JPH06326415A - Semiconductor laser modulating method - Google Patents

Semiconductor laser modulating method

Info

Publication number
JPH06326415A
JPH06326415A JP5115538A JP11553893A JPH06326415A JP H06326415 A JPH06326415 A JP H06326415A JP 5115538 A JP5115538 A JP 5115538A JP 11553893 A JP11553893 A JP 11553893A JP H06326415 A JPH06326415 A JP H06326415A
Authority
JP
Japan
Prior art keywords
electrode
terminal
modulation
semiconductor laser
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5115538A
Other languages
Japanese (ja)
Other versions
JP3228370B2 (en
Inventor
Takuo Hirono
卓夫 廣野
Seiji Norimatsu
誠司 乗松
Yuzo Yoshikuni
裕三 吉国
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP11553893A priority Critical patent/JP3228370B2/en
Publication of JPH06326415A publication Critical patent/JPH06326415A/en
Application granted granted Critical
Publication of JP3228370B2 publication Critical patent/JP3228370B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/0625Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in multi-section lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/0625Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in multi-section lasers
    • H01S5/06251Amplitude modulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/0625Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in multi-section lasers
    • H01S5/06255Controlling the frequency of the radiation
    • H01S5/06258Controlling the frequency of the radiation with DFB-structure

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To provide the modulating method for a semiconductor laser having the wide frequency region of flat modulation frequency dependency of frequency modulation efficiency. CONSTITUTION:The title modulating method is the method for modulation of a distributed feedback semiconductor laser on which the electrode on one side is divided into four or more parts. The first electrode 4 is connected to the independently formed first terminal 1, all the even number elect rodes 5 and 7 are connected to the second terminal 2, and all odd number electrodes 6 and 8, excluding the first electrode, are connected to the third terminal 3. The semiconductor laser is oscillated in single mode by injecting a constant current to the first to third terminals respectively, and frequency is modulated by injecting a modulation current to the second terminal 2 and the third terminal 3 respectively in such a manner that the phase of the modulation current becomes an inverse phase.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、周波数変調特性が優れ
た半導体レーザの変調方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor laser modulation method having excellent frequency modulation characteristics.

【0002】[0002]

【従来の技術】半導体レーザの周波数変調においては変
調効率の変調周波数依存性が平坦である程、有用性が高
い。従来の多電極分布帰還型半導体レーザの変調方法
は、分割されたそれぞれの電極に一定の電流を流してシ
ングルモード発振させた後、1つの電極のみに変調電流
を注入していた。
2. Description of the Related Art In frequency modulation of a semiconductor laser, the flatter the modulation frequency dependence of the modulation efficiency, the higher the usefulness. In the conventional modulation method of a multi-electrode distributed feedback semiconductor laser, a constant current is applied to each of the divided electrodes to cause single mode oscillation, and then the modulation current is injected into only one electrode.

【0003】[0003]

【発明が解決しようとする課題】この方法による変調効
率の周波数依存性の例を図4に示す。
FIG. 4 shows an example of frequency dependence of the modulation efficiency by this method.

【0004】同図に示すように、従来の方法では変調効
率が周波数に大きく依存し、10kHz程度の低周波側
では変調効率が大きくなっている。一般に半導体レーザ
の一電極に電流を注入することによる波長変化には、電
流注入量増加による熱の効果で、半導体の屈折率が上昇
することによる長波長シフトと、電流注入量の増加でレ
ーザ共振器内のキャリア分布が変わり、発振状態が変化
することによる短波長シフトの両方のメカニズムが存在
する。熱の効果は低周波領域で顕著となり、キャリアの
効果の変調周波数依存性は小さい。そこでこの二つの効
果が競合する10kHz〜100kHzの領域で周波変
調効率が低下し、変調効率の変調周波数依存性の平坦性
が制限される。
As shown in the figure, in the conventional method, the modulation efficiency largely depends on the frequency, and the modulation efficiency becomes large on the low frequency side of about 10 kHz. In general, the wavelength change caused by injecting a current into one electrode of a semiconductor laser causes a long wavelength shift due to the increase in the refractive index of the semiconductor due to the effect of heat due to the increase in the current injection amount, and the laser resonance due to the increase in the current injection amount. There are both mechanisms of short wavelength shift due to change of carrier distribution in the chamber and change of oscillation state. The effect of heat becomes remarkable in the low frequency region, and the effect of carriers has little dependence on the modulation frequency. Therefore, the frequency modulation efficiency is reduced in the region of 10 kHz to 100 kHz where these two effects compete with each other, and the flatness of the modulation frequency dependence of the modulation efficiency is limited.

