JPH01262683A - Method for driving semiconductor laser - Google Patents

Method for driving semiconductor laser

Info

Publication number
JPH01262683A
JPH01262683A JP9193788A JP9193788A JPH01262683A JP H01262683 A JPH01262683 A JP H01262683A JP 9193788 A JP9193788 A JP 9193788A JP 9193788 A JP9193788 A JP 9193788A JP H01262683 A JPH01262683 A JP H01262683A
Authority
JP
Japan
Prior art keywords
region
voltage
impressed
bias
semiconductor laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9193788A
Other languages
Japanese (ja)
Other versions
JP2643276B2 (en
Inventor
Makoto Ishikawa
信 石川
Ryuichi Katayama
龍一 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP9193788A priority Critical patent/JP2643276B2/en
Publication of JPH01262683A publication Critical patent/JPH01262683A/en
Application granted granted Critical
Publication of JP2643276B2 publication Critical patent/JP2643276B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/0601Arrangements for controlling the laser output parameters, e.g. by operating on the active medium comprising an absorbing region

Abstract

PURPOSE:To display the high output low noise characteristics for accelerating the access time by a method wherein an exciting region is impressed with a gaining voltage while during low output and high output operations, an absorbing region is impressed with specified voltages alternately. CONSTITUTION:The oscillation threshold value voltage as injected evenly when an exciting region 12 and an absorbing region 11 are short-circuited is assumed to be V0. The exciting region 12 is impressed with DC bias V1(V1>V0) while the absorbing region is impressed with bias V2(V2>V0) during low output operation and bias V3(V3>V2) during high output operation. When the absorbing region 11 is impressed with the bias V2, this region 11 working as a saturable absorber, the low noise characteristics not exceeding the relative noise level of -120dB/Hz under optical output 1-3mW of returning light 1% can be displayed. On the other hand, when the absorbing region 11 is impressed with the voltage V3, the region 11 also becomes a gain region to bear the high output characteristics. Consequently, the high output low noise state can be brought about by simply changing the bias state in the absorbing region 11 while keeping the state of the exciting region 12 impressed with specified bias V1.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は追記型、書き換え型等の光デイスク用光源とし
てI&適な半導体レーザに関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a semiconductor laser suitable for use as a light source for write-once type, rewritable type, etc. optical disks.

(従来の技術) 追記型、書き換え型等の光ディスクの光源としては、読
みだし時の誤りを防ぐために、雑音レベルの低い半導体
レーザが望まれる。書き換え型光ディスクでは1〜3m
Wの低出力レベルで、戻り光1%において相対雑音強度
(RIN)−120dB/Hz以下が求められている。
(Prior Art) A semiconductor laser with a low noise level is desired as a light source for write-once type, rewritable type, etc. optical disks in order to prevent errors during reading. 1 to 3 m for rewritable optical discs
At a low output level of W, a relative noise intensity (RIN) of -120 dB/Hz or less is required at 1% return light.

しかし光デイスク装置ではピックアップの構造上、ディ
スク盤面からの戻り光が光源である半導体レーザに入射
しやすい、一般に横モードの制御された屈折率導波型半
導体レーザでは、光の干渉性が高いから、この戻り光と
出射光が干渉しモードホップノイズが発生する。この結
果光源の雑音レベルが上昇し、システム上問題となる。
However, in optical disk devices, due to the structure of the pickup, the return light from the disk surface easily enters the semiconductor laser that is the light source.In general, index-guided semiconductor lasers with controlled transverse modes have high light interference. , this return light and the emitted light interfere, causing mode hop noise. As a result, the noise level of the light source increases, causing a system problem.

こうした半導体レーザの戻り光誘起雑音の低減を図るた
めに従来は外部から高周波を重畳する方法が提案されて
いたく電子通信学会技術研究報告EO83−84P85
) 、この方法では、600MHz以上の高周波を発振
しきい値までふりこむように重畳することにより注入キ
ャリアにゆらぎを与え、縦モードスペクトルを多モード
化する。この多モード化により光源の可干渉性が低下し
、戻り光が存在する場合でも、低い雑音レベルを維持す
ることが可能となる。
In order to reduce the feedback-induced noise of semiconductor lasers, a method of superimposing a high frequency from the outside has been proposed.IEICE Technical Research Report EO83-84P85
), in this method, a high frequency of 600 MHz or more is superimposed to reach the oscillation threshold, thereby imparting fluctuations to the injected carriers and making the longitudinal mode spectrum multimode. This multimode reduces the coherence of the light source, making it possible to maintain a low noise level even in the presence of returned light.

