JPS6251281A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPS6251281A
JPS6251281A JP19148885A JP19148885A JPS6251281A JP S6251281 A JPS6251281 A JP S6251281A JP 19148885 A JP19148885 A JP 19148885A JP 19148885 A JP19148885 A JP 19148885A JP S6251281 A JPS6251281 A JP S6251281A
Authority
JP
Japan
Prior art keywords
layer
type
region
block layer
active layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19148885A
Other languages
Japanese (ja)
Inventor
Shinsuke Ueno
上野 眞資
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP19148885A priority Critical patent/JPS6251281A/en
Publication of JPS6251281A publication Critical patent/JPS6251281A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a semiconductor laser, which generates stable self-excited vibration, keeps a basic lateral mode oscillation and is characterized by a low-noise characteristic, good controllability and excellent reproducibility, by providing a stripe shaped carrier injecting region at the central region of a resonator other than the vicinities of both reflecting surfaces, in a current block layer that is formed at a part neighboring one of clad layers. CONSTITUTION:On an n-type GaAs substrate 10, an n-type Al0.45Ga0.55As first clad layer 11, an n-type Al0.15Ga0.85As active layer 12, a p-type Al0.45Ga0.55As second clad layer 13, an n-type Al0.3Ga0.7As first block layer 14 and an n-type GaAs second block layer 15 are continuously grown. Then entire body is covered with SiO2 film. Thereafter, a stripe shaped window is provided along the entire length of a resonator in the longitudinal direction. The second block layer 15 is etched and the upper surface of the first clad layer 14 is exposed. A stripe shaped window is formed in the resist film, with the vicinities of both reflecting surface being made to remain, so that the central lines of the widths agree. With the resist film as a mask, the first block layer 14 is etched, and the surface of the second clad layer 13 is exposed. Then the resit film 16 and the SiO2 film are removed. Thereafter a p-type Al0.45Ga0.55As third layer and p<+> type GaAs cap layer 18 are continuously grown.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は光情報処理用半導体レーザに関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a semiconductor laser for optical information processing.

(従来技術とそつ問題点)         ・光情報
処理半導体レーザの中でも、ビデオディスクや光デイス
ク上の読み取り用光源として使用する場合には、雑音特
性、特に戻り光に誘起される雑音の特性が、問題となる
。半導体レーザの戻抄光誘起雑・音を低減するために、
種々の方式が試みられているが中でも出力コヒーレンス
の低減は特に有効である。
(Prior art and other problems) ・Among optical information processing semiconductor lasers, when used as a light source for reading video disks and optical disks, noise characteristics, especially noise characteristics induced by return light, are a problem. becomes. In order to reduce light-induced noise and noise in semiconductor lasers,
Although various methods have been tried, reducing output coherence is particularly effective.

この方式のひとつとして高周波重畳による半導体レーザ
の低雑音化が大石、茅根、中村1尾島により1983年
秋季応用物理学関係連合講演会予稿集102頁26a−
P−6’高周波重畳による半導体レーザの低雑音化と縦
モード特性′にお−て提案され有効である事が示されて
−る。しかしこの方式では高周波駆動回路の付加が必要
であるばかりでなく、外部機構へ高周波が漏れる等の弊
害を伴なっている。
As one of these methods, Oishi, Kayane, and Nakamura Kazuojima proposed low-noise semiconductor lasers by high-frequency superposition in the Proceedings of the 1983 Autumn Conference on Applied Physics, p. 102, 26a-
P-6'Reduction of noise and longitudinal mode characteristics of semiconductor laser by high frequency superposition' has been proposed and shown to be effective. However, this method not only requires the addition of a high frequency drive circuit, but also has disadvantages such as high frequency leakage to external mechanisms.

これに対して自励振動を生じさせ縦モードをマルチ化し
て低雑音化する方式が、銘木、松本、田利、渡辺、栗原
により電子通信学会技術報告、光量子エレクトロニクス
oqE84−57,39頁“l58Sレーザの雑音特性
と自己パルス変調の機構′において提案され試みられて
いる。しかしこの方式ではレーザ構造(層厚や溝幅など
)に対して自励振動の特性がきわめて敏感に依存し、こ
のため安定な自励振動を示すデバイスの収率は低くなる
欠点を有していた。
On the other hand, a method to generate self-excited vibration and multiply longitudinal modes to reduce noise is proposed by Meki, Matsumoto, Tari, Watanabe, and Kurihara in IEICE Technical Report, Photon Quantum Electronics oqE84-57, p. 39 "l58S It has been proposed and attempted in the area of laser noise characteristics and self-pulse modulation mechanism.However, in this method, the characteristics of self-excited vibration depend extremely sensitively on the laser structure (layer thickness, groove width, etc.), and therefore The yield of devices exhibiting stable self-oscillation was low.

半導体レーザに自励振動を生じさせる方式としては、上
記のほかに共振器内に可飽和吸収体を導入する方式があ
る。しかし現状では可飽和吸収体の各種パラメータの大
きさと出現する現象(自励振動か双安定動作か)との間
の関係も充分間らかにされていない〇 そこで、本発明の目的は上記諸欠点を除去し安定な自励
振動を生じ、低雑音特性を持つと共に基本横モード発振
を維持する制御性および再現性のすぐれた半導体レーザ
を提案する事にある。
In addition to the method described above, there is a method of introducing a saturable absorber into a resonator as a method of causing self-excited vibration in a semiconductor laser. However, at present, the relationship between the magnitude of various parameters of a saturable absorber and the phenomenon that appears (self-excited vibration or bistable operation) has not been sufficiently clarified. Therefore, the purpose of the present invention is to solve the above-mentioned drawbacks. The purpose of this invention is to propose a semiconductor laser that eliminates the oscillation, generates stable self-excited vibration, has low noise characteristics, maintains fundamental transverse mode oscillation, and has excellent controllability and reproducibility.

(問題点を解決するための手段) 前述の問題点を解決するために本発明が提供する手段は
、活性層を該活性層よりもバンドギャップの広い材質か
らなるクラッド層で挾んだダブルへテロ接合半導体材料
をもつ多層構造の半導体レーザであって、該クラッド層
の一方に隣辺して電流ブロック層が形成してあり、該電
流ブロック層にストライプ状のキャリア注入領域が内反
射面近傍を除いた共振器中央領域に設けてあり、該キャ
リア注入領域を垂直方向に含みかつそのキャリア注入領
域よりも広い幅をもつ実効的な屈折率分布領域が共振器
の長て方向全長にわたって形成してあり、該活性層内の
キャリア拡散長が該実効的な屈折率分布領域の幅と該キ
ャリア注入領域の幅との差の半分よりも短かく、該実効
的な屈折率の高さが注入キャリアによる屈折率の減小量
よりも大きく、該内反射面近傍の活性層が吸収領域であ
ることを特徴とする。
(Means for Solving the Problems) In order to solve the above-mentioned problems, the present invention provides a method of forming an active layer into a double layer sandwiched between cladding layers made of a material with a wider band gap than the active layer. A semiconductor laser with a multilayer structure using a telojunction semiconductor material, in which a current blocking layer is formed adjacent to one side of the cladding layer, and a striped carrier injection region is formed in the current blocking layer near the internal reflection surface. An effective refractive index distribution region that includes the carrier injection region in the vertical direction and has a width wider than the carrier injection region is formed over the entire length of the resonator in the longitudinal direction. and the carrier diffusion length in the active layer is shorter than half the difference between the width of the effective refractive index distribution region and the width of the carrier injection region, and the height of the effective refractive index is shorter than the injection region. The active layer near the internal reflection surface is an absorption region that is larger than the amount of decrease in refractive index caused by carriers.

(実施例) 以下図面を参照して本発明の実施例を詳細に説明する。(Example) Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は本発明の一実施例の斜視図、第2図は第1図の
A−A’面の矢視断面図、第3図は第1図のB−B’面
の矢視断面図である。
FIG. 1 is a perspective view of an embodiment of the present invention, FIG. 2 is a cross-sectional view taken along line AA' in FIG. 1, and FIG. 3 is a cross-sectional view taken along line B-B' in FIG. It is a diagram.

本実施例の製造においては、まず第4図に示すよ5に、
n形GaAs基板10上Kn形Al、)、B Ga1)
)HAs第1クラッド層11を2μm%n形A11)、
1 @ ()a 6.BAS活性層(n形濃度n = 
1,5 X 10”d” ) 12を0.1μms  
p形A 1o、、 s Gao、6 B’ As第2ク
ラッド層13を0.3 μm 、 n形A 16.1 
Ca 11.? As第1ブロック層14を0.3μm
、n形GaAs第2ブロック層15を0.1μmS M
OCVD法で連続成長する。
In the manufacturing of this example, first, as shown in FIG.
Kn-type Al, ), B Ga1) on n-type GaAs substrate 10
) HAs first cladding layer 11 is 2 μm% n-type A11),
1 @ ()a 6. BAS active layer (n-type concentration n =
1.5 x 10"d") 12 for 0.1μms
p-type A 1o, s Gao, 6 B' As second cladding layer 13 of 0.3 μm, n-type A 16.1
Ca 11. ? The thickness of the As first block layer 14 is 0.3 μm.
, the n-type GaAs second block layer 15 is 0.1 μm S M
Continuous growth using OCVD method.

MOCVD法では薄膜成長が可能であり、かつ精密な膜
厚制御性を兼ね備えているので上記の如き層構造を制御
性よく成長する事ができる。また上記の如く活性層12
のn形濃度を15X10 cMLにしておくとキャリア
の拡散長は1μm以下にする事ができる。この濃度のと
き、発光効率も最も高くなる事が同時に明らかになった
Since the MOCVD method allows thin film growth and has precise film thickness controllability, it is possible to grow the above-mentioned layered structure with good controllability. In addition, as described above, the active layer 12
By setting the n-type concentration to 15×10 cML, the carrier diffusion length can be reduced to 1 μm or less. It was also revealed that at this concentration, the luminous efficiency was also the highest.

次に810.膜で全体を被膜した後フォトレジ法により
共振器の長で方向全長に幅4μmのストライプ状の窓を
あけGaAs第2ブロック層15をエツチングして、A
1゜、B Ga04 As第1ブロック層14の上面を
出す。さらにフォトレジスト法をおこない上記の幅の中
心線と一致させるように幅2μmのストライプ状の窓を
内反射面近傍をそれぞれ40μmずつ残してレジスト膜
16にあけ、このレジスト膜をマスクにしてA16 、
 B Ga6. ? A6第1ブロック層14をエツチ
ングしてAIo、41 ()ao、5sAs第2クラッ
ド層13の表面を出す(第5図)。
Next 810. After coating the entire surface with a film, a stripe-shaped window with a width of 4 μm is opened along the entire length of the resonator using a photoresist method, and the GaAs second block layer 15 is etched.
1°, the top surface of the B Ga04 As first block layer 14 is exposed. Furthermore, a photoresist method is performed to create striped windows with a width of 2 μm in the resist film 16, leaving 40 μm each in the vicinity of the internal reflection surface so as to match the center line of the above-mentioned width, and using this resist film as a mask, A16,
B Ga6. ? The A6 first block layer 14 is etched to expose the surface of the AIo,41()ao,5sAs second cladding layer 13 (FIG. 5).

次にレジスト膜16と810!膜とを除去した後、p形
A16.4 @ Ga(1,6@ As第3クラッド層
17を2.0+ μm1高濃度のp 形Ga As キャップ層18を1
.0μm連続成長する。この成長において従来から行わ
れている液相成長法においては、AlzGat xA8
層でらるA16.B Ga00sl As第2クラッド
層13やA164 Ga64 As第1ブロック層14
の上にはいかなる液相層も成長しないが、MOCVD法
では容易に成長させる事ができる。特にこのMOCVD
法において第3クラッド層17を成長する直前にHCl
 等のガスで成長する面の表面を微量にガスエツチング
をすると成長素子の再現性、信頼性を一段と向上させる
事ができる。
Next, resist film 16 and 810! After removing the p-type A16.4@Ga(1,6@As) third cladding layer 17, a high concentration p-type GaAs cap layer 18 of 2.0+ μm1 is added.
.. Continuous growth of 0 μm. In the conventional liquid phase growth method for this growth, AlzGat xA8
layer A16. B Ga00sl As second cladding layer 13 and A164 Ga64 As first block layer 14
No liquid phase layer is grown on top of this, but it can be easily grown using MOCVD. Especially this MOCVD
Immediately before growing the third cladding layer 17 in the
The reproducibility and reliability of the grown device can be further improved by etching the surface of the growing surface with a small amount of gas such as .

この後成長表面全面にp形オーミックコンタクト19.
基板側にn形オーミックコンタクト20をつけると本実
施例の半導体レーザを得る(第1図、第2図、第3図)
After this, p-type ohmic contacts 19.
By attaching an n-type ohmic contact 20 to the substrate side, the semiconductor laser of this example is obtained (Figures 1, 2, and 3).
.

以上に本発明の一実施例の構造を、第1図の斜視図、第
2図及び第3図の断面図を参照して説明したが、次にこ
の実施例の作用及び効果にりiて詳しく説明する。
The structure of one embodiment of the present invention has been explained above with reference to the perspective view in Fig. 1 and the sectional views in Figs. 2 and 3. explain in detail.

本実施例の構造において全面電極から流入された電流は
、ナヤツプ層18.第3クラッド層17と全面に広がっ
て流れるが、第3クラッド層17に隣接して電気的極性
の異なるn形GaAs第2ブロック層15さらにこれに
隣接してn形AIO,。
In the structure of this embodiment, the current flowing from the entire surface electrode is applied to the nap layer 18. An n-type GaAs second block layer 15, which spreads over the entire surface of the third cladding layer 17 and has a different electrical polarity, is adjacent to the third cladding layer 17, and an n-type AIO, which is adjacent to this.

()a6.マAs  第1ブロック層14があるから、
電流は第1および第2のブロック層で阻止され、最終的
にn形Al0J ()a@、y As第1ブロック層1
4にあけた共振器中央領域のストライプ状の窓からp形
Al(1,41()ao、ss As第2クラッド層1
3を通って、n形Al 6,1 @ Ga 6.1 @
 As活性層12に注入される。
()a6. Since there is a first block layer 14,
The current is blocked in the first and second blocking layers and finally in the n-type Al0J()a@,yAs first blocking layer 1
A p-type Al (1,41()ao, ss As second cladding layer 1
3, n-type Al 6,1 @ Ga 6.1 @
As is implanted into the active layer 12.

活性層に注入されたキャリアは、活性層水平横方向に拡
散していき利得分布を形成しレーザ発振を開始する。こ
のとき前に記した様に活性層12内のキャリア拡散長が
短かいから、利得分布は主に第1ブロック層14にあけ
たストライプ状の窓下の活性層の部分に形成され、また
その利得分布の形状は急峻になり、その結果ストライプ
状の窓の下の部分のみ利得が高くなりその外部は損失領
域になる。
The carriers injected into the active layer diffuse in the horizontal and lateral directions of the active layer, form a gain distribution, and start laser oscillation. At this time, as mentioned earlier, since the carrier diffusion length in the active layer 12 is short, the gain distribution is mainly formed in the part of the active layer under the striped window formed in the first block layer 14. The shape of the gain distribution becomes steep, and as a result, the gain is high only in the lower part of the striped window, and the outside becomes a loss region.

一方光は活性層12からしみ出し垂直方向に広がる。こ
の時第2クラツド層13にしみ出した光は、第2クラッ
ド層13に隣接して屈折率の高いn形A1゜、1 Ga
1)4 As 第1ブロック層14があるから、この層
14にひきこまれる。さらに第1ブロック層14に隣接
してn形GaAs第2ブロック層15があるがこの層は
屈折率が第1ブロック層より高く光をひきこむばかりで
なく、レーザ発振光ニ対してバンドギャップが狭く〜1
0000cm以上の光の吸収層になっている。従って光
は第2ブロック層にひきこまれそこで大きな吸収損失を
うける事になる。その結果この第2ブロック層15にあ
けた窓にわたって正の屈折率差ΔηBが生じる。その値
は本実施例においてはΔηB=5 X 10’になる事
が本発明者の計算結果より明らかになった。
On the other hand, light seeps out from the active layer 12 and spreads in the vertical direction. At this time, the light that seeps into the second cladding layer 13 is transmitted to the n-type A1°, 1Ga, which has a high refractive index and is adjacent to the second cladding layer 13.
1) 4 As Since there is a first block layer 14, it is drawn into this layer 14. Furthermore, there is an n-type GaAs second block layer 15 adjacent to the first block layer 14, but this layer not only has a higher refractive index than the first block layer and draws in light, but also has a band gap for laser oscillation light. narrow ~1
It is a layer that absorbs light at a wavelength of 0,000 cm or more. Therefore, the light is drawn into the second block layer and suffers a large absorption loss there. As a result, a positive refractive index difference ΔηB occurs across the window formed in the second block layer 15. The inventor's calculation results revealed that the value is ΔηB=5×10′ in this example.

以上のことから、本実施例の構造においては、第1ブロ
ック層14にあけた狭い窓幅程度の利得分布に対し第2
ブロック層15にあけたそれより広い窓幅にわたって光
が広がり、そこでは正の屈折率ガイディング機構が作り
つけられている事になる。ところで、キャリアが活性層
に注入され利得分布が形成されると屈折率のキャリア密
度に対する負の依存性のため屈折率は減少する。しかし
その値は3〜4×10 程度であるので、本実施例では
レーザ発振時では1〜2×10 の屈折率が作動つけら
れておりこの正の屈折率ガイディングと上に述べた第2
ブロック層15による光の急激な吸収との相乗効果によ
り基本横モード発振を維持する事ができる。
From the above, in the structure of this embodiment, the second
The light spreads over a wider window width than that in the block layer 15, where a positive refractive index guiding mechanism is built. By the way, when carriers are injected into the active layer and a gain distribution is formed, the refractive index decreases due to the negative dependence of the refractive index on the carrier density. However, since its value is about 3 to 4 x 10, in this embodiment, a refractive index of 1 to 2 x 10 is activated during laser oscillation, and this positive refractive index guiding and the above-mentioned second
Due to the synergistic effect with the rapid absorption of light by the blocking layer 15, fundamental transverse mode oscillation can be maintained.

本実施例の構造では光の広がりの幅が利得分布の幅にく
らべて広いので光は利得領域からその外部の損失領域ま
で広がっておりこれは等制約には可飽和吸収体をもって
いる事になり自励振動を生じやすくなる。
In the structure of this example, the width of the spread of light is wider than the width of the gain distribution, so the light spreads from the gain region to the loss region outside of it, which means that there is a saturable absorber under the equality constraint. Self-excited vibration is likely to occur.

本実施例の構造は、上記の如く活性層水平横方向のみな
らず内反射面近傍にも吸収領域を有している。すなわち
、この内反射面近傍の領域では、活性層12に隣接して
p形Al。、45 Gao、ss Aa第2クラッド層
13があり、これに隣接して第1プ四ツク層14がある
から、注入電流は第1ブロック層14で一部阻止される
。又第2クラッド層13を活性層水平横方向に沿って流
れてくる電流は、第2クラッド層13の抵抗を比較的高
くしておけば、第2クラッド層13の層厚が薄いことの
相乗効果により第2クラッド層横方向全体の抵抗がきわ
めて高くなるのでこの量は無視できる程小さい。
As described above, the structure of this embodiment has absorption regions not only in the horizontal direction of the active layer but also in the vicinity of the internal reflection surface. That is, in the region near this internal reflection surface, p-type Al is formed adjacent to the active layer 12. , 45 Gao, ss Since there is the Aa second cladding layer 13 and the first blocking layer 14 adjacent thereto, the injection current is partially blocked by the first blocking layer 14. In addition, if the resistance of the second cladding layer 13 is made relatively high, the current flowing through the second cladding layer 13 along the horizontal direction of the active layer can be suppressed by the synergistic effect of the thin layer thickness of the second cladding layer 13. This amount is negligibly small, since the effect is to make the entire lateral resistance of the second cladding layer extremely high.

従ってこの内反射面近傍の活性層領域にはキャリアが注
入されないから、この領域はレーザ発振光に対して等制
約にバンドギャップが狭くなっており〜150cI!L
 の吸収損失領域になっている。
Therefore, carriers are not injected into the active layer region near this internal reflection surface, so the bandgap in this region is narrow with respect to laser oscillation light by ~150cI! L
is in the area of absorption loss.

ところでこの領域ではレーザ発振光を吸収する事によっ
てキャリアが励起されるとその結果バンドギャップが広
がり損失が小さくなるという現象が生じいわゆる可飽和
吸収体になっている。
By the way, in this region, when carriers are excited by absorbing laser oscillation light, a phenomenon occurs in which the band gap widens and loss decreases, resulting in a so-called saturable absorber.

以上の如く本実施例の構造は、活性領域の水平横方向の
みならず共振器長で方向にも可飽和吸収体をもち自励振
動を可能にする。
As described above, the structure of this embodiment has a saturable absorber not only in the horizontal and lateral directions of the active region but also in the direction along the length of the resonator, making self-oscillation possible.

本実施例の構造では更にキャリア拡散長が屈折率分布の
幅と利得分布幅を決定するキャリア注入領域幅との半分
以下であるとともにレーザ発振時での屈折率が比較的小
さいから、本構造は自励振動を助長する効果をもつ。
Furthermore, in the structure of this example, the carrier diffusion length is less than half the width of the carrier injection region that determines the width of the refractive index distribution and the gain distribution width, and the refractive index during laser oscillation is relatively small. It has the effect of promoting self-excited vibration.

すなわちまずキャリア拡散長が短かいから、注入キャリ
ア密度分布の変動がはげしくなり、これに伴なって基本
横モードの幅が大きく変動しその収縮と拡大が生じその
結果自励振動が助長される。
That is, first of all, since the carrier diffusion length is short, fluctuations in the injected carrier density distribution become drastic, and along with this, the width of the fundamental transverse mode fluctuates greatly, causing its contraction and expansion, and as a result, self-excited vibration is promoted.

本発明者の解析結果によれば本実施例の構造においてキ
ャリア拡散長1μmと2μmとを用いて計算した結果キ
ャリア拡散長1μmの自励振動は2μmの5.5〜6倍
になる事が明らかになった。
According to the analysis results of the present inventor, calculations using carrier diffusion lengths of 1 μm and 2 μm in the structure of this example show that the self-excited vibration of carrier diffusion length of 1 μm is 5.5 to 6 times that of 2 μm. Became.

ざらにレーザ発振時の屈折率の大きさが比較的小さい事
も基本横モードの幅の変動を助長する。
Furthermore, the fact that the refractive index during laser oscillation is relatively small also promotes fluctuations in the width of the fundamental transverse mode.

本発明者の解析結果によれば本実施例の構造においてキ
ャリア拡散長1μmを用いて計算した結果自励振動の第
1ピーク強度と第1の谷での強度との比率がηg=1.
0X10−” では160に対しηB=5X10−” 
 では195になる事がわかった。
According to the analysis results of the present inventor, the ratio of the first peak intensity of self-excited vibration to the intensity at the first valley is ηg=1.
0X10-" then ηB=5X10-" for 160
I found out that it would be 195.

以上のすべての相乗効果の結果、本実施例の構造では容
易に自励振動が生じその結果軸モードが多モード化し軸
モードのコヒーレントが低減するから、反射光に対する
雑音もきわめて低く低雑音特性が得られる。従って本実
施例のレーザ素子は光読み取りに必要な低雑音レーザに
なる。
As a result of all the synergistic effects described above, self-excited vibration easily occurs in the structure of this example, resulting in multi-mode axial modes and reduced coherence of the axial modes, resulting in extremely low noise to reflected light and low-noise characteristics. can get. Therefore, the laser element of this embodiment becomes a low-noise laser necessary for optical reading.

本実施例の構造では内反射面近傍では平担で一様な第1
ブロック層14に隣接して共振器の長て11一 方向に沿ってストライプ状の窓をもつn形GaAs第2
ブロック層15がある。活性層内を共振器の長て方向に
進んできた光のうち活性層垂直方向に広がったレーザ光
はス)9イブ外部のn形GaAs層で急激な吸収損失を
うける。こうしてストライプ部分には正の屈折率ガイデ
ィング機構が働いてお秒、レーザ光は内反射面近傍では
このガイディング機構によって制御される。その結果非
点収差もなく、また前記した共振器中央領域部分とこの
内反射面近傍との光のガイディング機構によって安定な
レーザ発振を維持する事ができる。
In the structure of this embodiment, the first waveform is flat and uniform near the internal reflection surface.
A second layer of n-type GaAs with a striped window along one direction of the length 11 of the resonator adjacent to the block layer 14
There is a block layer 15. Of the light that has traveled in the active layer in the longitudinal direction of the resonator, the laser light that has spread in the vertical direction of the active layer undergoes rapid absorption loss in the n-type GaAs layer outside the active layer. In this way, a positive refractive index guiding mechanism works in the stripe portion, and the laser beam is controlled by this guiding mechanism in the vicinity of the internal reflection surface. As a result, there is no astigmatism, and stable laser oscillation can be maintained by the light guiding mechanism between the central region of the resonator and the vicinity of this internal reflection surface.

なお、上記実施例ではn形GaAs基板を用いたが、p
nを反転させても本発明は実現できる。また実施例はA
lGa As / GaAs  ダブルへテロ接合結晶
材料について説明したが、その他の結晶材料例えばlm
GaP / AI ImP ImGaAsP / lm
GaP eImGaAs P / ImP 、 AI 
GaAs Sb / GaAs 3b等数多くの結晶材
料に本発明は適用する事ができる。
Note that although an n-type GaAs substrate was used in the above embodiment, a p-type GaAs substrate was used.
The present invention can be realized even if n is inverted. Also, the example is A
Although the lGaAs/GaAs double heterojunction crystal material has been described, other crystal materials such as lm
GaP/AI ImP ImGaAsP/lm
GaP eImGaAs P/ImP, AI
The present invention can be applied to many crystalline materials such as GaAs Sb/GaAs 3b.

(発明の効果) 本発明の半導体レーザは、以上に詳しく説明したように
、非点収差がなくその上に基本横モード発振を維持する
事ができ、しかも安定な自励振動を生じ、その自励振動
の発生条件の許容範囲が広く構造が比較的簡単であるか
ら制御性及び再現性に優れ、高歩留りに製造できる。こ
の半導体レーザは、自励振動を安定に発生するから、ビ
デオディスクや光ディスクに読み取り用光源として用い
れば戻り光誘起雑音を低減することができる。
(Effects of the Invention) As explained in detail above, the semiconductor laser of the present invention has no astigmatism, can maintain fundamental transverse mode oscillation, and also produces stable self-excited vibration. Since the permissible range of the conditions for generating excitation vibration is wide and the structure is relatively simple, it has excellent controllability and reproducibility, and can be manufactured at a high yield. Since this semiconductor laser stably generates self-excited vibration, when used as a light source for reading video discs and optical discs, it is possible to reduce return light-induced noise.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の斜視図、第2図は第1図の
A−A’面の矢視断面図、第3図は第1図のB−B’面
の矢視断面図、第4図はこの実施例の作製の過程におい
てダブルへテロ接合結晶を成長した構造を示す断面図で
ある。第5図は、この実施例の作製の過程において上記
ダブルへテロ接合結晶にストライプ状の電流注入口を内
反射面近傍を除いて共振器中央領域に設けた構造の共振
器の長て軸を含む面で切った断面図である。 10 ・n形GaAs基板、11−n形Al(1,45
()a6.。 As第1クラッド層、12−n形A1o、ti ()a
O,81As活性層、13 ・p形Alo、45 ()
ao、5 @ As第2クラッド層、14−・−n形A
:Lo、3 Gao、7 As第1ブロック層、15・
・・n形Ga As第2ブロック層= 16・・・レジ
スト膜、17−p形Ale、4 N Gao、s a 
As第3クラッド層、18・・・−形GaAsキャップ
層、19・・・p形オーミックコンタクト、20・・・
n形オーミックコンタクト。 代理人 弁理士 本 庄 伸 介
FIG. 1 is a perspective view of an embodiment of the present invention, FIG. 2 is a cross-sectional view taken along line AA' in FIG. 1, and FIG. 3 is a cross-sectional view taken along line B-B' in FIG. 4 are cross-sectional views showing the structure of a double heterojunction crystal grown in the process of manufacturing this example. FIG. 5 shows the long axis of a resonator with a structure in which a striped current injection port was provided in the central region of the resonator except for the vicinity of the internal reflection surface in the double heterojunction crystal described above during the fabrication process of this example. FIG. 10 - n-type GaAs substrate, 11-n-type Al (1,45
()a6. . As first cladding layer, 12-n type A1o, ti()a
O,81As active layer, 13 ・p-type Alo, 45 ()
ao, 5 @ As second cladding layer, 14-...-n type A
:Lo, 3 Gao, 7 As 1st block layer, 15.
...n-type GaAs second block layer = 16...resist film, 17-p-type Ale, 4 N Gao, sa
As third cladding layer, 18... - type GaAs cap layer, 19... p-type ohmic contact, 20...
N-type ohmic contact. Agent Patent Attorney Shinsuke Honjo

Claims (1)

【特許請求の範囲】[Claims] 活性層を該活性層よりもバンドギャップの広い材質から
なるクラッド層で挾んだダブルヘテロ接合半導体材料を
もつ多層構造の半導体レーザにおいて、該クラッド層の
一方に隣辺して電流ブロック層が形成してあり、該電流
ブロック層にストライプ状のキャリア注入領域が両反射
面近傍を除いた共振器中央領域に設けてあり、該キャリ
ア注入領域を垂直方向に含みかつそのキャリア注入領域
よりも広い幅をもつ実効的な屈折率分布領域が共振器の
長て方向全長にわたつて形成してあり、該活性層内のキ
ャリア拡散長が該実効的な屈折率分布領域の幅と該キャ
リア注入領域の幅との差の半分よりも短かく、該実効的
な屈折率の高さが注入キャリアによる屈折率の減少量よ
りも大きく、該両反射面近傍の活性層が吸収領域である
事を特徴とする半導体レーザ。
In a multilayer semiconductor laser having a double heterojunction semiconductor material in which an active layer is sandwiched between cladding layers made of a material with a wider band gap than the active layer, a current blocking layer is formed adjacent to one of the cladding layers. A striped carrier injection region is provided in the current blocking layer in the central region of the resonator excluding the vicinity of both reflective surfaces, and the stripe-shaped carrier injection region includes the carrier injection region in the vertical direction and has a width wider than the carrier injection region. An effective refractive index distribution region with The active layer near both reflective surfaces is an absorption region, and the height of the effective refractive index is greater than the amount of decrease in the refractive index due to injected carriers. semiconductor laser.
JP19148885A 1985-08-30 1985-08-30 Semiconductor laser Pending JPS6251281A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19148885A JPS6251281A (en) 1985-08-30 1985-08-30 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19148885A JPS6251281A (en) 1985-08-30 1985-08-30 Semiconductor laser

Publications (1)

Publication Number Publication Date
JPS6251281A true JPS6251281A (en) 1987-03-05

Family

ID=16275477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19148885A Pending JPS6251281A (en) 1985-08-30 1985-08-30 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPS6251281A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4964135A (en) * 1988-07-22 1990-10-16 Mitsubishi Denki Kabushiki Kaisha Semiconductor laser
US6822990B2 (en) 2000-09-08 2004-11-23 Mitsui Chemicals, Inc. Semiconductor laser device
US6842471B2 (en) 2002-04-02 2005-01-11 Nec Compound Semiconductor Devices, Ltd. Semiconductor laser device having a current non-injection area

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4964135A (en) * 1988-07-22 1990-10-16 Mitsubishi Denki Kabushiki Kaisha Semiconductor laser
US5045500A (en) * 1988-07-22 1991-09-03 Mitsubishi Denki Kabushiki Kaisha Method of making a semiconductor laser
US6822990B2 (en) 2000-09-08 2004-11-23 Mitsui Chemicals, Inc. Semiconductor laser device
US6842471B2 (en) 2002-04-02 2005-01-11 Nec Compound Semiconductor Devices, Ltd. Semiconductor laser device having a current non-injection area

Similar Documents

Publication Publication Date Title
JPS60192379A (en) Semiconductor laser device
JPS6251281A (en) Semiconductor laser
JPS622686A (en) Semiconductor laser device
EP0143460B1 (en) Semiconductor laser device and production method thereof
JPS6184891A (en) Semiconductor laser element
JPS62179191A (en) Semiconductor laser
JPS62165389A (en) Semiconductor laser
JPS6362391A (en) Semiconductor laser
JPS6297384A (en) Semiconductor laser device
JPS6297389A (en) Semiconductor laser
JPS62165388A (en) Semiconductor laser
JPS6239088A (en) Semiconductor laser
JP2822470B2 (en) Semiconductor laser
JPS62133789A (en) Semiconductor laser
JPS6364385A (en) Semiconductor laser
JPS6286783A (en) Semiconductor laser
JPS59197181A (en) Semiconductor laser
JPS6360584A (en) Semiconductor laser
JPS63248190A (en) Semiconductor laser
JPH01140691A (en) Semiconductor laser
JPH01175284A (en) Semiconductor laser element
JPS60257583A (en) Semiconductor laser device
JPS6196790A (en) Semiconductor laser
JPS6360583A (en) Semiconductor laser
JPH02178987A (en) Semiconductor laser element