 25 to 30, PbO is 7.8 to 8.3, CaO
Is 3.3 to 3.8, B 2 O 3 is 2.5 to 3.0, MgO
1.1-1.5, Na 2 O 1.1-1.5, K 2 O
Glass frit 60 consisting of 0.8 to 1.1
95 wt% and a solid solution of strontium titanate and calcium titanate 5 to 40 wt%.

【0006】請求項2に記載のセラミック基板用組成物
は、請求項1において、前記固溶体が、55〜75モル
%のチタン酸ストロンチウムと25〜45モル%のチタ
ン酸カルシウムとからなる構成を有している。
A composition for a ceramic substrate according to a second aspect is the composition according to the first aspect, wherein the solid solution comprises 55 to 75 mol% strontium titanate and 25 to 45 mol% calcium titanate. is doing.

【0007】ここで、ガラスフリットはその含有率が6
0wt%未満では焼成温度が高くなり、一方、95wt%を
越えると、焼成体の曲げ強度、及び耐湿性が低下するの
で好ましくない。また、TCCの調整も困難となる。ガ
ラスフリットの構成成分であるSiO2 はその含有量が
25wt%未満では軟化温度が低くなり焼成時に大きな変
形を生じ易く、30wt%を越えると焼成温度が高くなり
過ぎるのでいずれも好ましくない。PbOはガラスの溶
解性を向上させるために、7.8wt%以上添加されるの
が望ましい。但し、添加量が8.3wt%を越えると、ガ
ラスの軟化温度が低くなる傾向が顕著になり焼成時に大
きな変形を生じやすくなるので好ましくない。CaOは
ガラスフリット製造時の溶融性の向上及びガラスの熱膨
張係数を調整する目的で添加される。添加量が3.3wt
%より少ないと溶融性が向上せず、フリット製造時に失
透を生じやすい傾向がある。また、添加量が3.8wt%
より多いと、熱膨張係数が大きくなり過ぎる傾向がある
ので、いずれも好ましくない。B2 3 はフラックスで
あり、添加量が2.5wt%未満では、焼成温度が高くな
り過ぎ、3.0wt%を越えるとガラスの化学的安定性を
低下させる傾向があるので、いずれも好ましくない。M
gOはガラスフリット製造時の溶融性の向上及びガラス
の熱膨張係数を調整する目的で添加される。添加量が
1.1wt%未満では溶融性が向上せず、フリット製造時
に失透を生じやすい傾向があり、1.5wt%を越えると
熱膨張係数が大きくなり過ぎる傾向があるので、いずれ
も好ましくない。Na2 Oはガラスの溶解性を向上させ
る目的で添加するもので、1.1wt%以上添加されるの
が望ましい。但し、添加量が1.5wt%を越えると、ガ
ラスの軟化温度が低くなり過ぎ、焼成時に大きな変形を
生じやすい傾向があるので好ましくない。K2 Oはガラ
スの溶解性を向上させる目的で添加されるもので、0.
8wt%以上添加されるのが望ましい。但し、添加量が
1.1wt%を越えると、ガラスの軟化温度が低くなり過
ぎ、焼成時に大きな変形を生じやすくなる傾向があるの
で好ましくない。Al2 3 はセラミックの機械的強度
を向上させる目的で添加されるもので、50wt%以上添
加されるのが望ましい。但し、添加量が60wt%を越え
ると焼成温度が高くなり過ぎるので好ましくない。
Here, the glass frit has a content rate of 6
If it is less than 0 wt%, the firing temperature will be high, while if it exceeds 95 wt%, the bending strength and moisture resistance of the fired product will be reduced, which is not preferable. Moreover, adjustment of TCC becomes difficult. If the content of SiO 2 which is a constituent of the glass frit is less than 25 wt%, the softening temperature becomes low and a large deformation is likely to occur during firing. If it exceeds 30 wt%, the firing temperature becomes too high, which is not preferable. PbO is preferably added in an amount of 7.8 wt% or more in order to improve the melting property of glass. However, if the addition amount exceeds 8.3 wt%, the softening temperature of the glass tends to be low, and large deformation tends to occur during firing, which is not preferable. CaO is added for the purpose of improving the meltability during the production of glass frit and adjusting the thermal expansion coefficient of glass. Addition amount is 3.3wt
If it is less than%, the meltability is not improved and devitrification tends to occur during frit production. Also, the addition amount is 3.8 wt%
If the amount is larger, the coefficient of thermal expansion tends to be too large, and thus both are not preferable. B 2 O 3 is a flux, and if the addition amount is less than 2.5 wt%, the firing temperature tends to be too high, and if it exceeds 3.0 wt%, the chemical stability of the glass tends to be lowered, so both are preferred. Absent. M
gO is added for the purpose of improving the meltability during the production of glass frit and adjusting the coefficient of thermal expansion of glass. If the addition amount is less than 1.1 wt%, the meltability is not improved and devitrification tends to occur during frit production, and if it exceeds 1.5 wt%, the thermal expansion coefficient tends to be too large. Absent. Na 2 O is added for the purpose of improving the solubility of glass, and it is desirable that Na 2 O be added in an amount of 1.1 wt% or more. However, if the addition amount exceeds 1.5 wt%, the softening temperature of the glass tends to be too low, and large deformation tends to occur during firing, which is not preferable. K 2 O is added for the purpose of improving the melting property of glass, and is 0.
It is desirable to add 8 wt% or more. However, if the addition amount exceeds 1.1 wt%, the softening temperature of the glass tends to be too low, and large deformation tends to occur during firing, which is not preferable. Al 2 O 3 is added for the purpose of improving the mechanical strength of ceramics, and is preferably added in an amount of 50 wt% or more. However, if the addition amount exceeds 60 wt%, the firing temperature becomes too high, which is not preferable.