(発明が解決しようとする課題) しかし従来の方法では高周波重畳回路を外部に付加する
から、光ヘッドの軽量化を妨げ、アクセス時間の短縮化
が困難となる。また高周波重畳回路により、光ヘッドを
構成する部品点数が増加するから、低コスト化をも妨げ
る要因となる。このように、従来の技術にはアクセス時
間およびコスト面で解決すべき課題があった。
(Problems to be Solved by the Invention) However, in the conventional method, a high-frequency superimposition circuit is added externally, which hinders the reduction in weight of the optical head and makes it difficult to shorten the access time. Furthermore, the high frequency superimposing circuit increases the number of parts constituting the optical head, which also becomes a factor that hinders cost reduction. As described above, the conventional technology has problems to be solved in terms of access time and cost.

(課題を解決するための手段) 前述の課題を解決するために本発明が提供する手段は、
第1導電型半導体基板上に活性層と第2導電型半導体層
とを順にWi層してなり、前記第2導電型半導体層を共
振器軸方向に間して電気的に分離して励起fi域と吸収
領域との二領域に分ける電気的分離構造が形成してあり
、前記励起領域と吸収領域とは光学的に結合されている
横モード制御型半導体レーザを駆動する方法であって、
低出力動作時には、前記励起領域で利得が生じるに足る
大きさの第1の電圧V3を該励起領域に印加するととも
に、前記吸収領域が発振光に対して損失となるだけの第
2の電圧V2を該吸収領域に印加して自動発振を生じた
状態にし、高出力動作時には、前記励起領域に第1の電
圧Vlを印加するとともに、前・記吸収領域で利得が生
じるに足る大きさの第3の電圧V、を該吸収V4.域に
印加し、該高出力動作と低出力動作とを交互に切り替え
ることを特徴とする。
(Means for Solving the Problems) Means provided by the present invention to solve the above-mentioned problems are as follows:
An active layer and a second conductivity type semiconductor layer are sequentially formed as a Wi layer on a first conductivity type semiconductor substrate, and the second conductivity type semiconductor layer is electrically separated in the resonator axis direction to excite fi. A method for driving a transverse mode controlled semiconductor laser in which an electrically isolated structure is formed that divides the laser into two regions, a region and an absorption region, and the excitation region and absorption region are optically coupled.
During low output operation, a first voltage V3 large enough to generate a gain in the excitation region is applied to the excitation region, and a second voltage V2 is applied to the absorption region enough to cause a loss with respect to the oscillated light. is applied to the absorption region to cause automatic oscillation, and during high output operation, a first voltage Vl is applied to the excitation region and a first voltage Vl of sufficient magnitude to generate gain in the absorption region is applied. 3 voltage V, the absorption V4. It is characterized in that the high-output operation and the low-output operation are alternately switched.

