JPH08184789A - Polarization nondependent wavelength filter - Google Patents

Polarization nondependent wavelength filter

Info

Publication number
JPH08184789A
JPH08184789A JP7015544A JP1554495A JPH08184789A JP H08184789 A JPH08184789 A JP H08184789A JP 7015544 A JP7015544 A JP 7015544A JP 1554495 A JP1554495 A JP 1554495A JP H08184789 A JPH08184789 A JP H08184789A
Authority
JP
Japan
Prior art keywords
polarization
wavelength
mode
active
waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7015544A
Other languages
Japanese (ja)
Inventor
Hajime Sakata
肇 坂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP7015544A priority Critical patent/JPH08184789A/en
Publication of JPH08184789A publication Critical patent/JPH08184789A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To provide the polarization nondependent wavelength filiter which is high in efficiency, low in driving power, high in response speed and high in wavelength resolution, and can stably select specific wavelength from input light having an arbitrary polarization state. CONSTITUTION: The wavelength filter consists of a polarized wave separation area and a wavelength selection area consisting of two nearby active waveguides 11 and 12. In the polarized light separation area, an identical-directional grating 13 is formed and one of a TE mode and a TM mode as orthogonal polarization modes is coupled in the same direction between the two active waveguides 11 and 12. In the wavelength selection area, a DFB or DBR of grating 14 is formed and the TE Mode of one active waveguide 12 and the TM mode of the other active waveguide 11 are selected and transmitted with equal wavelength, so that wavelength selection can be performed irrelevantly to the polarization state of transmitted light.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光波長多重通信などに
おいて使用される任意の波長を選択する波長フィルタで
あって、入力の偏波状態が変動しても、安定した受信出
力を得る様にできる偏波無依存型の波長フィルタに関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wavelength filter for selecting an arbitrary wavelength used in optical wavelength division multiplexing communication, etc., so as to obtain a stable reception output even if the polarization state of the input changes. The present invention relates to a polarization-independent wavelength filter that can be used.

【0002】[0002]

【従来の技術】従来、波長多重化された光信号の分波を
行なう為のデバイスがいくつか提案されている。特に、
グレーティングや方向性結合器などを基本とした導波型
波長フィルタは、バルク型波長フィルタに比べて、小型
化に適している。そして、他の機能デバイス、例えば、
光検出器等との集積化も容易であり、設計の自由度も高
い。さらには、その中心選択波長の制御が容易であり、
波長可変の特徴を生かした応用にも適用できる。反面、
導波型波長フィルタでは、透過波長が入力光の偏波状態
によって異なる問題がある。そこで、例えば、特開昭5
7−168220号明細書などで提示される波長フィル
タのように、入力光を各偏波成分に分離する偏波分離領
域と各偏波成分について波長を選択する波長選択領域と
波長選択された各偏波成分を合成する偏波合成領域を集
積化した構造で偏波の問題を解決していた。
2. Description of the Related Art Heretofore, some devices have been proposed for demultiplexing a wavelength-multiplexed optical signal. In particular,
A waveguide type wavelength filter based on a grating or a directional coupler is suitable for downsizing as compared with a bulk type wavelength filter. And other functional devices, for example,
It is easy to integrate with photodetectors and has a high degree of freedom in design. Furthermore, it is easy to control the central selection wavelength,
It can also be applied to applications that make use of the wavelength tunable feature. On the other hand,
The waveguide type wavelength filter has a problem that the transmission wavelength varies depending on the polarization state of the input light. Then, for example, Japanese Patent Laid-Open No. Sho 5
As in the wavelength filter presented in the specification of JP-A-7-168220, a polarization separation region for separating input light into each polarization component, a wavelength selection region for selecting a wavelength for each polarization component, and each wavelength selected region. The problem of polarization was solved by the integrated structure of the polarization combining area that combines the polarization components.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、前記従
来例に示すような波長フィルタでは、波長選択の手段と
して、LiNbO3等の光学結晶によるTE−TMモー
ド変換を利用しているため、波長分解能が1nm程度と
比較的広く、例えば波長可変なDFBレーザ等を利用す
るような高密度波長多重システムへの適応は困難であっ
た。さらには、TE−TMモード変換を音響光学効果で
実行するものでは応答速度が遅く、電気光学効果による
ものでは高い駆動電圧が要求されるなどの難点があっ
た。さらには、光学結晶には光に対する利得がない為、
波長フィルタ自身の挿入損失は避けられなかった。
However, in the wavelength filter as shown in the conventional example, since the TE-TM mode conversion by the optical crystal such as LiNbO 3 is used as the wavelength selecting means, the wavelength resolution is high. It is relatively wide, about 1 nm, and it has been difficult to adapt to a high-density wavelength division multiplexing system that uses, for example, a wavelength-tunable DFB laser. Further, there are problems that the response speed is slow in the case where the TE-TM mode conversion is performed by the acousto-optic effect, and that a high drive voltage is required in the case where the electro-optic effect is used. Furthermore, since optical crystals have no gain for light,
The insertion loss of the wavelength filter itself was unavoidable.

