JPH08111561A - Semiconductor wavelength conversion element - Google Patents

Semiconductor wavelength conversion element

Info

Publication number
JPH08111561A
JPH08111561A JP24585194A JP24585194A JPH08111561A JP H08111561 A JPH08111561 A JP H08111561A JP 24585194 A JP24585194 A JP 24585194A JP 24585194 A JP24585194 A JP 24585194A JP H08111561 A JPH08111561 A JP H08111561A
Authority
JP
Japan
Prior art keywords
wavelength
light
wavelength conversion
semiconductor
diffraction gratings
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24585194A
Other languages
Japanese (ja)
Inventor
Hiroshi Yasaka
洋 八坂
Hiroaki Sanjo
広明 三条
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP24585194A priority Critical patent/JPH08111561A/en
Publication of JPH08111561A publication Critical patent/JPH08111561A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To provide a wavelength conversion element formed of semiconductor which is applicable in the field of an optical wave network, optical switching, optical data processing, optical cross connection, and the like. CONSTITUTION: A wave length conversion element of semiconductor laser structure is possessed of an active layer which has an optical gain with an injection of electrical current and three diffraction gratings high in selective reflection factor to light of certain wavelengths both provided in a resonator, wherein the three diffraction gratings are represented by 21 to 23 respectively and different from each other in period, and the reflection center wavelengths of the diffraction gratings determined basing on their periods are so set as to be much different, from the transmission forbidden wavelength width, and light ray of various wavelengths is taken out from a single element.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光波ネットワーク、光
交換、光情報処理、光クロスコネクト等の分野に用いら
れる半導体により形成された波長変換素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wavelength conversion element formed of a semiconductor used in the fields of lightwave networks, optical switching, optical information processing, optical cross-connects and the like.

【0002】[0002]

【従来の技術】光波ネットワーク、光交換、光情報処
理、光クロスネクト等の分野で用いることを目的とした
波長変換素子には、例えば、T.Durhuus 等の報告(IEEE
Photonics Technology Letters, Vol. 5,pp.86-88,199
3) による発振状態にある半導体レーザを用いたもの
と、例えば、B.Mikkelsen 等の報告(19th European Con
ference on Optical Communication,Technical Digest
ThP 12.6,1993)による半導体光増幅器を用いたものがあ
る。
2. Description of the Related Art Wavelength conversion elements intended for use in the fields of lightwave networks, optical switching, optical information processing, optical cross-connect, etc. include, for example, reports by T. Durhuus (IEEE).
Photonics Technology Letters, Vol. 5, pp.86-88,199
Using a semiconductor laser in the oscillation state according to (3) and, for example, the report by B. Mikkelsen et al. (19th European Con
conference on Optical Communication, Technical Digest
ThP 12.6, 1993).

【0003】この発振状態にある半導体レーザを用いた
波長変換の原理は、入力信号光によるレーザ発振モード
利得の減少である。これを図を用いて説明する。図8に
示すように、レーザ共振器内のキャリア(電子、正孔)
01の結合により、誘導放出される波長変換光(発振
光)02が出力されている半導体レーザへ、図9に示す
ように、信号光03を入力した場合には、該信号光03
の誘導増幅にレーザ共振器内のキャリヤ01が費やさ
れ、レーザの波長変換光(発振光)02の強度が減少す
る。
The principle of wavelength conversion using the semiconductor laser in this oscillating state is to reduce the laser oscillation mode gain due to the input signal light. This will be described with reference to the drawings. As shown in FIG. 8, carriers (electrons, holes) in the laser cavity
As shown in FIG. 9, when the signal light 03 is input to the semiconductor laser that outputs the wavelength-converted light (oscillation light) 02 that is stimulated and emitted by the coupling of 01, the signal light 03
The carrier 01 in the laser resonator is consumed for inductive amplification of, and the intensity of the wavelength-converted light (oscillation light) 02 of the laser decreases.