【0005】本発明の目的は、周波数変調効率の変調周
波数依存性が平坦な周波数領域が広い半導体レーザの変
調方法を提供することにある。
An object of the present invention is to provide a method of modulating a semiconductor laser having a wide frequency range in which the frequency dependence of frequency modulation efficiency is flat.

【0006】[0006]

【課題を解決するための手段】本発明の半導体レーザの
変調方法は、片側の電極が4個以上に分割された分布帰
還型半導体レーザの変調方法であって、前記半導体レー
ザの分割された電極の電極番号を出射端から順に第1,
第2,第3,…,第Nとし、第1電極を独立した第1端
子に接続し、第N電極を除く偶数番号の電極を総て第2
端子に接続し、第1電極と第N電極を除く奇数番号の電
極を総て第3端子に接続し、第N電極についてはNが偶
数か奇数かに応じて第2端子あるいは第3端子に接続す
るか、または第4端子に接続し、第1〜第3端子にそれ
ぞれ一定電流I1 ,I2 およびI3 を注入し、さらに第
4端子に第N電極が接続されている場合にはそれに一定
電流I4 を注入して、当該半導体レーザをシングルモー
ド発振させ、第2端子および第3端子にそれぞれ変調電
流IM2 およびIM3 を、当該変調電流IM2 およびI
3 の位相が逆位相となるように注入して周波数変調を
行うことにある。
A method for modulating a semiconductor laser according to the present invention is a method for modulating a distributed feedback semiconductor laser in which an electrode on one side is divided into four or more electrodes. The electrode number of the
, Nth, the first electrode is connected to the independent first terminal, and all the even-numbered electrodes except the Nth electrode are the second
All the odd numbered electrodes except the first electrode and the Nth electrode are connected to the third terminal, and the Nth electrode is connected to the second terminal or the third terminal depending on whether N is an even number or an odd number. In the case where it is connected or is connected to the fourth terminal, the constant currents I 1 , I 2 and I 3 are respectively injected into the first to third terminals, and the Nth electrode is connected to the fourth terminal. by injecting a constant current I 4 thereto, the semiconductor laser a single mode is oscillated, and the respective modulation current IM 2 and IM 3 to the second terminal and the third terminal, the modulation current IM 2 and I
This is to perform frequency modulation by injecting so that the phase of M 3 becomes the opposite phase.

【0007】[0007]

【作用】本発明のレーザ変調方法では、変調電流を一つ
の電極グループに注入し、それと逆位相の電流を異なっ
た電極のグループに同時に注入するため、発熱による長
波長シフトが打ち消し合うようにすることができる。従
って低周波領域での変調効率の大きな上昇はなくなり、
広い周波数領域で平坦な変調特性を得ることができる。
In the laser modulation method of the present invention, the modulation current is injected into one electrode group, and the current having the opposite phase is injected into different electrode groups at the same time, so that the long wavelength shift due to heat generation is canceled. be able to. Therefore, there is no significant increase in modulation efficiency in the low frequency range,
A flat modulation characteristic can be obtained in a wide frequency range.

【0008】また、本発明では、出射端面に最も近い電
極に変調電流を注入しないため、変調電流による出力強
度の変動はほとんどない。すなわち、純粋に近い形の周
波数変調を行うことができる。上記構成における第4端
子は、両方の端面からの出力光を利用する場合に、有用
性を発揮する。
Further, in the present invention, since the modulation current is not injected into the electrode closest to the emitting end face, there is almost no fluctuation in the output intensity due to the modulation current. That is, almost pure frequency modulation can be performed. The fourth terminal in the above configuration exhibits usefulness when the output light from both end faces is used.

【0009】[0009]

【実施例】本発明を以下の実施例でさらに詳しく説明す
る。
The present invention will be described in more detail by the following examples.