【0004】従って、本発明の第1の目的は、任意の偏
波状態を有する入力光から、特定の波長を安定に選択で
きる偏波無依存波長フィルタを、高効率、低パワー駆
動、高速応答速度、且つ高波長分解能で提供することに
ある。本出願に係る第2の発明の目的は、上記第1の目
的に加えて、本発明による波長フィルタの作製工程を大
幅に簡略化することにある。本出願に係る第3の発明の
目的は、上記第1の目的に加えて、本発明による波長フ
ィルタの出力光と後続デバイス、例えば光検出器との結
合効率を向上させることにある。本出願に係る第4の発
明の目的は、上記第1の目的に加えて、本発明による波
長フィルタの偏波無依存性を更に高めることにある。
Therefore, a first object of the present invention is to provide a polarization-independent wavelength filter capable of stably selecting a specific wavelength from input light having an arbitrary polarization state, with high efficiency, low power drive and high speed response. It is to provide with high speed and high wavelength resolution. An object of a second invention according to the present application is, in addition to the above first object, to greatly simplify the manufacturing process of the wavelength filter according to the present invention. In addition to the first object, the third object of the present application is to improve the coupling efficiency between the output light of the wavelength filter according to the present invention and the succeeding device, for example, a photodetector. The fourth object of the present application is, in addition to the first object, to further increase the polarization independence of the wavelength filter according to the present invention.

【0005】[0005]

【課題を解決するための手段】上記第1の目的を達成す
る為、本発明は、近接した2つの活性導波路からなる偏
波分離領域及び波長選択領域から構成される波長フィル
タであって、該偏波分離領域には同方向結合グレーティ
ングが形成されていて、直交する偏波モードであるTE
モードとTMモードのいずれか一方が該2つの活性導波
路間で同方向に結合を生じ、且つ、該波長選択領域には
DFBまたはDBRグレーティングが形成されていて、
一方の活性導波路におけるTEモードと、他方の活性導
波路におけるTMモードとが等しい波長で選択透過され
ることにより、伝送光の偏波状態に関わりなく波長選択
を行なうことができる特徴を有する。
In order to achieve the above first object, the present invention provides a wavelength filter comprising a polarization separation region and a wavelength selection region consisting of two active waveguides in close proximity to each other, A co-directional coupling grating is formed in the polarization separation region, and TE which is a polarization mode orthogonal to each other is formed.
One of a mode and a TM mode causes coupling in the same direction between the two active waveguides, and a DFB or DBR grating is formed in the wavelength selection region,
The TE mode in one active waveguide and the TM mode in the other active waveguide are selectively transmitted at the same wavelength, so that the wavelength can be selected regardless of the polarization state of the transmitted light.

【0006】上記第2の目的を達成する為、本発明は、
上記の偏波無依存波長フィルタにおいて、一方の活性導
波路におけるTEモードと他方の活性導波路におけるT
Mモードとが等しい伝搬定数を有するように、該2つの
活性導波路の厚さおよび/または幅が調整されていて、
DFBまたはDBRグレーティングが2つの活性導波路
で共通であることを特徴とする。
In order to achieve the above second object, the present invention provides
In the above polarization independent wavelength filter, a TE mode in one active waveguide and a T mode in the other active waveguide
The thicknesses and / or widths of the two active waveguides are adjusted so that the M modes have equal propagation constants,
The DFB or DBR grating is common to the two active waveguides.

【0007】上記第3の目的を達成する為、本発明は、
上記の偏波無依存波長フィルタにおいて、偏波合成領域
が、該波長選択領域を挾んで該偏波分離領域と反対側に
構成され、該偏波合成領域は該偏波分離領域と同様の構
造からなることを特徴とする。
In order to achieve the third object, the present invention provides
In the above polarization independent wavelength filter, a polarization combining area is formed on the opposite side of the polarization separating area across the wavelength selecting area, and the polarization combining area has the same structure as the polarization separating area. It is characterized by consisting of.

【0008】上記第4の目的を達成する為、本発明は、
上記の偏波無依存波長フィルタにおいて、偏波合成領域
において、該2つの活性導波路間で移行する偏波モード
が、該偏波分離領域で移行した偏波モードと異なること
を特徴とする。
In order to achieve the above-mentioned fourth object, the present invention provides
In the above polarization independent wavelength filter, the polarization mode transferred between the two active waveguides in the polarization combining region is different from the polarization mode transferred in the polarization separation region.

【0009】[0009]