(作用) 本発明の駆動方法では、吸収領域に発振光に対して損失
となるように電圧を印加したときに、この領域の活性層
を発振光に対する可飽和吸収体として働かせる。半導体
レーザ媒質内に過飽和吸収体を導入すると断続的な発振
状態となる自動発振現象が発生する。自動発振において
は緩和振動に相当する高い周波数で発振が断続的に繰り
返されるから、注入キャリヤがゆらぎ、縦モードが多モ
ード化する。この縦モードの多モード化により可干渉性
が低下し、戻り光に強い低雑音特性が得られる。吸収領
域発振光に対して損失となるようにしたままでは一般に
微分効率が低いから高出力特性は得にくいが、吸収領域
にも利得が生じるような電圧を印加し高注入状態とすれ
ば、高出力まで横モードが安定した特性が得られる。低
雑音特性が要求されるのは読みだし時の低出力レベル(
〜3 m W )であるから、励起領域に利得の生じる
一定のバイアス■1を印加した状態で、吸収領域のバイ
アスレベルを切り替えることにより、再生時に低雑音、
記録時に高出力とそれぞれ望ましい特性が得られる0以
上より本発明の駆動方法によれば、高周波重畳回路を用
いなくとも追記型、書き換え型光ディスク等の光源とし
てFL逍な高出力低雑音特性のレーザ光を得ることがで
きる。
(Function) In the driving method of the present invention, when a voltage is applied to the absorption region so as to cause a loss with respect to the oscillation light, the active layer in this region acts as a saturable absorber for the oscillation light. When a supersaturated absorber is introduced into a semiconductor laser medium, an automatic oscillation phenomenon occurs in which an intermittent oscillation state occurs. In automatic oscillation, oscillation is intermittently repeated at a high frequency corresponding to relaxation oscillation, so the injected carriers fluctuate and the longitudinal mode becomes multimode. This multi-mode longitudinal mode reduces coherence and provides low noise characteristics that are strong against returned light. Generally, it is difficult to obtain high output characteristics because the differential efficiency is low if the absorption region causes a loss to the oscillation light, but if a voltage is applied to the absorption region to create a high injection state, high Characteristics with stable transverse mode can be obtained up to the output. Low noise characteristics are required at low output levels during readout (
~3 mW), so by switching the bias level of the absorption region while applying a constant bias (1) that produces a gain to the excitation region, low noise and low noise during reproduction can be achieved.
According to the driving method of the present invention, a laser with high output and low noise characteristics that can be used as a light source for write-once and rewritable optical discs without using a high-frequency superimposition circuit can be obtained. You can get light.

(実施例) 以下に図面を参照して本発明の一実施例である半導体レ
ーザ装置の駆動方法を説明する。第1図はその実施例を
適用する半導体レーザ装置の斜視図、第2図は第1図の
半導体レーザ装置の平面図、第3図は第1図の半導体レ
ーザ装置にその実施例を適用する態様を示す概念図であ
る0図において1はn型GaAs基板、2はn型Aρ。
(Example) A method for driving a semiconductor laser device, which is an example of the present invention, will be described below with reference to the drawings. 1 is a perspective view of a semiconductor laser device to which the embodiment is applied, FIG. 2 is a plan view of the semiconductor laser device of FIG. 1, and FIG. 3 is a perspective view of the semiconductor laser device of FIG. 1 to which the embodiment is applied. In Figure 0, which is a conceptual diagram showing the embodiment, 1 is an n-type GaAs substrate, and 2 is an n-type Aρ.

、41G a O,S9A Sクラッド層、3はn型A
りo、s。
, 41G a O, S9A S cladding layer, 3 is n-type A
Ri o, s.

G a o、 ssA 8光導波屑、4はA I o、
 osG a o、 oxAs活性層、5はP型A、Q
o、s Gao、s As光反射層、6はP型Aρo、
 ssG a 0.62A Sクラッド層、7はn型G
aAs電極層、8はP+拡散層、9はn型電極、10は
p型電極、11は吸収領域、12は励起領域、13は電
極分離酒をそれぞれ示す。
G a o, ssA 8 optical waveguide scrap, 4 is A I o,
osG ao, oxAs active layer, 5 is P type A, Q
o, s Gao, s As light reflective layer, 6 is P-type Aρo,
ssG a 0.62A S cladding layer, 7 is n-type G
1 is an aAs electrode layer, 8 is a P+ diffusion layer, 9 is an n-type electrode, 10 is a p-type electrode, 11 is an absorption region, 12 is an excitation region, and 13 is an electrode separation layer.

第1図の半導体レーザ装置の製造においてはまずn型G
aAs基板1上にNH,OH系のエッチャントを用いて
<011>に平行なV字型の清福5、〇四、深さ2.0
μmの溝を形成する。その後に液相成長法により、成長
層2,3,4.5,6.7を順次に成長する。それぞれ
の層は平担部で順に0.2 utr、 0.3 utr
、 0.08um、 0.3 +u+、 1.Oull
l。
In manufacturing the semiconductor laser device shown in Figure 1, first the n-type G
A V-shaped Seifuku 5, 〇4, depth 2.0 parallel to <011> is formed on the aAs substrate 1 using an NH,OH-based etchant.
Form a μm groove. Thereafter, growth layers 2, 3, 4.5, and 6.7 are sequentially grown by a liquid phase growth method. Each layer has a flat part of 0.2 utr and 0.3 utr in order.
, 0.08um, 0.3 +u+, 1. Oull
l.

0.71Jmとする。湧が深いから、n型クラッド層2
が溝部で平担とはならず、図に示すように発光部で光導
波NJ3の厚い構造となり、水平方向に屈折率導波機構
が形成される。5iftをマスクとして発光領域にP+
拡散層を形成した後、P型電極10、N型電極9を形成
する。さらにフォトリソグラフィーの手法によりウェッ
トエツチングを用いて幅1〇四、間隔500μ町の電極
分離消13を発光領域の近傍30μmの領域を除いてn
型基板1に到達するまで形成する0発光領域の近傍30
1JI+の領域はn型GaAst極層7のみ除去する。
It is assumed to be 0.71 Jm. Since the spring is deep, n-type cladding layer 2
is not flat in the groove portion, and as shown in the figure, a thick structure of the optical waveguide NJ3 is formed in the light emitting portion, and a refractive index waveguide mechanism is formed in the horizontal direction. P+ in the light emitting area using 5ift as a mask
After forming the diffusion layer, a P-type electrode 10 and an N-type electrode 9 are formed. Furthermore, using a photolithographic technique and wet etching, electrode separation electrodes 13 with a width of 104 mm and an interval of 500 μm were formed except for a 30 μm area near the light emitting region.
30 in the vicinity of the 0-light emitting region formed until reaching the mold substrate 1
In the 1JI+ region, only the n-type GaAst pole layer 7 is removed.

このように形成した電極分M7R13により、吸収領域
11と励起領域12との光学的な結合を保存したままで
、吸収領域11と励起領i!l1i12とを電気的に分
離することができる。最後に励起領域12が460μm
、吸収領域11が30μmとなるようにへき開面を形成
して第1図の半導体レーザ装置が形成される。なお第1
図の構造では、電極分離をエツチングで形成した消13
で行なっているが、電極分離をプロトン注入など他の方
法を用いて行なっても同様に作動する半導体レーザ装置
が得られる。
The electrode portion M7R13 formed in this way allows the absorption region 11 and the excitation region i! to maintain the optical coupling between the absorption region 11 and the excitation region i! l1i12 can be electrically isolated. Finally, the excitation region 12 is 460 μm
The semiconductor laser device of FIG. 1 is formed by forming cleavage planes so that the absorption region 11 has a thickness of 30 μm. Note that the first
In the structure shown in the figure, the electrode separation is formed by etching.
However, a semiconductor laser device that operates similarly can be obtained even if electrode separation is performed using other methods such as proton injection.

次に第3図の概念図を参照して本発明の半導体レーザの
駆動方法の一実施例を説明する。励起領域12と吸収領
域11を短絡して、均一に注入した時の発振しきい値電
圧をV、とする。励起領域12には直流バイアスV+(
Vt>V。)を、吸収領棹11には低出力動作時にバイ
アスV2(V2’>Vo)、高出力動作時にバイアスV
s(Vt>VO)をそれぞれ印加する。吸収領域11に
パイ番 アスV2を印加した状態では、この領域が可飽和吸収体
として働くから、光出力1〜3mW、戻り光1%におい
て、相対雑音強度(RIN)−120dB/Hz以下の
低雑音特性が得られる。
Next, an embodiment of the semiconductor laser driving method of the present invention will be described with reference to the conceptual diagram of FIG. Let the oscillation threshold voltage be V when the excitation region 12 and absorption region 11 are short-circuited and uniform injection is performed. The excitation region 12 is provided with a DC bias V+ (
Vt>V. ), the absorption region 11 has a bias V2 (V2'>Vo) during low output operation, and a bias V2 during high output operation.
s (Vt>VO) is applied respectively. When the pi number V2 is applied to the absorption region 11, this region acts as a saturable absorber, so at an optical output of 1 to 3 mW and a return light of 1%, the relative noise intensity (RIN) is as low as -120 dB/Hz or less. Noise characteristics can be obtained.

一方吸収頭域11に電圧V3を印加すると吸収領域11
も利得領域となり、高効率動作が可能となり。
On the other hand, when voltage V3 is applied to the absorption region 11, the absorption region 11
is also in the gain region, enabling high efficiency operation.

高出力特性が得られる。従って、励起領域12に一定の
バイアスv1を印加した状態で、吸収領域11のバイア
ス状態を変化させるだけで、高出力低雑音動作が可能と
なる。
High output characteristics can be obtained. Therefore, high output and low noise operation is possible by simply changing the bias state of the absorption region 11 while applying a constant bias v1 to the excitation region 12.

なお本発明を適用するレーザ構造としてn型基板を用い
たLPE法によるPCW梢造(昭和61年度春季信学全
大p920 )を用いて説明を行なったが、本発明を適
用する半導体レーザ装置にはp型基板を用いてもよい。
Although the explanation has been given using a PCW construction using the LPE method using an n-type substrate as a laser structure to which the present invention is applied (1985 Spring IEICE National University, p. 920), it is also possible to apply the present invention to a semiconductor laser device. Alternatively, a p-type substrate may be used.

またMOCVD法によるセルファライン構造等の他の横
モードの制御された半導体レーザ装置にも本発明は同様
に適用できる。さらに、AUGaAs系のみならずAJ
2GalnP。
Further, the present invention can be similarly applied to other semiconductor laser devices in which the transverse mode is controlled, such as a self-line structure using the MOCVD method. Furthermore, not only the AUGaAs system but also the AJ
2GalnP.

Ga1nAsP等の他の材料系の半導体レーザ装置でも
全く同様に本発明は実施できる。
The present invention can be implemented in the same manner with semiconductor laser devices made of other materials such as Ga1nAsP.

(発明の効果) 本発明を適用する半導体レーザ装置の構造では、吸収領
域の第2導電型電極に発振光に対して損失となるように
電圧を印加した状態では、この吸収領域の活性層は発振
光に対して可飽和吸収体として働く、半導体レーザ媒質
内に可飽和吸収体を導入すると断続的な発振状態となる
自動発振現象が発生する。自動発振は緩和振動に相当す
る高い周波数で発振が断続的に繰り返すから、注入キャ
リヤがゆらぎ、縦モードが多モード化する。この纒モー
ドの多モード化により、光源の可干渉性が低下し、1〜
3mWの低出力でも戻り光1%において相対雑音強度(
RI N ) −120d B/Hz以下の低雑音な特
性が得られる。吸収領域を発振光に対して損失となるよ
うにしたままでは一般に微分効率が低いから高出力特性
は得にくいが、吸収領域にも利得が生じるような電圧を
印加しキャリヤ注入すれば、30m W以上の高出力ま
で横モードが安定した特性が得られる。低雑音特性が要
求されるのは読みだし時の低出力レベル(〜3 m W
 )であるから、励起領域12に利得が生じるような一
定のバイアスを印加した状態で、吸収領域のバイアスレ
ベルを変化させることにより、再生時に低雑音、記録時
に高出力とそれぞれ望ましい特性が得られる0以上より
本発明の方法によれば、高周波重畳回路を用いなくとも
追記型、書き換え型光ディスク等の光源としてEt適な
高出力低雑音特性を実現することができる。
(Effects of the Invention) In the structure of the semiconductor laser device to which the present invention is applied, when a voltage is applied to the second conductivity type electrode of the absorption region so as to cause a loss with respect to the oscillation light, the active layer of the absorption region When a saturable absorber is introduced into a semiconductor laser medium that acts as a saturable absorber for oscillated light, an automatic oscillation phenomenon occurs in which an intermittent oscillation state occurs. Since automatic oscillation intermittently repeats oscillation at a high frequency corresponding to relaxation oscillation, the injected carriers fluctuate and the longitudinal mode becomes multimode. Due to this multi-modalization of the fiber modes, the coherence of the light source decreases, and 1~
Even at a low output of 3 mW, the relative noise intensity (
RI N ) -120 dB/Hz or less low noise characteristics can be obtained. It is difficult to obtain high output characteristics because the differential efficiency is generally low if the absorption region is left at a loss with respect to the oscillation light, but if a voltage is applied and carriers are injected to produce a gain in the absorption region, 30mW can be achieved. Characteristics with stable transverse mode can be obtained up to high outputs. Low noise characteristics are required at low output levels during readout (~3 mW
) Therefore, by applying a constant bias that produces gain to the excitation region 12 and changing the bias level of the absorption region, desired characteristics such as low noise during reproduction and high output during recording can be obtained. From the above, according to the method of the present invention, high output and low noise characteristics suitable for Et as a light source for write-once type, rewritable type optical disks, etc. can be realized without using a high frequency superimposition circuit.

従って本発明方法を採用することにより、アクセス時間
が早く低コストな光デイスクシステムを構成することが
可能となる。
Therefore, by employing the method of the present invention, it is possible to construct an optical disk system with short access time and low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

以下に図面を参照して本発明の一実施例である半導体レ
ーザ装置の駆動方法を説明する。第1図はその実施例を
適用する半導体レーザ装置の斜視図、第2図は第1図の
半導体レーザ装置の平面図、第3図は第1図の半導体レ
ーザ装置にその実施例を適用する態様を示す概念図であ
る。 1−−・n型GaAs基板、2−・−n型Aρa、<+
GaO,59ASクラッド層、3−・−n型A ’) 
o、 s、G a o、 asAs光導波層、4 ・A
ρo、 oaG a O,92A S活性層、5 ・・
p型Aj!o、s Gao、s As光反射層、6・・
・p型Aρ。、。Gao、+□Asクラッド層、7・・
・n型GaAs電極層、8・・・P+拡“散層、9・・
・n型電極、10・・・p型電極、11・・・吸収領域
、12・・・励起領域−13・・・電極分離溝。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A method for driving a semiconductor laser device according to an embodiment of the present invention will be described below with reference to the drawings. 1 is a perspective view of a semiconductor laser device to which the embodiment is applied, FIG. 2 is a plan view of the semiconductor laser device of FIG. 1, and FIG. 3 is a perspective view of the semiconductor laser device of FIG. 1 to which the embodiment is applied. It is a conceptual diagram showing an aspect. 1--n-type GaAs substrate, 2--n-type Aρa, <+
GaO, 59AS cladding layer, 3-・-n type A')
o, s, Ga o, asAs optical waveguide layer, 4 ・A
ρo, oaG a O, 92A S active layer, 5...
p-type Aj! o, s Gao, s As light reflective layer, 6...
・p-type Aρ. ,. Gao, +□As cladding layer, 7...
・N-type GaAs electrode layer, 8...P+ diffusion layer, 9...
- N-type electrode, 10... P-type electrode, 11... Absorption region, 12... Excitation region - 13... Electrode separation groove.

Claims (1)

【特許請求の範囲】[Claims] 第1導電型半導体基板上に活性層と第2導電型半導体層
とを順に積層してなり、前記第2導電型半導体層を共振
器軸方向に関して電気的に分離して励起領域と吸収領域
との二領域に分ける電気的分離構造が形成してあり、前
記励起領域と吸収領域とは光学的に結合されている横モ
ード制御型半導体レーザを駆動する方法において、低出
力動作時には、前記励起領域で利得が生じるに足る大き
さの第1の電圧V_1を該励起領域に印加するとともに
、前記吸収領域が発振光に対して損失となるだけの第2
の電圧V_2を該吸収領域に印加して自励発振を生じた
状態にし、高出力動作時には、前記励起領域に第1の電
圧V_1を印加するとともに、前記吸収領域で利得が生
じるに足る大きさの第3の電圧V_3を該吸収領域に印
加し、該高出力動作と低出力動作とを交互に切り替える
ことを特徴とする半導体レーザの駆動方法。
An active layer and a second conductivity type semiconductor layer are sequentially stacked on a first conductivity type semiconductor substrate, and the second conductivity type semiconductor layer is electrically separated in the resonator axis direction to form an excitation region and an absorption region. In a method for driving a transverse mode controlled semiconductor laser, in which an electrically isolated structure is formed that divides the excitation region into two regions, and the excitation region and absorption region are optically coupled, during low output operation, the excitation region A first voltage V_1 of a magnitude sufficient to generate a gain is applied to the excitation region, and a second voltage V_1 of a magnitude sufficient to generate a gain in the absorption region is applied to the excitation region.
A voltage V_2 is applied to the absorption region to cause self-oscillation, and during high output operation, a first voltage V_1 is applied to the excitation region and the voltage is large enough to generate gain in the absorption region. 1. A method of driving a semiconductor laser, comprising: applying a third voltage V_3 of V_3 to the absorption region, and alternately switching between the high-output operation and the low-output operation.
JP9193788A 1988-04-14 1988-04-14 Driving method of semiconductor laser Expired - Lifetime JP2643276B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9193788A JP2643276B2 (en) 1988-04-14 1988-04-14 Driving method of semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9193788A JP2643276B2 (en) 1988-04-14 1988-04-14 Driving method of semiconductor laser

Publications (2)

Publication Number Publication Date
JPH01262683A true JPH01262683A (en) 1989-10-19
JP2643276B2 JP2643276B2 (en) 1997-08-20

Family

ID=14040510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9193788A Expired - Lifetime JP2643276B2 (en) 1988-04-14 1988-04-14 Driving method of semiconductor laser

Country Status (1)

Country Link
JP (1) JP2643276B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7005680B2 (en) 2000-11-01 2006-02-28 Matsushita Electric Industrial Co., Ltd. Semiconductor light-emitting device including a divided electrode having a plurality of spaced apart conductive members
WO2018037747A1 (en) 2016-08-25 2018-03-01 ソニー株式会社 Semiconductor laser, electronic apparatus, and drive method for semiconductor laser
US10587092B2 (en) 2016-08-23 2020-03-10 Sony Corporation Semiconductor laser, electronic apparatus, and method of driving semiconductor laser
WO2021100644A1 (en) 2019-11-18 2021-05-27 ソニー株式会社 Q-switched semiconductor light-emitting element and distance measuring device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9066852B2 (en) 2006-05-24 2015-06-30 Kabushiki Kaisha Shofu Dental adhesive primer composition

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7005680B2 (en) 2000-11-01 2006-02-28 Matsushita Electric Industrial Co., Ltd. Semiconductor light-emitting device including a divided electrode having a plurality of spaced apart conductive members
US10587092B2 (en) 2016-08-23 2020-03-10 Sony Corporation Semiconductor laser, electronic apparatus, and method of driving semiconductor laser
WO2018037747A1 (en) 2016-08-25 2018-03-01 ソニー株式会社 Semiconductor laser, electronic apparatus, and drive method for semiconductor laser
US10680406B2 (en) 2016-08-25 2020-06-09 Sony Corporation Semiconductor laser, electronic apparatus, and method of driving semiconductor laser
WO2021100644A1 (en) 2019-11-18 2021-05-27 ソニー株式会社 Q-switched semiconductor light-emitting element and distance measuring device

Also Published As

Publication number Publication date
JP2643276B2 (en) 1997-08-20

Similar Documents

Publication Publication Date Title
US3999146A (en) Semiconductor laser device
JPH01262683A (en) Method for driving semiconductor laser
JPS61287289A (en) Semiconductor laser device for light memory
JPH0431195B2 (en)
EP0143460B1 (en) Semiconductor laser device and production method thereof
JPS6235690A (en) Semiconductor laser array device
JPS6125234B2 (en)
JPH0440875B2 (en)
JPH01251775A (en) Semiconductor laser apparatus and method of driving same
JP2003060290A (en) Nitride semiconductor laser element and drive method thereof
US5909425A (en) Optical information reproduction apparatus having a semiconductor laser device light source
JPH01251774A (en) Semiconductor laser apparatus and method of driving same
JPS6237899B2 (en)
JPS61107781A (en) Single axial-mode semiconductor laser device
JPS58199585A (en) Semiconductor laser
JPH0642578B2 (en) Semiconductor laser device
JPH01194381A (en) Integrated type semiconductor laser
JPH05335691A (en) Light input type semiconductor laser
JP3768267B2 (en) Semiconductor laser device and manufacturing method thereof
JPS6251281A (en) Semiconductor laser
JPH0621537A (en) Ring laser
JPS61161786A (en) Semiconductor laser device
JPS5987888A (en) Semiconductor laser element
JPS58118185A (en) Photo bistable element
JPH02257691A (en) Integrated type semiconductor laser