【0010】<実施例1>本発明の第1の実施例を図1
に示す。図1は多電極分布帰還型レーザとその結線図を
示したものであり、1は第1端子、2は第2端子、3は
第3端子、4は第1電極、5は第2電極、6は第3電
極、7は第4電極、8は第5電極、9はInGaAsP
からなるキャップ層、10はInPからなる上方クラッ
ド、11は回折格子、12はInGaAsPからなるガ
イド層、13はInGaAsPからなる活性層、14は
InGaAsPからなるバッファ層、15はInPから
なる下方クラッド、16は下方電極、17Aおよび17
Bは端面無反射コーティング、18は電極分離溝であ
る。すなわち、本実施例の半導体レーザは、下方クラッ
ド15上にバッファ層14,活性層13,ガイド層1
2,回折格子11および上方クラッド10を順次設け、
さらにその下側および上側にそれぞれ下方電極16およ
び上方電極を設けたものである。本実施例で上方電極
は、4つの電極分離溝18により、第1電極4,第2電
極5,第3電極6,第4電極7および第5電極8の5つ
に分割されており、各第1〜第5電極4〜8はほぼ同じ
長さに分割されている。また、端子は第1端子1,第2
端子2および第3端子3の3つであり、これらは独立に
作用できるようになっている。そして、第1電極4は第
1端子1に、第2および第4電極5および7は第2端子
2に、および第3および第5電極6および8は第3端子
3に、それぞれ接続してある。さらに、半導体層の両端
には、端面無反射コーティング17Aおよび17Bを施
して共振器を構成しており、全共振器長は600μmで
ある。なお、端面無反射コーティング17Aが施されて
いる端面が出射端になる。
<Embodiment 1> A first embodiment of the present invention is shown in FIG.
Shown in. FIG. 1 shows a multi-electrode distributed feedback laser and its connection diagram, where 1 is a first terminal, 2 is a second terminal, 3 is a third terminal, 4 is a first electrode, 5 is a second electrode, 6 is a 3rd electrode, 7 is a 4th electrode, 8 is a 5th electrode, 9 is InGaAsP
A cap layer made of InP, an upper cladding made of InP, a diffraction grating 11, a guide layer made of InGaAsP, an active layer made of InGaAsP, a buffer layer made of InGaAsP, and a lower cladding made of InP. 16 is the lower electrode, 17A and 17
B is an end face non-reflective coating, and 18 is an electrode separation groove. That is, in the semiconductor laser of this embodiment, the buffer layer 14, the active layer 13, the guide layer 1 are formed on the lower clad 15.
2, a diffraction grating 11 and an upper clad 10 are sequentially provided,
Further, a lower electrode 16 and an upper electrode are provided on the lower side and the upper side, respectively. In the present embodiment, the upper electrode is divided into five parts, that is, the first electrode 4, the second electrode 5, the third electrode 6, the fourth electrode 7 and the fifth electrode 8 by the four electrode separation grooves 18, The first to fifth electrodes 4 to 8 are divided into almost the same length. Also, the terminals are the first terminal 1, the second
There are three terminals, the second terminal 3 and the third terminal 3, which can operate independently. The first electrode 4 is connected to the first terminal 1, the second and fourth electrodes 5 and 7 are connected to the second terminal 2, and the third and fifth electrodes 6 and 8 are connected to the third terminal 3, respectively. is there. Further, both ends of the semiconductor layer are provided with end face antireflection coatings 17A and 17B to form a resonator, and the total resonator length is 600 μm. The end face provided with the end face non-reflective coating 17A serves as the emission end.

【0011】このような構成の多電極分布帰還型レーザ
において、第1端子1に40mA、第2端子2に80m
A、および第3端子3に80mAの電流をそれぞれ注入
してシングルモード発振をさせた。このようにシングル
モード発振させる条件は特に限定されず、各第1〜第3
端子1〜3に異なる電流を流しても、一定の電流を流し
ても良い。また、シングルモード発振する条件は各レー
ザ固体により異なるが、レーザ発振させながら適当な条
件を選定して、シングルモード発振させれば良い。
In the multi-electrode distributed feedback laser having such a structure, the first terminal 1 has a current of 40 mA and the second terminal 2 has a current of 80 m.
A current of 80 mA was injected into each of A and the third terminal 3 to cause single mode oscillation. The conditions for single-mode oscillation are not particularly limited, and each of the first to third
Different currents or constant currents may be passed through the terminals 1 to 3. The conditions for single-mode oscillation differ depending on each laser solid, but it is sufficient to select appropriate conditions while oscillating the laser and perform single-mode oscillation.