【実施例1】図1は実施例1を表わす平面図であり、本
実施例による偏波無依存波長フィルタは、全体に亙って
近接した2つの活性導波路11、12(後述する様に活
性層を含む導波路)から構成される。内部の構成は、伝
送光の入力側から順に、偏波分離領域、波長選択領域と
いう構成となっている。伝送光は2つの活性導波路1
1、12のいずれか一方から入力される。本実施例では
活性導波路11から入力される。2つの活性導波路1
1、12は厚さ及び/もしくは幅が互いに異なっている
ため(後に詳述)、非対称性が強く横モード間での結合
(例えば、いずれかの偏波モードでの0次と1次間の結
合)はこのままでは生じない。しかし、偏波分離領域に
は、比較的荒い周期のグレーティング13が形成されて
いて、導波路内の偏波モードであるTEモードとTMモ
ードのいずれか一方の偏波モードのみが、伝送光波長に
おいて同方向に導波路11、12間を移行する。移行し
ない偏波モードの光は、伝送光波長からかなり離れた波
長で結合する可能性を持っているが、伝送光波長からこ
の波長までの間隔は数10nmもあるため、伝送光波長
帯域においては、その結合移行は無視できる。その結
果、偏波分離機能を果たせることになる。無論、この導
波路構成においては偏波成分は保存されるため、直交す
る偏波モード(TEモードとTMモード)間での結合は
生じない。
Embodiment 1 FIG. 1 is a plan view showing Embodiment 1, and a polarization-independent wavelength filter according to this embodiment has two active waveguides 11 and 12 which are close to each other (as will be described later). A waveguide including an active layer). The internal configuration is such that a polarization separation region and a wavelength selection region are arranged in this order from the input side of transmitted light. Transmitted light consists of two active waveguides 1
It is input from either 1 or 12. In this embodiment, the input is from the active waveguide 11. Two active waveguides 1
Since 1 and 12 have different thicknesses and / or widths (detailed later), they have strong asymmetry and coupling between transverse modes (for example, between the 0th order and the 1st order in any polarization mode). (Bonding) does not occur as it is. However, the grating 13 having a relatively rough cycle is formed in the polarization separation region, and only one of the TE mode and the TM mode, which is the polarization mode in the waveguide, is transmitted by the transmission light wavelength. In, the waveguides 11 and 12 are moved in the same direction. The polarization mode light that does not shift may be coupled at a wavelength far from the transmission light wavelength, but the distance from the transmission light wavelength to this wavelength is several tens of nanometers, so in the transmission light wavelength band , Its bond transfer can be ignored. As a result, the polarization separation function can be fulfilled. Of course, in this waveguide structure, the polarization components are conserved, so that the coupling between orthogonal polarization modes (TE mode and TM mode) does not occur.

【0010】波長選択領域においては、2つの活性導波
路11、12の厚さ及び/もしくは幅が互いに調整され
(偏波分離領域でのものと同じでも異なってもよいが、
同じならば作製が簡単になる。同じ場合、偏波分離領域
のグレーティングのピッチ等を所望の機能が果たせる用
に適当に設定すればよい。)、入力側活性導波路11の
TMとTEモードの一方と移行側活性導波路12のTE
とTMモードの他方が、等しい伝搬定数を有するように
している(伝搬定数を等しくしてもTEモードとTMモ
ード間での結合は生じない)。2つの活性導波路11、
12には等しい周期の分布帰還型のグレーティング14
が形成されていて、近接した活性導波路11、12を伝
搬する各偏波モードの光が、両方ともグレーティング1
4で規定される所望の波長で分布帰還共振を起こし、強
い増幅を受け波長選択領域から透過、出力される。出力
された光を検出することにより、入力伝送光の偏波の片
寄りや揺らぎに係らず、安定に所望の波長のみを取り出
して受信が可能となる。このとき、透過波長帯域は分布
帰還型グレーティングの構成にもよるが、一般に0.1
nm以下である。
In the wavelength selective region, the thicknesses and / or widths of the two active waveguides 11, 12 are adjusted to each other (which may be the same as or different from those in the polarization splitting region,
If they are the same, manufacturing will be simple. In the same case, the pitch of the grating in the polarization separation area may be set appropriately so that the desired function can be achieved. ), TM of the input side active waveguide 11 and one of TE modes and TE of the transition side active waveguide 12
The other of the TM mode and the TM mode has the same propagation constant (the same propagation constant does not cause coupling between the TE mode and the TM mode). Two active waveguides 11,
12 is a distributed feedback grating 14 with an equal period
And the light of each polarization mode propagating through the active waveguides 11 and 12 adjacent to each other is generated by the grating 1
A distributed feedback resonance is caused at a desired wavelength defined by 4 and strong amplification is performed, and the light is transmitted and output from the wavelength selection region. By detecting the output light, it is possible to stably extract and receive only the desired wavelength regardless of the polarization deviation or fluctuation of the input transmission light. At this time, the transmission wavelength band is generally 0.1 depending on the configuration of the distributed feedback grating.
nm or less.

【0011】[0011]

【実施例2】図2は波長選択領域の出力側に偏波合成領
域を設けた例である。偏波合成領域の構成は、偏波分離
領域と同様の構成であるが、ここでは、偏波分離領域で
結合、移行した偏波モードと異なる偏波モードのみが伝
送波長で同方向に結合するように、グレーティング15
の周期が設定されている。この構成により偏波合波機能
を果たせる。偏波分離領域においては、実施例1で説明
したように、伝送波長帯域がTEモードの結合波長域3
1(図3の左部を参照)と一致するため、TEモードの
みが導波路11、12間を移行する。波長選択領域にお
いては、図3の中央部に示す様に2つの導波路11、1
2が夫々TEモードとTMモードで等しい波長λcを選
択増幅する。偏波合成領域においては、図3の右部に示
す様に伝送波長帯域がTMモードの結合波長域32と一
致する為、TMモードのみが導波路11、12間を移行
する。
Second Embodiment FIG. 2 shows an example in which a polarization combining area is provided on the output side of the wavelength selection area. The configuration of the polarization combining region is the same as that of the polarization separating region, but here, only the polarization mode that is different from the polarization mode that has been coupled or shifted in the polarization separation region is coupled in the same direction at the transmission wavelength. So that the grating 15
Is set. With this configuration, the polarization multiplexing function can be achieved. In the polarization splitting region, as described in the first embodiment, the transmission wavelength band is the TE mode coupling wavelength band 3
1 (see the left part of FIG. 3), only the TE mode moves between the waveguides 11 and 12. In the wavelength selection region, as shown in the central portion of FIG.
2 selectively amplifies the same wavelength λc in the TE mode and the TM mode. In the polarization combining region, the transmission wavelength band coincides with the coupling wavelength region 32 of the TM mode as shown in the right part of FIG. 3, so that only the TM mode transits between the waveguides 11 and 12.