【0004】このため入力信号光へ重畳されていた強度
変動信号を、レーザの発振波長へ重畳することができ、
この時、両者の波長が異なるため、信号光の波長変換が
達成される。この場合、半導体レーザとしては単一モー
ドで発振するレーザが用いられるために、信号光波長が
一波長のみに変換される。
Therefore, the intensity fluctuation signal, which has been superimposed on the input signal light, can be superimposed on the oscillation wavelength of the laser,
At this time, since the wavelengths of the two are different, wavelength conversion of the signal light is achieved. In this case, since a laser that oscillates in a single mode is used as the semiconductor laser, the signal light wavelength is converted to only one wavelength.

【0005】また、例えばファブリペロ型レーザのよう
なマルチモードレーザを波長変換素子として用いた場合
にも、レーザのモード間隔が狭く且つモードが多いため
に入力信号光波長に最も近接したモードが入力信号光へ
引き込まれ、その波長の発振光のみが出力される。
Also, when a multimode laser such as a Fabry-Perot type laser is used as a wavelength conversion element, the mode closest to the input signal light wavelength is the input signal because the mode interval of the laser is narrow and there are many modes. It is drawn into the light and only the oscillation light of that wavelength is output.

【0006】半導体光増幅器を用いた波長変換における
動作原理は、入力光による素子増幅利得の飽和を用いて
いる。半導体光増幅器にはその増幅利得が飽和する程度
の入力光1(プローブ光)が入力されており、そこへそ
れとは波長の異なる信号光が入力される。信号光によ
り、素子内増幅利得が飽和し、素子から出力されるプロ
ーブ光強度も信号光強度によって変動する。このため、
信号光に重畳された強度偏重情報を他の波長のプローブ
光へ乗せ変えることができ、波長変換が達成される。
The operating principle in wavelength conversion using a semiconductor optical amplifier uses saturation of the element amplification gain due to input light. Input light 1 (probe light) to the extent that the amplification gain is saturated is input to the semiconductor optical amplifier, and signal light having a different wavelength from that is input thereto. The amplification gain in the element is saturated by the signal light, and the intensity of the probe light output from the element also changes depending on the intensity of the signal light. For this reason,
The intensity bias information superimposed on the signal light can be transferred to the probe light of another wavelength and changed, and wavelength conversion is achieved.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、発振状
態にある半導体レーザを用いた波長変換においては、入
力光波長は素子の共振器により決定される一つの波長の
みに変換されていた。この場合、一つの信号光の波長を
変換してユーザへ信号を送る際には、時間分割で変換光
波長を切り替えて、多数のユーザへ信号を送る必要があ
り、複数ユーザへの、同時に一括しての信号伝送は不可
能であった。
However, in wavelength conversion using a semiconductor laser in an oscillating state, the input light wavelength is converted into only one wavelength determined by the resonator of the element. In this case, when converting the wavelength of one signal light and sending the signal to the user, it is necessary to switch the converted light wavelength by time division and send the signal to many users. Then, the signal transmission was impossible.

【0008】また、半導体光増幅器を用いた波長変換に
おいては、プローブ光として複数の波長の光を導入する
ことにより、入力光波長を複数波長の信号へ変換するこ
とは可能であるものの、プローブ光光源として複数の装
置が必要となり、システムが大きなものとなると共に消
費電力も大きくなるという点、また変換光波長により、
変換効率が急激に変化してしまう点等が問題点であっ
た。
Further, in wavelength conversion using a semiconductor optical amplifier, it is possible to convert the input light wavelength into a signal of a plurality of wavelengths by introducing light of a plurality of wavelengths as probe light, but the probe light is used. Multiple devices are required as a light source, the system becomes large and the power consumption increases, and due to the converted light wavelength,
The problem is that the conversion efficiency changes abruptly.

【0009】これらの問題点を解決するために低消費電
力、コンパクトで、入力信号光波長を複数の波長へ変換
できる波長変換素子の実現が必要であった。
In order to solve these problems, it has been necessary to realize a wavelength conversion element which is low in power consumption, compact, and capable of converting an input signal light wavelength into a plurality of wavelengths.

【0010】本発明は、上記従来技術に鑑みて成された
ものであり、低消費電力、コンパクトで、入力信号光波
長を複数の波長へ変換できる波長変換素子を提供するこ
とを目的とする。
The present invention has been made in view of the above prior art, and an object of the present invention is to provide a wavelength conversion element which is low in power consumption, compact, and capable of converting an input signal light wavelength into a plurality of wavelengths.

【0011】[0011]

【課題を解決するための手段】かかる目的を達成するた
めに本発明の半導体波長変換素子の構成は、少なくと
も、電流を注入することにより光に対する利得を有する
活性層と、光の波長に対して選択的に高い反射率を有す
る回析格子とを共振器内に有する半導体レーザ構造の波
長変換素子において、周期の異なる回析格子を少なくと
も二以上有し、該複数の周期の回析格子は、互いに各々
の回析格子の周期により決定される反射中央波長(ブラ
ッグ波長)が、回析格子の透過禁止波長幅(ストップバ
ンド幅)よりも大きく異なっていることを特徴とする。
In order to achieve the above object, the semiconductor wavelength conversion device of the present invention has at least an active layer having a gain for light by injecting a current and a wavelength for the light. In a wavelength conversion element having a semiconductor laser structure having a diffraction grating having a selectively high reflectance in a resonator, it has at least two diffraction gratings having different periods, and the diffraction gratings having a plurality of periods are It is characterized in that the reflection center wavelength (Bragg wavelength) determined by the period of each diffraction grating is significantly different from the transmission prohibited wavelength width (stop band width) of the diffraction grating.

【0012】前記構成の半導体波長変換素子において、
共振器内に形成された前記複数の回析格子は、各回析格
子領域の光の進行方向に対して中央部分に回析格子の位
相を半周期ずらせた部分を有することを特徴とする。
In the semiconductor wavelength conversion device having the above structure,
The plurality of diffraction gratings formed in the resonator are characterized in that each diffraction grating region has a portion in which a phase of the diffraction grating is shifted by a half cycle in a central portion with respect to a traveling direction of light.

【0013】前記構成の半導体波長変換素子において、
素子へのバイアス電流を印可する片側の電極を、分割電
極構造とすることを特徴とする。
In the semiconductor wavelength conversion device having the above structure,
One of the electrodes that applies a bias current to the device has a split electrode structure.

【0014】すなわち、本発明では、素子の共振器内に
複数の周期の回析格子を形成し、素子自身はその複数の
回析格子の周期で決まる複数の波長で発振可能となって
おり、信号光を素子へ注入することにより信号光へ重畳
された信号を、素子の複数発振波長へ変換することがで
きるようにしたものである。
That is, in the present invention, a diffraction grating having a plurality of periods is formed in the resonator of the element, and the element itself can oscillate at a plurality of wavelengths determined by the periods of the plurality of diffraction gratings. By injecting the signal light into the element, the signal superimposed on the signal light can be converted into a plurality of oscillation wavelengths of the element.

【0015】[0015]

【作用】上記構成において、光導波路に形成された回析
格子のブラッグ波長λB は2Λ・n eq と表される。こ
こで、Λは回析格子の周期、n eq は光導波路の光に対
する等価屈折率を表す。また、当該回析格子のために、
光導波路を伝搬できる光には波長依存性があらわれ、特
定の波長領域の光が当該光導波路を伝搬できなくなる。
この波長領域を「ストップバンド」と称している。光導
波路内に異なる周期Λ’の回析格子を設け、且つ両者の
ブラッグ波長差を回析格子のストップバンド幅以上とす
ることにより、当該光導波路に光に対する利得を待たせ
た場合に両ブラッグ波長近傍の同時発振が得られる。当
該光導波路内に周期の異なる複数の回析格子を形成する
ことにより、対応した複数波長での発振光を得ることが
できる。このように、素子共振器内に形成する回析格子
の周期を変化することにより、その回析格子のブラッグ
波長が変化し、その波長に対応した波長で発振が行われ
ることになり、単一素子から複数波長の光を取り出すこ
とができる。
In the above structure, the Bragg wavelength λ B of the diffraction grating formed in the optical waveguide is expressed as 2Λ · n eq . Here, Λ represents the period of the diffraction grating, and n eq represents the equivalent refractive index of the light in the optical waveguide. Also, because of the diffraction grating,
Light that can propagate through the optical waveguide has wavelength dependence, and light in a specific wavelength region cannot propagate through the optical waveguide.
This wavelength region is called "stop band". By providing a diffraction grating with different period Λ'in the optical waveguide and setting the Bragg wavelength difference between them to be equal to or larger than the stop band width of the diffraction grating, both Bragg gratings can be used when the optical waveguide is made to wait for gain to light. Simultaneous oscillation near the wavelength can be obtained. By forming a plurality of diffraction gratings having different periods in the optical waveguide, it is possible to obtain oscillated light with a corresponding plurality of wavelengths. In this way, by changing the period of the diffraction grating formed in the element resonator, the Bragg wavelength of the diffraction grating is changed, and the oscillation is performed at the wavelength corresponding to that wavelength. Light of multiple wavelengths can be extracted from the device.

【0016】[0016]

【実施例】以下、本発明についての好適な一実施例を参
照して詳細に説明する。
The present invention will be described in detail below with reference to a preferred embodiment of the present invention.

【0017】〔実施例1〕図1は、本発明の半導体波長
変換素子の第1の実施例の概略を示す。
[Embodiment 1] FIG. 1 schematically shows a first embodiment of a semiconductor wavelength conversion device of the present invention.

【0018】同図に示すように、n−InP基板11上
に形成された活性領域12は、バンド端波長1.55μ
mのInGaAsP半導体混晶により形成した。上記活
性領域12の上にたバンド端波長1.3μmのInGa
AsP層13が形成され、この上に各回析格子21,2
2,23を各々形成した。この後、p−InP14が形
成され、p側電極15、及びn側電極16を各々形成し
た。
As shown in the figure, the active region 12 formed on the n-InP substrate 11 has a band edge wavelength of 1.55 μm.
m InGaAsP semiconductor mixed crystal. InGa having a band edge wavelength of 1.3 μm formed on the active region 12
An AsP layer 13 is formed, and each diffraction grating 21, 2 is formed thereon.
2 and 23 were formed respectively. Then, p-InP14 was formed, and the p-side electrode 15 and the n-side electrode 16 were respectively formed.

【0019】本実施例では、回析格子の周期変化数は3
とした。この回析格子21〜23の三つの領域の長さL
は、300μmであった(全素子長900μm)。
In this embodiment, the number of periodic changes in the diffraction grating is 3
And The length L of the three regions of this diffraction grating 21-23
Was 300 μm (total device length 900 μm).

【0020】また、回析格子の結合定数は100cm-1
であり、各々中央部に位相を反転させた領域( λ/4シフ
ト領域) 24を形成した。領域I,II,及びIIIの
回析格子21〜23の周期Λ1 , Λ2 及びΛ3 は240
6A,2422A及び2438Aとした。この素子のし
きい値以上でのバイアス電流印可時の発振スペクトル
を、図2に示す。1.54μm(λ1 )、1.55μm
(λ2 )及び1.56μm(λ3 )にそれぞれの回析格
子の周期に対応して発振モードが3本観測された。この
波長間隔はそれぞれの回析格子のストップバンド幅(〜
3nm)に較べ十分大きかった。
The coupling constant of the diffraction grating is 100 cm -1.
And a phase-inverted region (λ / 4 shift region) 24 was formed in each central portion. The periods Λ 1 , Λ 2 and Λ 3 of the diffraction gratings 21 to 23 in the regions I, II and III are 240
6A, 2422A and 2438A. FIG. 2 shows the oscillation spectrum of this device when a bias current is applied above the threshold value. 1.54 μm (λ 1 ), 1.55 μm
Three oscillation modes were observed at (λ 2 ) and 1.56 μm (λ 3 ) corresponding to the period of each diffraction grating. This wavelength interval is the stop band width of each diffraction grating (~
3 nm) was sufficiently large.

【0021】図3に示すように、10Gb/sNRZ信
号により強調された波長1.555μm(λ0 )の信号
光を注入した際の、素子からの出力光(波長変換光)の
時間依存性を図4に示す。波長(λ0 )の入力信号光に
重畳された信号を波長λ1 、λ2 及びλ3 の信号光へ同
時に変換できていることが判明した。
As shown in FIG. 3, the time dependence of the output light (wavelength-converted light) from the device when the signal light having the wavelength of 1.555 μm (λ 0 ) emphasized by the 10 Gb / s NRZ signal is injected. As shown in FIG. It was found that the signal superposed on the input signal light of the wavelength (λ 0 ) can be simultaneously converted into the signal light of the wavelengths λ 1 , λ 2 and λ 3 .

【0022】また、回析格子の周期の異なる領域を増加
することにより、同時信号変換波長を増やすことができ
ることはいうまでもない。
Needless to say, the simultaneous signal conversion wavelength can be increased by increasing the regions of the diffraction grating having different periods.

【0023】〔実施例2〕図5は、本発明の半導体波長
変換素子の第2の実施例の概略を示す。
[Second Embodiment] FIG. 5 schematically shows a second embodiment of the semiconductor wavelength conversion device of the present invention.

【0024】同図に示すように、本実施例に係る素子は
図1に示す第1の実施例に係る素子におけるn側電極1
6が、回析格子21〜23の周期の異なる三領域I,I
I,IIIで三分割、すなわち、領域Iのn側電極16
A、領域IIのn側電極 16B及び領域IIIのn側
電極16Cとなるように、各々分割されていることを特
徴とする。これにより、各々の領域I,II,IIIへ
バイアスする電流値を独立に制御することが可能となっ
ている。
As shown in the figure, the element according to the present embodiment is the n-side electrode 1 in the element according to the first embodiment shown in FIG.
6 denotes three regions I, I having different periods of the diffraction gratings 21-23.
Three divisions by I and III, that is, the n-side electrode 16 in the region I
A, the n-side electrode 16B in the region II, and the n-side electrode 16C in the region III are each divided. As a result, it is possible to independently control the current value biasing each of the regions I, II, and III.

【0025】上記三領域を同時にバイアスし、図3に示
す波長(λ0 )の信号光を注入した際には、実施例1に
示したと同様な、図4の結果を得ることができた。
When the above three regions were biased at the same time and the signal light having the wavelength (λ 0 ) shown in FIG. 3 was injected, the same result as shown in Example 1 could be obtained as shown in FIG.

【0026】さらに、本実施例による素子において、領
域IIへバイアスする電流値を当該領域が発振に至る値
の直下にバイアスすることにより、図6(変換光スペク
トル)及び図7(時間対応スペクトル)に示すように、
波長λ2 の変換光を取り除くことができた。
Further, in the device according to the present embodiment, the current value biased to the region II is biased just below the value at which the region reaches oscillation, so that FIG. 6 (converted light spectrum) and FIG. 7 (time corresponding spectrum). As shown in
The converted light of wavelength λ 2 could be removed.

【0027】この機構は、他の波長の変換光においても
実現でき、多波長へ変換された信号光の削除が簡単に、
且つ各波長で独立に行えることがわかった。
This mechanism can also be realized with converted light of other wavelengths, and the signal light converted into multiple wavelengths can be easily deleted.
Moreover, it was found that each wavelength can be independently performed.

【0028】[0028]

【発明の効果】以上、実施例に基づいて具体的に説明し
たように、本発明の半導体波長変換素子によれば、コン
パクトな一台の半導体素子で、一つの入力信号光の波長
を、他の複数の波長の信号光へと一括して同時に変換す
ることが可能となった。
As described above in detail with reference to the embodiments, according to the semiconductor wavelength conversion element of the present invention, one compact semiconductor element can change the wavelength of one input signal light to another. It is now possible to convert the signal light of multiple wavelengths at once to the same time.

【0029】また、複数波長へと変換された信号光は独
立に素子へのバイアス電流を制御することにより、制御
可能となるという、効果を奏する。
Further, the signal light converted into a plurality of wavelengths can be controlled by independently controlling the bias current to the element.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例としての半導体波長変換
素子の概略図である。
FIG. 1 is a schematic view of a semiconductor wavelength conversion device as a first embodiment of the present invention.

【図2】図1の素子の変換光スペクトルである。FIG. 2 is a converted light spectrum of the device of FIG.

【図3】入力信号光(波長λ0 =1.555μm)の時
間対応スペクトルである。
FIG. 3 is a time-corresponding spectrum of input signal light (wavelength λ 0 = 1.555 μm).

【図4】実施例1による半導体波長変換素子から変換光
の時間応答スペクトルである。
FIG. 4 is a time response spectrum of converted light from the semiconductor wavelength conversion device according to the first embodiment.

【図5】本発明の第2の実施例としての半導体波長変換
素子の概略図である。
FIG. 5 is a schematic view of a semiconductor wavelength conversion device as a second embodiment of the present invention.

【図6】実施例2による半導体波長変換素子の第II領
域へのバイアス電流のみをしきい値直下とした場合の変
換光スペクトルである。
FIG. 6 is a converted light spectrum in the case where only the bias current to the region II of the semiconductor wavelength conversion device according to Example 2 is set just below the threshold value.

【図7】実施例2による半導体波長変換素子の第II領
域へのバイアス電流のみをしきい値直下とした場合の変
換光の時間対応スペクトルである。
FIG. 7 is a time-corresponding spectrum of the converted light when only the bias current to the region II of the semiconductor wavelength conversion device according to the second embodiment is set just below the threshold value.

【図8】波長変換素子の動作原理を説明するための図で
ある。
FIG. 8 is a diagram for explaining the operating principle of the wavelength conversion element.

【図9】波長変換素子の動作原理を説明するための図で
ある。
FIG. 9 is a diagram for explaining the operation principle of the wavelength conversion element.

【符号の説明】[Explanation of symbols]

11 n−InP基板 12 活性領域 13 InGaAsP層 14 p−InP 15 p側電極 16 n側電極 16A 領域Iのn側電極 16B 領域IIのn側電極 16C 領域IIIのn側電極 21 領域Iの周期Λ1 の回析格子 22 領域IIの周期Λ2 の回析格子 23 領域IIIの周期Λ3 の回析格子 24 領域( λ/4シフト領域)11 n-InP Substrate 12 Active Region 13 InGaAsP Layer 14 p-InP 15 p-side Electrode 16 n-side Electrode 16A Region I n-side Electrode 16B Region II n-side Electrode 16C Region III n-side Electrode 21 Region I Period Λ 1 Diffraction grating 22 Diffraction grating with period Λ 2 of region II 23 Diffraction grating with period Λ 3 of region III 24 region (λ / 4 shift region)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも、電流を注入することにより
光に対する利得を有する活性層と、光の波長に対して選
択的に高い反射率を有する回析格子とを共振器内に有す
る半導体レーザ構造の波長変換素子において、 周期の異なる回析格子を少なくとも二以上有し、 該複数の周期の回析格子は、互いに各々の回析格子の周
期により決定される反射中央波長(ブラッグ波長)が、
回析格子の透過禁止波長幅(ストップバンド幅)よりも
大きく異なっていることを特徴とする半導体波長変換素
子。
1. A semiconductor laser structure having at least an active layer having a gain for light by injecting a current and a diffraction grating having a high reflectance selectively with respect to a wavelength of light in a resonator. In the wavelength conversion element, at least two diffraction gratings having different periods are provided, and the diffraction gratings having a plurality of periods have reflection center wavelengths (Bragg wavelengths) that are mutually determined by the periods of the respective diffraction gratings.
A semiconductor wavelength conversion device characterized in that the wavelength is significantly different from the transmission-prohibited wavelength width (stop band width) of the diffraction grating.
【請求項2】 請求項1記載の半導体波長変換素子にお
いて、 共振器内に形成された前記複数の回析格子は、各回析格
子領域の光の進行方向に対して中央部分に回析格子の位
相を半周期ずらせた部分を有することを特徴とする半導
体波長変換素子。
2. The semiconductor wavelength conversion device according to claim 1, wherein the plurality of diffraction gratings formed in the resonator have diffraction gratings in a central portion with respect to the traveling direction of light in each diffraction grating region. A semiconductor wavelength conversion device having a portion with a phase shifted by a half cycle.
【請求項3】 請求項1又は2記載の半導体波長変換素
子において、 素子へのバイアス電流を印可する片側の電極を、分割電
極構造とすることを特徴とする半導体波長変換素子。
3. The semiconductor wavelength conversion element according to claim 1, wherein the electrode on one side for applying a bias current to the element has a split electrode structure.
JP24585194A 1994-10-12 1994-10-12 Semiconductor wavelength conversion element Pending JPH08111561A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24585194A JPH08111561A (en) 1994-10-12 1994-10-12 Semiconductor wavelength conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24585194A JPH08111561A (en) 1994-10-12 1994-10-12 Semiconductor wavelength conversion element

Publications (1)

Publication Number Publication Date
JPH08111561A true JPH08111561A (en) 1996-04-30

Family

ID=17139791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24585194A Pending JPH08111561A (en) 1994-10-12 1994-10-12 Semiconductor wavelength conversion element

Country Status (1)

Country Link
JP (1) JPH08111561A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005064471A (en) * 2003-07-25 2005-03-10 Mitsubishi Electric Corp Optical device, manufacturing method thereof, and semiconductor laser oscillator
EP2113973A1 (en) * 2008-04-29 2009-11-04 Alcatel Lucent Laser source and method for generating millimeter wave
US8238017B2 (en) 2009-12-18 2012-08-07 Alcatel Lucent Photonic match filter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005064471A (en) * 2003-07-25 2005-03-10 Mitsubishi Electric Corp Optical device, manufacturing method thereof, and semiconductor laser oscillator
EP2113973A1 (en) * 2008-04-29 2009-11-04 Alcatel Lucent Laser source and method for generating millimeter wave
US8238017B2 (en) 2009-12-18 2012-08-07 Alcatel Lucent Photonic match filter

Similar Documents

Publication Publication Date Title
JP3323725B2 (en) Polarization modulation laser, driving method thereof, and optical communication system using the same
US5742415A (en) Optical switching device
Joergensen et al. All-optical wavelength conversion at bit rates above 10 Gb/s using semiconductor optical amplifiers
JPH07307530A (en) Polarizable and modulatable semiconductor laser
JPH01199487A (en) Semiconductor laser device
JPH06103778B2 (en) Optical device including semiconductor distributed feedback laser and method of driving the same
KR20040054073A (en) self-mode locked multisection semiconductor laser diode
JP2018060974A (en) Semiconductor optical integrated element
JPH11312846A (en) Distribution feedback type semiconductor laser comprising phase shift region of polarization dependence and optical transmitter and optical communication system using the same
JPH08111561A (en) Semiconductor wavelength conversion element
JPH08184789A (en) Polarization nondependent wavelength filter
US6356382B1 (en) Optical wavelength converter with active waveguide
JP4242864B2 (en) Wavelength converter for generating a tunable laser light source by itself
CA2253485C (en) Optical clock division
JP4653940B2 (en) Light controller for communication
JPS61107781A (en) Single axial-mode semiconductor laser device
US6498885B1 (en) Semiconductor nonlinear waveguide and optical switch
JPH08186313A (en) Polarization modulable semiconductor laser and optical communication system
JP2630052B2 (en) Matrix optical switch
JP2004158590A (en) Semiconductor pulsed light source
JP3287443B2 (en) Semiconductor laser capable of polarization modulation and optical communication system using the same
Grosskopf et al. Frequency conversion by four-wave-mixing in LD amplifiers
JPS63122188A (en) Photo-semiconductor device
JPH0722702A (en) Semiconductor laser device, its drive method, and optical communication system using the device
JPH08334797A (en) Optical wavelength conversion integrating element

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030826