【0012】次に第2端子2および第3端子3に振幅が
20mAで互いに逆位相の変調電流を注入することによ
り変調させた。この場合の変調効率の周波数依存性を図
2に示す。図2は変調効率が10kHzから数100M
Hzまで平坦な周波数特性が得られることを示してい
る。これは、第2および第3端子2および3に逆位相の
変調電流を加えたので発熱による波長シフトが打ち消さ
れ、キャリアの効果による波長シフトのみが取り出され
たためである。この結果は、本発明の半導体レーザの変
調方法が良好な周波数特性を得る上で有効であることを
示している。なお、第2および第3端子2および3に加
える変調電流の振幅は、基本的には上述したように1:
1であるが、レーザ固体により、2:3あるいは3:2
などの条件から適宜選択するようにして、良好な周波数
特性を得るようにすれば良い。
Next, modulation was performed by injecting modulation currents having an amplitude of 20 mA and opposite phases to the second terminal 2 and the third terminal 3. The frequency dependence of the modulation efficiency in this case is shown in FIG. Figure 2 shows modulation efficiency from 10kHz to several 100M
It shows that a flat frequency characteristic can be obtained up to Hz. This is because an antiphase modulation current was applied to the second and third terminals 2 and 3, so that the wavelength shift due to heat generation was canceled and only the wavelength shift due to the effect of carriers was taken out. This result shows that the semiconductor laser modulation method of the present invention is effective in obtaining good frequency characteristics. The amplitude of the modulation current applied to the second and third terminals 2 and 3 is basically 1:
1, but 2: 3 or 3: 2 depending on the laser solid
It suffices to obtain a good frequency characteristic by appropriately selecting from such conditions.

【0013】<実施例2>本発明の第2の実施例を図3
に示す。図3において19は第1端子、20は第2端
子、21は第3端子、22は第4端子、23は第1電
極、24は第2電極、25は第3電極、26は第4電
極、27は第5電極、28は第6電極、29は第7電
極、30は電極分離溝、31はキャップ層、32は上方
クラッド、33は回折格子、34はガイド層、35は活
性層、36はバッファ層、37は下方クラッド、38A
および38Bは端面無反射コーティング、39は下方電
極であり、各半導体層の組成は実施例1と同様である。
本実施例では上方電極を6つの電極分離溝30により第
1電極23,第2電極24,第3電極25,第4電極2
6,第5電極27,第6電極28および第7電極29に
分割されており、各第1〜第7電極23〜29はほぼ同
じ長さに分割されている。また、端子は第1端子19,
第2端子20,第3端子21および第4端子22の4つ
であり、第1電極23は第1端子19に、第2,第4お
よび第6電極24,26および28は第2端子20に、
第3および第5電極25および27は第3端子21に、
および第7電極29は第4端子22に、それぞれ接続し
てある。なお、半導体層の両端面に端面無反射コーティ
ング38Aおよび38Bを施すことにより共振器を構成
している点も上述した実施例と同様であり、全共振器長
は600μmである。なお、出射端は端面無反射コーテ
ィング38Aが施されている端面であるが、本実施例で
は反対側の端面からも、後述するように強度変動のな
い、周波数のみが変調された光出力を取り出すことがで
きる。
<Embodiment 2> A second embodiment of the present invention is shown in FIG.
Shown in. In FIG. 3, 19 is a first terminal, 20 is a second terminal, 21 is a third terminal, 22 is a fourth terminal, 23 is a first electrode, 24 is a second electrode, 25 is a third electrode, and 26 is a fourth electrode. , 27 is a fifth electrode, 28 is a sixth electrode, 29 is a seventh electrode, 30 is an electrode separating groove, 31 is a cap layer, 32 is an upper cladding, 33 is a diffraction grating, 34 is a guide layer, 35 is an active layer, 36 is a buffer layer, 37 is a lower cladding, 38A
Reference numerals 38B and 38B are end-face antireflection coatings, 39 is a lower electrode, and the composition of each semiconductor layer is the same as in Example 1.
In this embodiment, the upper electrode is formed by the six electrode separation grooves 30 into the first electrode 23, the second electrode 24, the third electrode 25, and the fourth electrode 2.
6, the fifth electrode 27, the sixth electrode 28, and the seventh electrode 29, and each of the first to seventh electrodes 23 to 29 is divided into substantially the same length. The terminal is the first terminal 19,
The four terminals are the second terminal 20, the third terminal 21, and the fourth terminal 22, the first electrode 23 is the first terminal 19, and the second, fourth, and sixth electrodes 24, 26, and 28 are the second terminals 20. To
The third and fifth electrodes 25 and 27 are connected to the third terminal 21,
And the seventh electrode 29 is connected to the fourth terminal 22, respectively. It is to be noted that the fact that the resonator is configured by applying the end-face antireflection coatings 38A and 38B on both end faces of the semiconductor layer is the same as in the above-mentioned embodiment, and the total resonator length is 600 μm. Although the emission end is the end face to which the end face non-reflection coating 38A is applied, in the present embodiment, the frequency-modulated optical output without intensity fluctuation is taken out from the opposite end face as well, as will be described later. be able to.