【0012】ここで、偏波分離領域と偏波合成領域とで
互いに異なる偏波モードが結合移行する様にしたのは、
TEモードとTMモードの導波路間移行に伴う損失が、
素子全体を通して等しくなるようにするためである。但
し、波長選択領域での利得が、例えば、TEモードに対
して大きければ、TEモードを2度移行させて、TMモ
ードとのバランスを取る方法もある。実施例2によれ
ば、素子からの出力は1つの活性導波路(ここでは導波
路12)からとなり、検出器への光学的結合が容易で、
且つ結合効率の向上が図れる。
Here, the polarization modes different from each other in the polarization separation region and the polarization combining region are coupled and transferred.
The loss due to the transition between the TE mode and TM mode waveguides is
This is to make them equal throughout the element. However, if the gain in the wavelength selection region is larger than that in the TE mode, for example, there is also a method of shifting the TE mode twice to balance with the TM mode. According to the second embodiment, the output from the device is formed from one active waveguide (here, the waveguide 12), and the optical coupling to the detector is easy,
Moreover, the coupling efficiency can be improved.

【0013】図4及び図2を用いて、実施例2による波
長フィルタの作製例を説明する。この作製例は実施例1
にも適用できるものである。n−InP基板41上に、
バッファ層であるn−InP層42、InGaAs/I
nGaAsP超格子からなる活性層43(厚さ0.1μ
m)、p−InGaAsP光ガイド層44(厚さ0.μ
m)を成長後、移行側の導波路12となる領域の光ガイ
ド層44を選択エッチングし、0.85μmの厚さとし
た。ついで、偏波分離領域には周期97μmのグレーテ
ィング13、偏波合成領域には周期89μmのグレーテ
ィング15をマスク露光/エッチングで形成し、波長選
択領域には干渉露光/エッチングにより周期0.24μ
mの分布帰還グレーティング14を形成した。即ち、こ
の様な構成で所望の動作ができる様に、活性導波路1
1、12の厚さ及び/もしくは幅が設定されている(幅
は後述の工程で設定される)。引き続き、それらのグレ
ーチィング13、14、15上に、p−InPクラッド
層45、p−InGaAsコンタクト層401を成長し
た。マスク露光/エッチングにより、幅を3μmのリッ
ジ導波路46、47を2本作製した。続いて、SiNx
からなるパシベーション膜48を成膜し、セルフアライ
ン法で、リッジの背を露出させた。こうして出来た2つ
の活性導波路のうち、厚さの厚い方を入力側導波路11
でTMモード用、厚さの薄い方を移行側導波路12でT
Eモード用として使用することで、等しい周期の分布帰
還グレーティング14で2つのモードのブラッグ波長が
夫々の導波路11、12で等しくなるように設定され
る。
An example of manufacturing the wavelength filter according to the second embodiment will be described with reference to FIGS. This production example is Example 1.
Can also be applied to. On the n-InP substrate 41,
N-InP layer 42 which is a buffer layer, InGaAs / I
Active layer 43 (thickness 0.1 μm) made of nGaAsP superlattice
m), p-InGaAsP optical guide layer 44 (thickness: 0 .μ)
m) was grown, the optical guide layer 44 in the region to become the waveguide 12 on the transition side was selectively etched to have a thickness of 0.85 μm. Next, a grating 13 having a period of 97 μm is formed in the polarization separation region, a grating 15 having a period of 89 μm is formed in the polarization combining region by mask exposure / etching, and a period 0.24 μ is formed in the wavelength selection region by interference exposure / etching.
A m distributed feedback grating 14 was formed. That is, the active waveguide 1 is configured so that the desired operation can be performed with such a configuration.
The thicknesses and / or widths of 1 and 12 are set (the width is set in a process described later). Subsequently, a p-InP clad layer 45 and a p-InGaAs contact layer 401 were grown on the gratings 13, 14, and 15. Two ridge waveguides 46 and 47 having a width of 3 μm were produced by mask exposure / etching. Then, SiN x
A passivation film 48 made of is formed, and the back of the ridge is exposed by the self-alignment method. Of the two active waveguides thus formed, the thicker one is the input-side waveguide 11
For the TM mode, the thinner one is T in the transition side waveguide 12.
By using it for the E mode, the Bragg wavelengths of the two modes are set to be equal in the waveguides 11 and 12 by the distributed feedback grating 14 having the same period.

【0014】この様に、活性導波路のサイズ調整で伝搬
定数を揃えているため、例えば、隣り合う導波路11、
12間で分布帰還グレーティング14の周期を異ならせ
る必要がない。そのため、作製工程を大幅に簡略化させ
ることができる。波長選択領域のp−InP層45上に
は、3つに分割したAu/Cr電極49が形成され、n
−InP基板41側にはAu/AuGeNi電極50が
形成される。
In this way, since the propagation constants are made uniform by adjusting the size of the active waveguides, for example, the adjacent waveguides 11,
It is not necessary to make the period of the distributed feedback grating 14 different among the 12 units. Therefore, the manufacturing process can be significantly simplified. An Au / Cr electrode 49 divided into three is formed on the p-InP layer 45 in the wavelength selection region, and n
An Au / AuGeNi electrode 50 is formed on the -InP substrate 41 side.