【0008】SrTiO3 とCaTiO3 とのチタン酸
塩固溶体はSrTiO3 が55モル%未満では、固溶体
の形成が不均質になり、この固溶体を用いてTCCを調
整した場合には直線的な変化を示さず、また、TCCが
−25℃〜+20℃では正、+20℃〜+85℃では、
負の値を示すために、調整が困難となる傾向が認められ
る。SrTiO3 が75モル%を越えた場合も同様の傾
向が認められる。
In the titanate solid solution of SrTiO 3 and CaTiO 3 , when SrTiO 3 is less than 55 mol%, the formation of the solid solution becomes heterogeneous, and when the TCC is adjusted using this solid solution, a linear change occurs. Not shown, TCC is positive at -25 ° C to + 20 ° C, and positive at + 20 ° C to + 85 ° C.
Since it shows a negative value, it tends to be difficult to adjust. The same tendency is observed when SrTiO 3 exceeds 75 mol%.

【0009】[0009]

【作用】この構成によって、Al2 3 の添加量が少な
く、かつガラスフリットと反応性の高いチタン酸塩固溶
体を用いたことにより焼成温度を著しく低下させること
ができる。また、焼成温度が低いので厚膜技術で広く使
用されているAu,Ag,Ag−Pd,Cu等のペース
トを使用することができ、更にその焼成体の曲げ強度等
の機械的強度や熱伝導性を向上させることができる。ま
た、小さい誘電率、大きい絶縁抵抗等の電気的特性を高
くするとともに耐湿性を向上させることができる。特
に、正のTCC特性を持つガラスフリットと負のTCC
特性を持つチタン酸塩固溶体系の焼成反応によりTCC
の調整を容易にすることができる。
With this configuration, the firing temperature can be remarkably lowered by using the titanate solid solution having a small amount of Al 2 O 3 added and having high reactivity with the glass frit. In addition, since the firing temperature is low, it is possible to use pastes such as Au, Ag, Ag-Pd, and Cu that are widely used in thick film technology. Further, mechanical strength such as bending strength of the fired body and heat conduction can be used. It is possible to improve the sex. Further, it is possible to improve electric characteristics such as a small dielectric constant and a large insulation resistance, and improve the moisture resistance. Especially glass frit with negative TCC characteristics and negative TCC
TCC by firing reaction of titanate solid solution system with characteristics
Can be easily adjusted.

【0010】[0010]

【実施例】(実施例1)以下本発明の一実施例について
説明する。ガラスフリットの作製は、(表1)に示すよ
うに重量%で、SiO2 が27、PbOが8.1、Ca
Oが3.5、B 2 3 が2.7、MgOが1.3、Na
2 Oが1.3、K2 Oが1.1、の組成になるように、
常法に従い各原料を調合し、1400〜1500℃の温
度にて攪拌しながら溶融し、溶融後、水砕又はフレーク
状とし、これにAl2 3 を55重量%添加して行っ
た。次に、このガラスフリットと、SrTiO3 とCa
TiO3 とからなるチタン酸塩固溶体とが、それぞれ9
0wt%、10wt%になるように秤量し、ボールミルにて
粉砕混合し本実施例のセラミック基板用組成物を得た。
この粉砕混合した組成物に、バインダーを10wt%添加
し造粒、成形後、850℃にて15分焼成した。この焼
成体の相対密度を測定したところ、99.98%であっ
た。次いで、直径30mm、厚み0.35mmに加工後、A
g電極を焼き付け、TCCを測定したところ、−25℃
〜+85℃にて±0ppm/℃であった。そこで、この
粉砕混合した組成物に種々のバインダーや可塑剤、溶剤
を添加、混練して粘度10ps〜30psのペーストを
作製した。このペーストを常法のドクターブレード法に
より、厚み0.1mmのグリーンシートを作製した。この
グリーンシートを50枚重ね、その後、35℃にて約5
0トンの圧力にて熱圧着させ、850℃にて15分焼成
した。次いで、焼成したシートの各種特性を測定した。
その結果を(表1)に示した。尚、TCC(−25℃〜
85℃)±0ppm/℃であった。
EXAMPLE 1 Example 1 of the present invention
explain. The production of glass frit is shown in (Table 1).
Sea urchin in weight percent, SiO2Is 27, PbO is 8.1, Ca
O is 3.5, B 2O32.7, MgO 1.3, Na
2O is 1.3, K2So that O has a composition of 1.1,
Mix each raw material according to the usual method, and
Melt while stirring at a certain degree, and after melting, granulate or flake
And then add Al2O355% by weight
It was Next, this glass frit and SrTiO 33And Ca
TiO3And a titanate solid solution consisting of
Weigh it to 0 wt% and 10 wt% and use a ball mill.
The mixture was pulverized and mixed to obtain the composition for ceramic substrate of this example.
Add 10 wt% of binder to this pulverized and mixed composition
After granulating and molding, the mixture was fired at 850 ° C. for 15 minutes. This grill
When the relative density of the adult was measured, it was 99.98%.
It was Then, after processing to a diameter of 30 mm and a thickness of 0.35 mm, A
When the g electrode was baked and the TCC was measured, it was -25 ° C.
It was ± 0 ppm / ° C at + 85 ° C. So this
Various binders, plasticizers, solvents in pulverized and mixed compositions
Is added and kneaded to form a paste having a viscosity of 10 ps to 30 ps.
It was made. Apply this paste to the conventional doctor blade method
Thus, a green sheet having a thickness of 0.1 mm was produced. this
Fifty green sheets are piled up, and then about 5 at 35 ℃
Thermocompression bonding at a pressure of 0 tons and baking at 850 ° C for 15 minutes
did. Then, various characteristics of the fired sheet were measured.
The results are shown in (Table 1). In addition, TCC (-25 ℃ ~
85 ° C.) ± 0 ppm / ° C.

【0011】[0011]

【表1】 [Table 1]

【0012】(比較例1,2)(表2)に示すようにチ
タン酸塩固溶体のSrTiO3 とCaTiO3 のモル%
を50対50(比較例1),80対20(比較例2)と
した他は実施例1と同様にしてグリーンシートを作製
し、その特性を測定した。その結果を(表2)に示し
た。尚、TCCは+120ppm/℃以上で実用性に欠
けるということがわかった。
(Comparative Examples 1 and 2) (Table 2) As shown in Table 2, mol% of SrTiO 3 and CaTiO 3 in the titanate solid solution.
Was set to 50:50 (Comparative Example 1) and 80:20 (Comparative Example 2), and a green sheet was prepared in the same manner as in Example 1 and its characteristics were measured. The results are shown in (Table 2). It was found that the TCC was +120 ppm / ° C. or higher and was not practical.

【0013】[0013]

【表2】 [Table 2]

【0014】(実施例2)実施例1で得られたガラスフ
リットと、チタン酸塩固溶体を(表1)に示すように各
々94wt%、6wt%になるように秤量し、実施例1と同
様にしてボールミルにて粉砕混合し、同様にしてグリー
ンシートの焼成体を得た。この場合の焼成温度は800
℃であった。焼成したシートの各種特性を測定し、その
結果を(表1)に示した。体積固有抵抗率、誘電率、誘
電正接、絶縁破壊強度、曲げ強度等は、実施例1と大略
同等の値を得た。TCCは、+50ppm/℃であっ
た。
(Example 2) The glass frit obtained in Example 1 and the titanate solid solution were weighed to be 94 wt% and 6 wt% respectively as shown in (Table 1), and the same as in Example 1. Then, the mixture was pulverized and mixed in a ball mill to obtain a green sheet fired body in the same manner. The firing temperature in this case is 800
It was ℃. Various characteristics of the fired sheet were measured, and the results are shown in (Table 1). The volume resistivity, the dielectric constant, the dielectric loss tangent, the dielectric breakdown strength, the bending strength, etc. were almost the same values as in Example 1. The TCC was +50 ppm / ° C.

【0015】(実施例3)実施例1で得られたガラスフ
リットと、チタン酸塩固溶体を(表1)に示すように各
々70wt%、30wt%となるように秤量し、実施例1と
同様にしてグリーンシート焼成体を得た。次いで、この
焼成体の特性を測定し、その結果を(表1)に示した。
尚、焼成温度は870℃で行った。体積固有抵抗率、誘
電率、誘電正接、絶縁破壊強度、曲げ強度等は、実施例
1と略同等の値を得た。TCCは、−20ppm/℃で
あった。
(Example 3) The glass frit obtained in Example 1 and the titanate solid solution were weighed to 70 wt% and 30 wt%, respectively, as shown in (Table 1), and the same as in Example 1. Then, a green sheet fired body was obtained. Next, the characteristics of this fired body were measured, and the results are shown in (Table 1).
The firing temperature was 870 ° C. The volume resistivity, the dielectric constant, the dielectric loss tangent, the dielectric breakdown strength, the bending strength, etc. were substantially the same as those in Example 1. The TCC was -20 ppm / ° C.

【0016】(実施例4)実施例1で得られたガラスフ
リットと、チタン酸塩固溶体を(表1)に示すように各
々60wt%、40wt%秤量し、実施例1と同様にして焼
成温度が920℃にてグリーンシートの焼成体を得た。
次いで、その特性を測定しその結果を(表1)に示し
た。体積固有抵抗率、誘電率、誘電正接、絶縁破壊強
度、曲げ強度等は、実施例1と大略同等の値を得た。ま
た、TCCは−30ppm/℃であった。さらに、A
u,Ag−Pd,Cu等の、ペーストを内部電極とし
て、積層した焼成体についてもその特性を測定したとこ
ろ同様の結果を得た。
(Example 4) The glass frit obtained in Example 1 and the titanate solid solution were weighed at 60 wt% and 40 wt% respectively as shown in (Table 1), and burned at the same temperature as in Example 1. At 920 ° C., a green sheet fired body was obtained.
Then, its characteristics were measured and the results are shown in (Table 1). The volume resistivity, the dielectric constant, the dielectric loss tangent, the dielectric breakdown strength, the bending strength, etc. were almost the same values as in Example 1. The TCC was -30 ppm / ° C. Furthermore, A
The same result was obtained when the characteristics of the fired body in which the pastes such as u, Ag-Pd, and Cu were used as the internal electrodes were measured.

【0017】(比較例3,4)実施例1で得たガラスフ
リットとチタン酸塩固溶体の混合比を(表2)に示すよ
うに変えた他は実施例1と同様にしてグリーンシートを
得、その特性を測定した。その結果を(表2)に示す。
Comparative Examples 3 and 4 Green sheets were obtained in the same manner as in Example 1 except that the mixing ratio of the glass frit obtained in Example 1 and the titanate solid solution was changed as shown in Table 2. , Its characteristics were measured. The results are shown in (Table 2).

【0018】(比較例5,6)ガラスフリットの組成を
(表2)に示すように本発明の範囲外とした他は実施例
1と同様にしてグリーンシートを得、その特性を測定し
た。その結果を(表2)に示す。
(Comparative Examples 5 and 6) Green sheets were obtained in the same manner as in Example 1 except that the composition of the glass frit was out of the range of the present invention as shown in (Table 2), and the characteristics thereof were measured. The results are shown in (Table 2).

【0019】この(表1)、(表2)から明らかなよう
に、本実施例によるセラミック基板用組成物は、従来の
組成物と比較して極めて低い温度で焼成が可能であり、
かつ、機械的特性や電気的特性に優れTCCの調整も容
易であることがわかった。
As is clear from (Table 1) and (Table 2), the composition for a ceramic substrate according to the present embodiment can be fired at an extremely low temperature as compared with the conventional composition,
It was also found that the mechanical properties and electrical properties were excellent and the TCC could be easily adjusted.

【0020】[0020]

【発明の効果】以上のように本発明は、極めて低い温度
で焼成でき、かつ、Au,Ag,Ag−Pd,Cu等の
ペーストを内部電極として使用することが可能な上に、
焼成体の各種要求特性、すなわち、体積固有抵抗率、誘
電率、誘電正接、絶縁破壊強度、曲げ強度等、導体、抵
抗体等の電子回路を多層に形成する多層配線基板として
の良好なセラミック基板の特性を満足し、さらに、TC
Cも±0ppm/℃〜±100ppm/℃と調整が容易
な極めて低原価で量産性に優れたセラミック基板用組成
物を実現できるものである。
INDUSTRIAL APPLICABILITY As described above, according to the present invention, it is possible to perform firing at an extremely low temperature, and it is possible to use a paste such as Au, Ag, Ag-Pd or Cu as an internal electrode.
Various required characteristics of the fired body, ie, volume resistivity, dielectric constant, dielectric loss tangent, dielectric breakdown strength, bending strength, etc., good ceramic substrate as a multilayer wiring board for forming electronic circuits such as conductors and resistors in multiple layers. Satisfies the characteristics of
C can also be adjusted to ± 0 ppm / ° C to ± 100 ppm / ° C, and it is possible to realize a composition for a ceramic substrate that is extremely low in cost and excellent in mass productivity.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 渡辺 浩一 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Koichi Watanabe 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】成分組成が重量%で、Al2 3 が50〜
60、SiO2 が25〜30、PbOが7.8〜8.
3、CaOが3.3〜3.8、B2 3 が2.5〜3.
0、MgOが1.1〜1.5、Na2 Oが1.1〜1.
5、K2 Oが0.8〜1.1、で構成されるガラスフリ
ット60〜95wt%と、チタン酸ストロンチウムとチタ
ン酸カルシウムとの固溶体5〜40wt%とからなること
を特徴とするセラミック基板用組成物。
1. The composition of the composition is wt% and the content of Al 2 O 3 is 50 to 50%.
60, SiO 2 is 25 to 30, PbO is 7.8 to 8.
3, CaO is 3.3 to 3.8, and B 2 O 3 is 2.5 to 3.
0, MgO is 1.1 to 1.5, and Na 2 O is 1.1 to 1.
5. A ceramic substrate comprising 60 to 95 wt% of a glass frit composed of 0.8 to 1.1 of K 2 O and 5 to 40 wt% of a solid solution of strontium titanate and calcium titanate. Composition.
【請求項2】前記固溶体が、55〜75モル%のチタン
酸ストロンチウムと25〜45モル%のチタン酸カルシ
ウムとからなることを特徴とする請求項1に記載のセラ
ミック基板用組成物。
2. The composition for a ceramic substrate according to claim 1, wherein the solid solution comprises 55 to 75 mol% strontium titanate and 25 to 45 mol% calcium titanate.
JP5111341A 1993-05-13 1993-05-13 Composition for ceramic board Pending JPH06326429A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5111341A JPH06326429A (en) 1993-05-13 1993-05-13 Composition for ceramic board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5111341A JPH06326429A (en) 1993-05-13 1993-05-13 Composition for ceramic board

Publications (1)

Publication Number Publication Date
JPH06326429A true JPH06326429A (en) 1994-11-25

Family

ID=14558744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5111341A Pending JPH06326429A (en) 1993-05-13 1993-05-13 Composition for ceramic board

Country Status (1)

Country Link
JP (1) JPH06326429A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6897172B2 (en) * 2002-01-28 2005-05-24 Kyocera Corporation Dielectric ceramic composition and dielectric ceramics

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6897172B2 (en) * 2002-01-28 2005-05-24 Kyocera Corporation Dielectric ceramic composition and dielectric ceramics

Similar Documents

Publication Publication Date Title
US4812422A (en) Dielectric paste and method of manufacturing the paste
JPH0411495B2 (en)
JPH09295827A (en) Glass for substrate and ceramic base using the same
JPH07105717A (en) Base metal composition for outside electrode of laminated electronic part
JP2001084835A (en) Insulation composition, insulation paste, and laminated electronic part
JPH06326429A (en) Composition for ceramic board
JP2964725B2 (en) Composition for ceramic substrate
JPS60103075A (en) Composition for ceramic substrate
JPH06279104A (en) Ceramic composition for multilayered circuit board
JPS61242950A (en) Composition for ceramic substrate
JPH0786745A (en) Ceramic composition for multilayer interconnection board
JPH05270899A (en) Composition for cermaic substrate
JPS6221739B2 (en)
JPH0260236B2 (en)
JPH0424307B2 (en)
JPS61219741A (en) Oxide dielectric material
JPS6130366B2 (en)
JP3315233B2 (en) Composition for ceramic substrate
JPH0738214A (en) Glass ceramic board and manufacturing method
JP3315182B2 (en) Composition for ceramic substrate
JPH07172911A (en) Composition for ceramic substrate
JPH07277791A (en) Ceramic composition for insulating base and ceramic multilayer wiring circuit board
JPS62100454A (en) Composition for multi layer circuit substrate
JPH04286181A (en) Composition for ceramic board
JPH0274558A (en) Ceramic base plate