【0014】かかる多電極分布帰還型レーザにおいて、
第1端子19に30mA、第2端子20に90mA、第
3端子21に60mA、および第4端子22に30mA
の電流をそれぞれ注入し、シングルモード発振をさせ
た。なお、上述したとおり、シングルモード発振させる
条件は特に限定されない。
In such a multi-electrode distributed feedback laser,
30 mA for the first terminal 19, 90 mA for the second terminal 20, 60 mA for the third terminal 21, and 30 mA for the fourth terminal 22.
The respective currents were injected to cause single mode oscillation. Note that, as described above, the conditions for single mode oscillation are not particularly limited.

【0015】次に第2および第3端子20および21に
互いに逆位相の変調電流を加えた。振幅は第2端子20
が30mA、第3端子21が20mAである。なお、こ
の変調電流の振幅の比は、上述したようにレーザ固体に
より適宜選定する必要がある。
Next, modulation currents of opposite phases were applied to the second and third terminals 20 and 21. The amplitude is the second terminal 20
Is 30 mA and the third terminal 21 is 20 mA. The ratio of the amplitudes of the modulation currents needs to be appropriately selected depending on the laser solid as described above.

【0016】この場合の変調効率の周波数依存性は10
kHzから数100MHzまで平坦であった。これは、
第2および第3端子20および21に逆位相の変調電流
を加えたので発熱による波長シフトが打ち消され、キャ
リアの効果による波長シフトのみが取り出されたためで
ある。この結果は本発明の半導体レーザの変調方法が良
好な周波数特性を得る上で有効であることを示してい
る。また、本実施例では、両端面に近い電極には変調電
流を加えていないので、両方の端面から強度変動のほと
んどない、周波数のみが変調された光出力を取り出すこ
とができる。なお、かかる効果を得る必要の内場合に
は、第7電極29を第3端子21に接続して第7電極に
も変調電流を注入するようにしても良い。
The frequency dependence of the modulation efficiency in this case is 10
It was flat from kHz to several 100 MHz. this is,
This is because the wavelength shift due to heat generation was canceled out because only the wavelength shift due to the effect of carriers was taken out because the modulation current having the opposite phase was applied to the second and third terminals 20 and 21. This result shows that the semiconductor laser modulation method of the present invention is effective in obtaining good frequency characteristics. Further, in the present embodiment, since the modulation current is not applied to the electrodes near both end faces, it is possible to take out the optical output in which only the frequency is modulated, with almost no intensity fluctuation, from both end faces. If it is necessary to obtain such an effect, the seventh electrode 29 may be connected to the third terminal 21 so that the modulation current is also injected to the seventh electrode.