【0015】入力側導波路11から入力した光のうちT
E成分は偏波分離領域で結合が起こり、近接した導波路
12へ移行する。TM成分はそのまま入力した導波路1
1を伝搬し波長選択領域において波長λc(=1.55
μm)で共振を起こし、電極を介して注入したキャリア
により増幅を受ける。TE成分は移行した導波路12を
伝搬し、波長選択領域において同じく波長λcで共振を
起こし、注入したキャリアにより増幅を受ける。増幅波
長λcおよび増幅度は、波長選択領域の3電極への電流
注入量で制御される。夫々の活性導波路11、12で波
長選択増幅された光のうちTM成分は偏波合成領域にお
いて結合が起こり、近接した導波路12へ移行する。そ
の結果、移行側導波路12において直交偏波成分の合成
が行なわれる。偏波分離及び合成領域においては、活性
導波路を伝搬するため減衰を受ける。それを防止する為
には、偏波分離/合成領域においても電極を設けて電流
を注入してもよい。また、波長選択領域への注入電流に
よる波長可変範囲は3−4nm程度である。駆動に要す
る電圧は1V程度と低く、応答速度はnsec程度と高
速である。
Of the light input from the input side waveguide 11, T
The E component is coupled in the polarization separation region and moves to the adjacent waveguide 12. Waveguide 1 with TM component input as is
1 and a wavelength λc (= 1.55
Resonance occurs at (μm) and is amplified by the carriers injected through the electrode. The TE component propagates through the shifted waveguide 12, resonates at the wavelength λc in the wavelength selection region, and is amplified by the injected carriers. The amplification wavelength λc and the amplification degree are controlled by the amount of current injection into the three electrodes in the wavelength selection region. The TM components of the light wavelength-selectively amplified in the respective active waveguides 11 and 12 are coupled in the polarization combining region and move to the adjacent waveguide 12. As a result, the orthogonal polarization components are combined in the transition side waveguide 12. In the polarization splitting / combining region, it is attenuated because it propagates through the active waveguide. In order to prevent this, an electrode may be provided in the polarization splitting / combining region to inject a current. Further, the wavelength variable range by the injection current to the wavelength selection region is about 3-4 nm. The voltage required for driving is as low as about 1 V, and the response speed is as fast as about nsec.

【0016】[0016]

【実施例3】実施例3において、図5に示す様に、全領
域で導波路コアのエッチングを基板41まで行ない、基
板側からp−InP51、アンドープInP52、n−
InP53を成長し、、SiO2パシベーション膜54
を成膜することで、導波路コア以外の部分を埋め込ん
だ。こうして図5のようなBH構造の導波路11、12
を構成した。図4のようなリッジ構造と比較して、結晶
成長回数が増加するが、キャリアの注入効率が向上し、
SiNxと活性層/光ガイド層の界面が存在しない為、
伝搬損失が低く効率が向上するといった特徴を持つ。動
作等については前記実施例と同じである。
Third Embodiment In the third embodiment, as shown in FIG. 5, the waveguide core is etched in the entire region up to the substrate 41, and p-InP51, undoped InP52, n- are formed from the substrate side.
InP 53 is grown and a SiO 2 passivation film 54 is formed.
By forming a film, a part other than the waveguide core was embedded. Thus, the waveguides 11 and 12 having the BH structure as shown in FIG.
Was configured. As compared with the ridge structure as shown in FIG. 4, the number of crystal growth increases, but the carrier injection efficiency improves,
Since there is no interface between SiN x and the active layer / light guide layer,
It is characterized by low propagation loss and improved efficiency. The operation and the like are the same as in the above embodiment.

【0017】[0017]

【実施例4】図6及び図2を用いて、本発明による他の
偏波無依存波長フィルタの作製例を説明する。この作製
例も実施例1に適用できるものである。n−GaAs基
板61上に、バッファ層であるn−GaAs層62、n
−AlGaAsクラッド層63、GaAs/AlGaA
s超格子からなる活性層64、p−AlGaAs光ガイ
ド層65を成長後、実施例2と同様に片方の導波路の光
ガイド層65を薄くして、偏波分離領域には周期50μ
mのグレーティング13、偏波合成領域には周期45μ
mのグレーティング15をマスク露光/エッチングで形
成し、成長選択領域には干渉露光/エッチングにより周
期0.24μmの分布帰還グレーティング14を形成し
た。引き続き、光ガイド層65上に、p−AlGaAs
クラッド層66、p−GaAsコンタクト層67を成長
した。マスク露光/エッチングにより、厚さと幅を互い
に異ならせたリッジ導波路コア11、12を作製した。
続いて、SiNx70を成膜し、導波路コア以外の部分
を埋め込んだ。こうして出来た2つの活性導波路を、厚
さが厚く幅の広い方11をTMモード用、厚さが薄く幅
の狭い方12をTEモード用として使用することで、等
しい周期の分布帰還グレーティング14で2つのモード
のブラッグ波長が夫々の導波路11、12で等しくなる
様に設定される。
[Embodiment 4] An example of manufacturing another polarization-independent wavelength filter according to the present invention will be described with reference to FIGS. This manufacturing example is also applicable to the first embodiment. On the n-GaAs substrate 61, n-GaAs layers 62, n serving as buffer layers
-AlGaAs cladding layer 63, GaAs / AlGaA
After growing the active layer 64 made of s superlattice and the p-AlGaAs optical guide layer 65, the optical guide layer 65 of one of the waveguides is thinned as in the second embodiment, and the period of 50 μm is set in the polarization separation region.
m grating 13 with a period of 45μ in the polarization combining area
m grating 15 was formed by mask exposure / etching, and distributed feedback grating 14 with a period of 0.24 μm was formed in the growth selection region by interference exposure / etching. Then, p-AlGaAs is formed on the optical guide layer 65.
The clad layer 66 and the p-GaAs contact layer 67 were grown. Ridge waveguide cores 11 and 12 having different thicknesses and widths were produced by mask exposure / etching.
Subsequently, SiN x 70 was formed into a film, and the portion other than the waveguide core was embedded. The two active waveguides thus formed are used as the thicker and wider one 11 for the TM mode and the thinner and narrower one 12 for the TE mode. Is set so that the Bragg wavelengths of the two modes are equal in the respective waveguides 11 and 12.