【0017】本発明方法は、以上説明した実施例に限定
されるものではない。半導体レーザの半導体層の組成や
構成も特に限定されず、例えば、活性層にInGaAs
Pと、InGaAsPあるいはInGaAsとからなる
多重量子井戸構造を採用しても良い。
The method of the present invention is not limited to the embodiment described above. The composition and configuration of the semiconductor layer of the semiconductor laser are not particularly limited, and for example, InGaAs may be used as the active layer.
A multiple quantum well structure composed of P and InGaAsP or InGaAs may be adopted.

【0018】[0018]

【発明の効果】以上説明したように、本発明の半導体レ
ーザの変調方法は、変調電流を一つの電極グループに注
入し、それと逆位相の電流を異なった電極のグループに
同時に注入するため、熱による波長変化が打ち消し合う
ようにすることができるので、平坦な周波数特性が得ら
れるものである。
As described above, according to the semiconductor laser modulation method of the present invention, a modulation current is injected into one electrode group, and a current having an opposite phase is injected into different electrode groups at the same time. Since it is possible to cancel the wavelength changes due to each other, it is possible to obtain a flat frequency characteristic.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例である半導体レーザの構
造および結線を表す模式図である。
FIG. 1 is a schematic view showing the structure and connection of a semiconductor laser according to a first embodiment of the present invention.

【図2】本発明のレーザの変調方法による変調効率の周
波数依存性を示すグラフである。
FIG. 2 is a graph showing frequency dependence of modulation efficiency by the laser modulation method of the present invention.

【図3】本発明の第2の実施例にかかる半導体レーザの
構造および結線を表す模式図である。
FIG. 3 is a schematic diagram showing the structure and connection of a semiconductor laser according to a second embodiment of the present invention.

【図4】従来構造のレーザの変調方法による変調効率の
周波数依存性を示すグラフである。
FIG. 4 is a graph showing frequency dependence of modulation efficiency by a modulation method of a laser having a conventional structure.

【符号の説明】[Explanation of symbols]

1 第1端子 2 第2端子 3 第3端子 4 第1電極 5 第2電極 6 第3電極 7 第4電極 8 第5電極 9 キャップ層 10 上方クラッド 11 回折格子 12 ガイド層 13 活性層 14 バッファ層 15 下方クラッド 16 下方電極 17 端面無反射コーティング 18 電極分離溝 19 第1端子 20 第2端子 21 第3端子 22 第4端子 23 第1電極 24 第2電極 25 第3電極 26 第4電極 27 第5電極 28 第6電極 29 第7電極 30 電極分離溝 31 キャップ層 32 上方クラッド 33 回折格子 34 ガイド層 35 活性層 36 バッファ層 37 下方クラッド 38 端面無反射コーティング 39 下方電極 1 1st terminal 2 2nd terminal 3 3rd terminal 4 1st electrode 5 2nd electrode 6 3rd electrode 7 4th electrode 8 5th electrode 9 Cap layer 10 Upper clad 11 Diffraction grating 12 Guide layer 13 Active layer 14 Buffer layer 15 Lower Clad 16 Lower Electrode 17 Endless Reflective Coating 18 Electrode Separation Groove 19 First Terminal 20 Second Terminal 21 Third Terminal 22 Fourth Terminal 23 First Electrode 24 Second Electrode 25 Third Electrode 26 Fourth Electrode 27 Fifth Electrode 28 Sixth electrode 29 Seventh electrode 30 Electrode separation groove 31 Cap layer 32 Upper clad 33 Diffraction grating 34 Guide layer 35 Active layer 36 Buffer layer 37 Lower clad 38 End face anti-reflection coating 39 Lower electrode