【0018】波長選択領域のp−GaAsコンタクト層
67上には、3つに分割したAu/AuGe電極71が
形成され、n−GaAs基板側にはAu/Cr電極72
が形成される。入力側導波路11から入力した光のうち
TE成分は偏波分離領域で結合が起こり、近接した導波
路12へ移行する。TM成分はそのまま入力した導波路
11を伝搬し、波長選択領域において波長λc(=0.
83μm)で共振を起こし、注入したキャリアにより増
幅を受ける。TE成分は移行した導波路12を伝搬し、
波長選択領域において同じ波長λcで共振を起こし、注
入したキャリアにより増幅を受ける。増幅波長λcおよ
び増幅度は、3電極71への電流注入量で制御される。
偏波合成領域で合成された偏波成分は出力側導波路12
から出力される。その結果、入力偏波の状態に関わりな
く任意の波長を選択できる波長フィルタを構成できる。
偏波分離および合成領域においては、活性導波路11、
12を伝搬するため減衰を受ける。それを防止する為に
は、実施例3と同様、偏波分離/合成領域においても電
流を注入してもよい。
An Au / AuGe electrode 71 divided into three parts is formed on the p-GaAs contact layer 67 in the wavelength selection region, and an Au / Cr electrode 72 is formed on the n-GaAs substrate side.
Is formed. The TE component of the light input from the input-side waveguide 11 is coupled in the polarization separation region, and moves to the adjacent waveguide 12. The TM component propagates through the input waveguide 11 as it is, and the wavelength λc (= 0.
Resonance occurs at 83 μm) and is amplified by the injected carriers. The TE component propagates through the transferred waveguide 12,
Resonance occurs at the same wavelength λc in the wavelength selection region, and is amplified by the injected carriers. The amplification wavelength λc and the amplification degree are controlled by the current injection amount into the three electrodes 71.
The polarization components combined in the polarization combining region are output side waveguide 12
Output from As a result, it is possible to configure a wavelength filter that can select an arbitrary wavelength regardless of the state of the input polarization.
In the polarization splitting and combining region, the active waveguide 11,
As it propagates 12, it is attenuated. In order to prevent this, current may be injected also in the polarization splitting / combining region as in the third embodiment.

【0019】尚、上記実施例において、波長選択領域で
は分布帰還型(DFB)のグレーティングを形成してい
たが、グレーティングはDFBまたはDBRの何れで形
成してもよい。
In the above embodiment, the distributed feedback (DFB) grating is formed in the wavelength selection region, but the grating may be formed of either DFB or DBR.

【0020】[0020]

【発明の効果】以上説明した様に、本発明によれば、波
長多重伝送などにおける、或る特定の波長チャンネルを
選択する偏波無依存波長フィルタにおいて、偏波分離/
合成の手段として、2つの活性導波路からなる方向性結
合器の強い偏波依存性を活用し、且つ、該2つの活性導
波路の伝搬定数を制御して、TEとTMの各モードを同
一の波長でブラッグ共振させることにより、伝送光の偏
波状態にかかわらず、安定に波長選択できる効果があ
る。本出願に係る第2の発明によれば、2つの活性導波
路にわたってグレーティングを同一周期とできるため、
偏波無依存波長フィルタの作製工程を大幅に簡略化でき
る効果がある。また、本出願に係る第3の発明によれ
ば、偏波合成領域の適用により出力導波路を一本化でき
るため、偏波無依存波長フィルタと後続のデバイス、例
えば、光検出器との結合効率を向上させる効果がある。
本出願に係る第4の発明によれば、偏波分離領域と偏波
合成領域とで結合移行する偏波モードを異ならせること
により、波長フィルタの偏波無依存性をさらに向上させ
る効果がある。
As described above, according to the present invention, in the polarization independent wavelength filter for selecting a certain specific wavelength channel in wavelength division multiplex transmission or the like, polarization separation / demultiplexing is performed.
As a synthesizing means, the strong polarization dependence of a directional coupler composed of two active waveguides is utilized, and the propagation constants of the two active waveguides are controlled so that the TE and TM modes are the same. By making the Bragg resonance at the wavelength of, the wavelength can be stably selected regardless of the polarization state of the transmitted light. According to the second invention of the present application, since the grating can have the same period over the two active waveguides,
This has the effect of significantly simplifying the manufacturing process of the polarization independent wavelength filter. Further, according to the third invention of the present application, since the output waveguide can be unified by applying the polarization combining region, the polarization independent wavelength filter and the subsequent device, for example, the photodetector are coupled. It has the effect of improving efficiency.
According to the fourth invention of the present application, there is an effect of further improving the polarization independence of the wavelength filter by making the polarization modes of coupling shift different between the polarization separation region and the polarization combining region. .

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による偏波無依存波長フィルタの実施例
1の構造及び動作原理を説明する図。
FIG. 1 is a diagram for explaining the structure and operation principle of a first embodiment of a polarization independent wavelength filter according to the present invention.

【図2】本発明による偏波無依存波長フィルタの実施例
2の構造及び動作原理を説明する図。
FIG. 2 is a diagram for explaining the structure and operation principle of a second embodiment of the polarization independent wavelength filter according to the present invention.

【図3】本発明による偏波無依存波長フィルタの動作原
理を説明する図。
FIG. 3 is a diagram for explaining the operation principle of the polarization independent wavelength filter according to the present invention.

【図4】本発明による偏波無依存波長フィルタの実施例
2の断面構造を説明する図。
FIG. 4 is a diagram illustrating a cross-sectional structure of a polarization independent wavelength filter according to a second embodiment of the present invention.

【図5】本発明による偏波無依存波長フィルタの実施例
3の断面構造を説明する図。
FIG. 5 is a diagram for explaining a sectional structure of a third embodiment of the polarization independent wavelength filter according to the present invention.

【図6】本発明による偏波無依存波長フィルタの実施例
4の断面構造を説明する図。
FIG. 6 is a diagram illustrating a sectional structure of a polarization independent wavelength filter according to a fourth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

11 入力側活性導波路 12 移行側活性導波路 13 偏波分離用グレーティング 14 波長選択用グレーティング 15 偏波合成用グレーティング 31 TEモードの結合波長域 32 TMモードの結合波長域 41、61 基板 42、62 バッファ層 43、64 活性層 44、65 光ガイド層 45、63、66 クラッド層 401、67 コンタクト層 48、54、70 パシベーション膜 49、50、71、72 電極 51、52、53 導波路埋め込み層 11 Input-Side Active Waveguide 12 Transition-Side Active Waveguide 13 Polarization Separation Grating 14 Wavelength Selection Grating 15 Polarization Combining Grating 31 TE Mode Coupling Wavelength Range 32 TM Mode Coupling Wavelength Range 41, 61 Substrate 42, 62 Buffer layer 43, 64 Active layer 44, 65 Optical guide layer 45, 63, 66 Cladding layer 401, 67 Contact layer 48, 54, 70 Passivation film 49, 50, 71, 72 Electrode 51, 52, 53 Waveguide embedded layer

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 // H01S 3/18 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location // H01S 3/18

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】近接した2つの活性導波路からなる偏波分
離領域及び波長選択領域から構成される波長フィルタで
あって、該偏波分離領域には同方向結合グレーテイング
が形成されていて、直交する偏波モードであるTEモー
ドとTMモードのいずれか一方が該2つの活性導波路間
で同方向に結合を生じ、且つ、該波長選択領域にはDF
BまたはDBRグレーティングが形成されていて、一方
の活性導波路におけるTEモードと他方の活性導波路に
おけるTMモードとが等しい波長で選択透過されること
を特徴とする偏波無依存波長フィルタ。
1. A wavelength filter comprising a polarization separation region and a wavelength selection region, which are composed of two active waveguides close to each other, and in which the same direction coupling grating is formed. One of the TE mode and the TM mode, which are orthogonal polarization modes, causes coupling in the same direction between the two active waveguides, and DF is present in the wavelength selection region.
A polarization-independent wavelength filter, wherein a B or DBR grating is formed, and a TE mode in one active waveguide and a TM mode in the other active waveguide are selectively transmitted at the same wavelength.
【請求項2】一方の活性導波路におけるTEモードと他
方の活性導波路におけるTMモードとが等しい伝搬定数
を有するように、該2つの活性導波路の厚さおよび/ま
たは幅が調整されていて、DFBまたはDBRグレーテ
ィングが2つの活性導波路で共通であることを特徴とす
る請求項1記載の偏波無依存波長フィルタ。
2. The thickness and / or width of the two active waveguides are adjusted so that the TE mode in one active waveguide and the TM mode in the other active waveguide have equal propagation constants. , DFB or DBR grating is common to the two active waveguides, the polarization independent wavelength filter according to claim 1.
【請求項3】偏波合成領域が、該波長選択領域を挾んで
該偏波分離領域と反対側に構成され、該偏波合成領域は
該偏波分離領域と同様の構造からなることを特徴とする
請求項1または2記載の偏波無依存波長フィルタ。
3. A polarization combining area is arranged on the opposite side of the polarization separating area across the wavelength selecting area, and the polarization combining area has the same structure as the polarization separating area. The polarization independent wavelength filter according to claim 1 or 2.
【請求項4】偏波合成領域において、該2つの活性導波
路間で移行する偏波モードが、該偏波分離領域で移行し
た偏波モードと異なることを特徴とする請求項3記載の
偏波無依存波長フィルタ。
4. The polarization mode according to claim 3, wherein the polarization mode transferred between the two active waveguides in the polarization combining area is different from the polarization mode transferred in the polarization separation area. Wave independent wavelength filter.
JP7015544A 1995-01-04 1995-01-04 Polarization nondependent wavelength filter Pending JPH08184789A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7015544A JPH08184789A (en) 1995-01-04 1995-01-04 Polarization nondependent wavelength filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7015544A JPH08184789A (en) 1995-01-04 1995-01-04 Polarization nondependent wavelength filter

Publications (1)

Publication Number Publication Date
JPH08184789A true JPH08184789A (en) 1996-07-16

Family

ID=11891739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7015544A Pending JPH08184789A (en) 1995-01-04 1995-01-04 Polarization nondependent wavelength filter

Country Status (1)

Country Link
JP (1) JPH08184789A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0886151A2 (en) * 1997-06-20 1998-12-23 Kokusai Denshin Denwa Co., Ltd Coupled waveguide structure
US6304380B1 (en) * 2000-03-06 2001-10-16 Lucent Technologies Inc. Reducing polarization dependency of optical apparatus
JP2003347675A (en) * 2002-05-27 2003-12-05 Sharp Corp Semiconductor laser device and manufacturing method therefor
US7356224B2 (en) 2001-07-03 2008-04-08 Brown University Research Foundation Method and apparatus for detecting multiple optical wave lengths
US7373045B2 (en) * 2001-07-03 2008-05-13 Brown University Research Foundation Method and apparatus for processing optical signals with supergratings
US7496257B2 (en) 2001-07-03 2009-02-24 Brown University Research Foundation Method and apparatus for detecting multiple optical wavelengths
CN106094107A (en) * 2016-08-22 2016-11-09 北京大学 A kind of polarization beam apparatus
JP2020112724A (en) * 2019-01-15 2020-07-27 沖電気工業株式会社 Optical waveguide circuit

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0886151A2 (en) * 1997-06-20 1998-12-23 Kokusai Denshin Denwa Co., Ltd Coupled waveguide structure
EP0886151A3 (en) * 1997-06-20 1999-09-22 Kokusai Denshin Denwa Kabushiki Kaisha Coupled waveguide structure
US6084997A (en) * 1997-06-20 2000-07-04 Kokusai Denshin Denwa Kabushiki Kaisha Coupled waveguide structure
US6304380B1 (en) * 2000-03-06 2001-10-16 Lucent Technologies Inc. Reducing polarization dependency of optical apparatus
US7373045B2 (en) * 2001-07-03 2008-05-13 Brown University Research Foundation Method and apparatus for processing optical signals with supergratings
US7356224B2 (en) 2001-07-03 2008-04-08 Brown University Research Foundation Method and apparatus for detecting multiple optical wave lengths
US7496257B2 (en) 2001-07-03 2009-02-24 Brown University Research Foundation Method and apparatus for detecting multiple optical wavelengths
US7693370B2 (en) 2001-07-03 2010-04-06 Brown University Research Foundation Method and apparatus for processing optical signals with supergratings
US8041163B2 (en) 2001-07-03 2011-10-18 Brown University Research Foundation Method and apparatus for detecting multiple optical wavelengths
US8311377B2 (en) 2001-07-03 2012-11-13 Brown University Research Foundation Method and apparatus for detecting multiple optical wave lengths
JP2003347675A (en) * 2002-05-27 2003-12-05 Sharp Corp Semiconductor laser device and manufacturing method therefor
CN106094107A (en) * 2016-08-22 2016-11-09 北京大学 A kind of polarization beam apparatus
CN106094107B (en) * 2016-08-22 2022-12-02 北京大学 Polarization beam splitter
JP2020112724A (en) * 2019-01-15 2020-07-27 沖電気工業株式会社 Optical waveguide circuit

Similar Documents

Publication Publication Date Title
US5131060A (en) Optical waveguide modulator communications device and method of modulating light using same
JP3323725B2 (en) Polarization modulation laser, driving method thereof, and optical communication system using the same
EP0721240B1 (en) Oscillation polarization mode selective semiconductor laser, modulation method therefor and optical communication system using the same
JP3833313B2 (en) Semiconductor laser element
WO1997049150A1 (en) An integrated optical device
US6282345B1 (en) Device for coupling waveguides to one another
JP4906185B2 (en) Optical semiconductor device and optical semiconductor device modulation method
JP5545847B2 (en) Optical semiconductor device
JP3336994B2 (en) Method of manufacturing semiconductor optical waveguide array and semiconductor optical device having array structure
JP2606078B2 (en) Semiconductor laser array and method of manufacturing the same
JPH08184789A (en) Polarization nondependent wavelength filter
US7065300B1 (en) Optical transmitter including a linear semiconductor optical amplifier
US6246709B1 (en) Integrated optical element and method for manufacturing an integrated optical element
JPH11312846A (en) Distribution feedback type semiconductor laser comprising phase shift region of polarization dependence and optical transmitter and optical communication system using the same
JP2965011B2 (en) Semiconductor optical device and method of manufacturing the same
JP2986604B2 (en) Semiconductor optical filter, method for controlling selected wavelength thereof, and optical communication system using the same
JP3246703B2 (en) Semiconductor laser capable of polarization modulation and optical communication system using the same
JPH08271842A (en) Waveguide type wavelength filter
JPH0887038A (en) Light control type semiconductor optical switch
JP3466826B2 (en) Semiconductor optical device with multiple types of active layers with different polarization modes with superior gain
JP3116912B2 (en) Semiconductor optical integrated device, optical communication module using the same, optical communication system and method of manufacturing the same
JP3123672B2 (en) Optical semiconductor device
JPH06268316A (en) Semiconductor optical element
JP3490258B2 (en) Semiconductor optical device, its polarization control method, and optical integrated circuit
JP3287443B2 (en) Semiconductor laser capable of polarization modulation and optical communication system using the same