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 片側の電極が4個以上に分割された分布
帰還型半導体レーザの変調方法であって、前記半導体レ
ーザの分割された電極の電極番号を出射端から順に第
1,第2,第3,…,第Nとし、第1電極を独立した第
1端子に接続し、第N電極を除く偶数番号の電極を総て
第2端子に接続し、第1電極と第N電極を除く奇数番号
の電極を総て第3端子に接続し、第N電極についてはN
が偶数か奇数かに応じて第2端子あるいは第3端子に接
続するか、または第4端子に接続し、第1〜第3端子に
それぞれ一定電流I1 ,I2 およびI3 を注入し、さら
に第4端子に第N電極が接続されている場合にはそれに
一定電流I4 を注入して、当該半導体レーザをシングル
モード発振させ、第2端子および第3端子にそれぞれ変
調電流IM2 およびIM3 を、当該変調電流IM2 およ
びIM3 の位相が逆位相となるように注入して周波数変
調を行うことを特徴とする半導体レーザの変調方法。
1. A method of modulating a distributed feedback semiconductor laser, wherein one electrode on one side is divided into four or more, wherein the electrode numbers of the divided electrodes of the semiconductor laser are first, second and , Third, Nth, the first electrode is connected to an independent first terminal, all the even-numbered electrodes except the Nth electrode are connected to the second terminal, and the first electrode and the Nth electrode are excluded Connect all odd numbered electrodes to the third terminal, and for the Nth electrode,
Depending on whether it is an even number or an odd number, it is connected to the second terminal or the third terminal, or is connected to the fourth terminal, and the constant currents I 1 , I 2 and I 3 are injected into the first to third terminals, respectively, Further, when the Nth electrode is connected to the fourth terminal, a constant current I 4 is injected into the fourth terminal to oscillate the semiconductor laser in single mode, and the modulation currents IM 2 and IM are supplied to the second terminal and the third terminal, respectively. A method of modulating a semiconductor laser, wherein 3 is injected so that the phases of the modulation currents IM 2 and IM 3 are opposite phases to perform frequency modulation.
JP11553893A 1993-05-18 1993-05-18 Modulation method of semiconductor laser Expired - Fee Related JP3228370B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11553893A JP3228370B2 (en) 1993-05-18 1993-05-18 Modulation method of semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11553893A JP3228370B2 (en) 1993-05-18 1993-05-18 Modulation method of semiconductor laser

Publications (2)

Publication Number Publication Date
JPH06326415A true JPH06326415A (en) 1994-11-25
JP3228370B2 JP3228370B2 (en) 2001-11-12

Family

ID=14665015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11553893A Expired - Fee Related JP3228370B2 (en) 1993-05-18 1993-05-18 Modulation method of semiconductor laser

Country Status (1)

Country Link
JP (1) JP3228370B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013211394A (en) * 2012-03-30 2013-10-10 Furukawa Electric Co Ltd:The Semiconductor laser control method, semiconductor laser control device and semiconductor laser device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013211394A (en) * 2012-03-30 2013-10-10 Furukawa Electric Co Ltd:The Semiconductor laser control method, semiconductor laser control device and semiconductor laser device

Also Published As

Publication number Publication date
JP3228370B2 (en) 2001-11-12

Similar Documents

Publication Publication Date Title
US4719636A (en) Wavelength tunable semiconductor laser device provided with control regions
US4932034A (en) Distributed feedback semiconductor laser device and current injection
JPH07307530A (en) Polarizable and modulatable semiconductor laser
US4847856A (en) Phase-shift distributed-feedback semiconductor laser
JP2001320124A (en) Modulator integrated light source and module for optical communication
JPH08162716A (en) Semiconductor laser and drive method therefor, optical communication method and node, and optical communication system
US4982408A (en) Variable oscillation wavelength semiconduction laser device
JP2914741B2 (en) Distributed feedback semiconductor laser
JP2002084033A (en) Distributed feedback semiconductor laser
JPS5878488A (en) Distributed feedback type semiconductor laser
JPS6332988A (en) Distributed feedback semiconductor laser
JPH06326415A (en) Semiconductor laser modulating method
JPH07231132A (en) Semiconductor optical device
JP3151755B2 (en) Distributed feedback semiconductor laser
JPH01262683A (en) Method for driving semiconductor laser
JPS60152086A (en) Semiconductor laser device
JPS61164289A (en) Integrated semiconductor laser
JPH04105386A (en) Wavelength variable semiconductor laser
JPH0529709A (en) Multielectrode distributed feedback semiconductor laser
JPH07131104A (en) Semiconductor laser device
JPH08111561A (en) Semiconductor wavelength conversion element
JPS63122188A (en) Photo-semiconductor device
JPH01183180A (en) Semiconductor light emitting device
JPS63211787A (en) Semiconductor laser element
JPH0461183A (en) Variable wavelength semiconductor laser

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees