JPS62165388A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPS62165388A
JPS62165388A JP702786A JP702786A JPS62165388A JP S62165388 A JPS62165388 A JP S62165388A JP 702786 A JP702786 A JP 702786A JP 702786 A JP702786 A JP 702786A JP S62165388 A JPS62165388 A JP S62165388A
Authority
JP
Japan
Prior art keywords
layer
width
type
active layer
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP702786A
Other languages
Japanese (ja)
Inventor
Shinsuke Ueno
上野 眞資
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP702786A priority Critical patent/JPS62165388A/en
Publication of JPS62165388A publication Critical patent/JPS62165388A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a semiconductor laser with excellent controllability and reproducibility by a method wherein the cross section of a guide layer perpendic ular to the longitudinal axis of a resonator has a protruded shape near a reflecting end surface and the carrier diffusion length is made shorter than a half of the difference between the width of 2nd trench and the width of 1st trench. CONSTITUTION:A current applied from a whole electrode is blocked by 1st blocking layer 14 and 2nd blocking layer 15 and finally injected into an n-type Al0.15Ga0.35As active layer 12 through a stripe-shape window formed in the N-type Al0.5Ga0.5As 1st blocking layer 14 and p-type Al0.4Ga0.6As 2nd cladding layer 13. The carriers injected into the active layer 12 are diffused to the hori zontal direction of the active layer to form a gain distribution and induce a laser oscillation. In this case, as the carrier diffusion length is shorter than a half of the difference between the width of a refractive index distribution and the width of a carrier injecting region which determines the width of the gain distribution and the refractive index at the time of laser oscillation is relatively small, self-exciting oscillation is promoted.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、光情報処理に適した半導体レーザに関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a semiconductor laser suitable for optical information processing.

(従来の技術) 光情報処略半導体レーザの中でも、ビデオディスクや光
デイスク上の読み取り用光源として使用する本のでは、
雑音特性特に戻り光に誘起される雑音の特性が問題とな
る。半導体レーザの戻り光誘起雑音を低減するために、
種々の方式が試みられているが中でも出力コヒーレンス
の低減は特に有効である。
(Prior Art) Among optical information processing semiconductor lasers, it is used as a light source for reading video discs and optical discs.
Noise characteristics, especially characteristics of noise induced by returned light, are a problem. In order to reduce the return light induced noise of semiconductor lasers,
Although various methods have been tried, reducing output coherence is particularly effective.

この方式のひとつとして高周波重畳による半導体レーザ
の低雑音化が大行、茅根、中村、尾島により1983年
秋季応用物理学関係連合講演会予精巣102頁26a−
P−6’高周波重畳による半導体レーザの低雑音化と縦
モード特性′において提案され有効である事が示されて
いる。これに対して自励振動を生じさせ縦モードをマル
チ化して低雑音化する方式が銘木、松本、用材、渡辺、
栗原によ動電子通信学会技術報告、光量子エレクトロニ
クス0QE84−57.39頁#l8B8レーザの雑音
特性と自己パルス変調の機構Iにおいて提案され試みら
れている。
One of these methods was to reduce the noise of semiconductor lasers by high-frequency superposition by Daiyuki, Kayane, Nakamura, and Ojima at the 1983 Autumn Conference on Applied Physics, p. 26a-102.
It has been proposed and shown to be effective in reducing noise and longitudinal mode characteristics of semiconductor lasers by P-6' high frequency superposition. On the other hand, there is a method that generates self-excited vibration and multiplies the longitudinal modes to reduce noise.
This was proposed and attempted by Kurihara in Dynamic Electronics and Communication Engineers Technical Report, Photon Quantum Electronics 0QE84-57.39 page #18B8 Laser Noise Characteristics and Mechanism of Self-Pulse Modulation I.

更に現在ではより多機能化をねらい光ディスク等の読み
取9用光源だけでなく、光ディスク等への光書きこみ用
光源をかねそなえた光情報用複合半導体レーザ素子が要
求されつつある。特に光ディスク等への光書きこみ用光
源として用いる場合には安定な基本横モード発振でかつ
大光出力発振に耐える必要がある。複合半導体レーザ素
子としては例えば用野、遠藤、伊藤、余材、上野、古瀬
により1984年秋季第45回応用物理学会学術講演会
講演予稿集190頁15a−R−71AIGaAsBC
MレーザアレイIで発表された如く電極を分離した独立
駆動の二個のレーザをそなえた素子が提案され試作され
ている。
Furthermore, with the aim of increasing the number of functions, there is now a demand for a composite semiconductor laser device for optical information that is not only a light source for reading optical discs, etc., but also a light source for optically writing to optical discs, etc. In particular, when used as a light source for optical writing onto an optical disk or the like, it is necessary to have stable fundamental transverse mode oscillation and withstand large optical output oscillation. As a composite semiconductor laser device, for example, Yono, Endo, Ito, Yozai, Ueno, Furuse, Proceedings of the 45th Japan Society of Applied Physics Academic Conference, Autumn 1984, 190 pages 15a-R-71AIGaAsBC
As announced in M Laser Array I, an element equipped with two independently driven lasers with separated electrodes has been proposed and prototyped.

(発明が解決しようとする問題点) 上記高周波重畳を用いる方式では、高周波駆動回路の付
加が必要であるばかりでなく、外部機構へ高周波が漏れ
る等の弊害を伴なっている。一方自励振動を生じさせる
方式では、レーザ構造(層厚や溝幅など)に対して自励
振動の特性がきわめて敏感に依存するから、安定な自励
振動を示すデバイスの収率は低くなる欠点を有していた
。更にこの場合大光出力発振が不可能である。また複合
半導体レーザ素子では前記の例を含めこれまで提案され
たものは単に二つのレーザをならべただけであり、光情
報用複合半導体レーザ素子に要求されている光書きこみ
用としての大光出力発振光源と、低雑音特性を有する読
み取り用光源とをかねそなえていなかった。
(Problems to be Solved by the Invention) The above-mentioned method using high-frequency superposition not only requires the addition of a high-frequency drive circuit, but also has disadvantages such as high-frequency leakage to an external mechanism. On the other hand, in methods that generate self-excited vibration, the characteristics of self-excited vibration depend extremely sensitively on the laser structure (layer thickness, groove width, etc.), so the yield of devices that exhibit stable self-excited vibration is low. It had drawbacks. Furthermore, in this case, large optical output oscillation is impossible. In addition, the composite semiconductor laser devices that have been proposed so far, including the example mentioned above, are simply two lasers arranged side by side. It does not have both an oscillation light source and a reading light source with low noise characteristics.

そこで、本発明の目的は、これらの欠点を除去し、安定
な自励振動を生じ低雑音特性を持つ読み取り用光源の機
能と、安定な基本横モード発振を維持し大光出力発振可
能な光書きこみ用光源との機能とを単一光源で合せもつ
と共に、制御性および再現性のすぐれた半導体レーザを
提供する事にある。
Therefore, the purpose of the present invention is to eliminate these drawbacks, to provide a reading light source that generates stable self-excited vibration and has low noise characteristics, and to provide a light source that can maintain stable fundamental transverse mode oscillation and oscillate a large optical output. The object of the present invention is to provide a semiconductor laser that has the functions of a writing light source in a single light source and has excellent controllability and reproducibility.

(問題を解決するための手段) 前述の問題点を解決するために本発明が提供する手段は
、活性層をこの活性層よりもバンドギャップの広い材質
からなる第1および第2のクラッド層で挾んだダブルヘ
テロ接合構造を備え、さらに前記第2クラッド層上に第
1の溝を有する第1の1172層を備え、この第1のブ
ロック層上に前記第1の溝よりも幅の広い第2の溝を有
する第2のブロック層を備え、前記第1及び第2の溝を
前記第1及び第2のクラッド層よりも屈折率の小さいガ
イド層で埋め込んで設けた半導体多層構造を共振器の中
央部分に有し、前記活性層、第2クラッド層並びに前記
第1及び第2のブロック層は前記共振器の両反射端面に
達せず、前記ガイド層は前記両反射端直に達した構造と
し、前記両反射端面近傍では前記共振器の長手軸に垂直
な断面において前記ガイド層が凸状の形状をなし、前記
活性層内のキャリア拡散長が前記第2の溝幅と第1の溝
幅との差の半分よりも短かいことを特徴とする半導体レ
ーザである。
(Means for Solving the Problems) The present invention provides means for solving the above-mentioned problems by forming the active layer with first and second cladding layers made of a material having a wider band gap than the active layer. a first 1172 layer having a sandwiched double heterojunction structure and having a first groove on the second cladding layer, the first 1172 layer having a width wider than the first groove on the first blocking layer; A semiconductor multilayer structure including a second block layer having a second groove, the first and second grooves being filled with a guide layer having a lower refractive index than the first and second cladding layers is resonant. The active layer, the second cladding layer, and the first and second blocking layers do not reach both reflective end faces of the resonator, and the guide layer reaches directly to both reflective end faces of the resonator. In the structure, the guide layer has a convex shape in a cross section perpendicular to the longitudinal axis of the resonator near both reflective end faces, and the carrier diffusion length in the active layer is equal to the second groove width and the first groove width. This semiconductor laser is characterized by being shorter than half the difference from the groove width.

(実施例) 以下図面を参照して本発明の一実施例を説明する。第1
図は本実施例の斜視図であり、第2図、第3図及び第4
図はそれぞれ第1図のA  A’# B−B′及びc 
−c’矢視断面図である。
(Example) An example of the present invention will be described below with reference to the drawings. 1st
The figure is a perspective view of this embodiment, and FIGS. 2, 3, and 4.
The figures are A A'# B-B' and c of Fig. 1, respectively.
-c' arrow sectional view.

本実施例を製造するには、まず第5図に示すように、n
形GaAs基板to上にn形AA!o、a Ga(1,
IAs第1クラッド層11を2.5μm ln形Ale
、ts()a@0.l As活性層(n形濃度n= 1
,5 X l O”cm”)12を0.08’μmsp
形kl N4 Ga、、、 As第2クラッド層13を
0.3μmen形kl(、、@ Ga1l、l As第
1ブロック層14を0.3μmsn形GaAs第2ブロ
ック層15を1. Oμm e M OCV D 法で
連続成長する。MO14p法では薄膜成長が可能であ転
かつ精密な膜厚制御性を兼ね備えているので上記の如き
層構造を制御よく成長する事ができる。また上記の如く
活性層12のn形濃度を1.5X10’″α にしてお
くとキャリアの拡散長は1μm以下にする事ができる。
To manufacture this example, first, as shown in FIG.
n-type AA on a GaAs substrate to! o,a Ga(1,
The IAs first cladding layer 11 is made of 2.5 μm ln type Ale.
, ts()a@0. l As active layer (n-type concentration n = 1
, 5 X l O"cm") 12 to 0.08'μmsp
type kl N4 Ga,,, As second cladding layer 13 is 0.3 μm type kl(,,@Ga1l,l As first block layer 14 is 0.3 μm sn type GaAs second block layer 15 is 1.0 μm e M OCV Continuous growth is performed using the D method.The MO14p method allows thin film growth and has precise film thickness controllability, making it possible to grow the layer structure as described above with good control.Also, as described above, the active layer 12 By setting the n-type concentration to 1.5×10′″α, the carrier diffusion length can be reduced to 1 μm or less.

この濃度のときに発光効率も最も高くなる事が明らかに
なった。
It has become clear that the luminous efficiency is highest at this concentration.

次にフォトレジスト法を行ない、共振器の長て方向中央
部分に幅4μmのストライプ状の窓をレジスト膜にあけ
両反射端面近傍部分のレジスト膜を除去し、レジスト膜
をマスクにしてGa Asブロック層15をエツチング
し共4aW中央部分に溝を形成すると共に両反射端面近
傍部分のGa Asブロック層15を除去しkllo4
 Gas、s As  d lブロックJ@!14の上
面を露出する。さらにフォトレジスト法を行ない上記の
溝の中心線と一致させるように幅2μmのストライプ状
の窓を共振器の中央部分のレジスト膜16にあけ両反射
端面近傍部分のレジスト膜16も除去しこのレジスト膜
をマスクにしてklo、* ()ao、m第1ブロック
層14をエツチングして溝を共振器中央部分に溝を形成
すると共に両反射端面近傍部分の第1ブロック層14を
除去し、A16.4 Gao、@ As  第2クラッ
ド層13の表面を出す(第6図)。
Next, a photoresist method is performed, and a striped window with a width of 4 μm is created in the resist film at the center of the cavity in the longitudinal direction, and the resist film near both reflective end faces is removed. Using the resist film as a mask, the GaAs block is The layer 15 is etched to form a groove in the central part of both 4aW, and the GaAs block layer 15 in the vicinity of both reflective end faces is removed.
Gas,s As d l block J@! 14 is exposed. Furthermore, a photoresist method was performed to create a striped window with a width of 2 μm in the resist film 16 at the center of the resonator so as to match the center line of the groove described above, and also remove the resist film 16 near both reflective end faces. Using the film as a mask, the first block layer 14 is etched to form a groove in the center of the resonator, and the first block layer 14 in the vicinity of both reflective end faces is removed. .4 Gao, @ As Expose the surface of the second cladding layer 13 (Figure 6).

次にレジスト膜16を除去しフォトレジスト法で共振器
中央部分をマスクして両反射端面近傍をエツチングしn
形AA?o、s C)aO,!1 AI第1クラッド層
11の表面を出す。マスクにしたレジスト膜を除去した
後再びフォトレジスト法を用いて共振器の中央部分とG
a Asブロック層15に形成した溝の共振器の長て方
向延長上の両反射端面近傍部分に溝と同一幅4μmのス
トライプ部分とをレジスト膜17でおおいn形/’Ll
O0l Gao、a As第1り2ラド層11を深さ1
.5μmエツチングする(第7図)。
Next, the resist film 16 is removed, the central part of the cavity is masked using a photoresist method, and the vicinity of both reflective end faces is etched.
Shape AA? o,s C)aO,! 1 Expose the surface of the AI first cladding layer 11. After removing the resist film used as a mask, the central part of the resonator and the G
a Striped portions with the same width of 4 μm as the grooves are covered with a resist film 17 in the vicinity of both reflective end faces on the longitudinal extension of the resonator in the groove formed in the As block layer 15.
O0l Gao, a As first and second layer 11 to depth 1
.. Etch 5 μm (Figure 7).

次にレジスト膜17を除去した後p形/M!o、sw(
)aLTI Asガイド層18を1.0 μm 、 n
 :MAA!o、5Ga6.@ As 第3クラッド層
19を1.5μm1p形GaA3キヤツプ層20を1.
0μm連続成長する。
Next, after removing the resist film 17, the p-type/M! o, sw(
) aLTI As guide layer 18 with a thickness of 1.0 μm, n
:MAA! o, 5Ga6. @ As The third cladding layer 19 is 1.5 μm thick. The p-type GaA3 cap layer 20 is 1.5 μm thick.
Continuous growth of 0μm.

この成長において従来から行なわれている液相成長法に
おいてはkl X Ga 1−z As層であるA16
.lGa6) As第1クラッド層11、AJ6,4 
Ga6,11 A8第2クラッド層13やkl @、@
 Ga 6J As第1ブロック層14の上にはいかな
る液相層も成長しないが、MOCVD法では容易に成長
させる事ができる。
In the liquid phase growth method conventionally used for this growth, A16 which is a kl x Ga 1-z As layer is used.
.. lGa6) As first cladding layer 11, AJ6,4
Ga6,11 A8 second cladding layer 13 and kl @, @
Although no liquid phase layer is grown on the Ga 6J As first block layer 14, it can be easily grown using the MOCVD method.

特にこのMOCVD法において第3クラッド層18を成
長する直前にHCI等のガスで成長する面の表面を微量
にガスエツチングをすると成長素子の再現性、信頼性を
一段と向上させる事ができる。次に成長表面全体に81
0.膜をつけた後フォトレジスト法により共振器中央部
分の溝を形成した領域に窓をあけZnをガイド層18内
まで拡散する(Zn拡散領域21)。S10.膜を除去
しこの後成長表面全面にp形オーミックコンタクト22
、基板側にn形オーミックコンタクト23なつけると本
発明の半導体レーザな得る(第1図、第2図、第3図、
第4図)。
In particular, in this MOCVD method, immediately before growing the third cladding layer 18, if the surface of the growth surface is slightly etched with a gas such as HCI, the reproducibility and reliability of the grown device can be further improved. Then 81 on the entire growth surface
0. After forming the film, a window is opened in the groove-formed region at the center of the resonator using a photoresist method, and Zn is diffused into the guide layer 18 (Zn diffusion region 21). S10. After removing the film, a p-type ohmic contact 22 is formed on the entire growth surface.
, the semiconductor laser of the present invention can be obtained by attaching an n-type ohmic contact 23 to the substrate side (Figs. 1, 2, 3,
Figure 4).

(実施例の作用効果) 上述の第1図実施例の構造において全面電極から注入さ
れた電流はキャップ層20中のzn拡散領域、第3クラ
ッド層19ガイド層18と全面に広がって流れるが、ガ
イド層1Bに隣接して電気的極性の異なるn形Ga A
s第2ブロック層15さらKこれに隣接してn形AA!
o、s Gao、i As第1ブロック層14があるか
ら、電流は第1のブロック層14および第2のブロック
層15で阻止され、最終的にn形AI6.10a11.
l As第1ブロック層14にあけたストライプ状の窓
からp形Al・4 Ga64 As第2クラッド層13
を通って、n形Ale、t * Gao、asAB活性
層12に注入される。活性層に注入されたキャリアは活
性層水平横方向に拡散していき利得分布を形成しレーザ
発振を開始する。このとき前に記した様に活性層内のキ
ャリア拡散長が短かいから、利得分布は主に第1ブロッ
ク層14にあけたストライプ状の窓下の活性層の部分に
形成され、またその形成は急峻になり、その結果ストラ
イプ状の窓の下の部分のみ利得が高くなりその外部は損
失領域になる。
(Operations and Effects of Embodiment) In the structure of the embodiment of FIG. 1 described above, the current injected from the entire surface electrode spreads over the entire surface of the Zn diffusion region in the cap layer 20, the third cladding layer 19 and the guide layer 18, but N-type Ga A with different electrical polarity adjacent to the guide layer 1B
s Second block layer 15 and adjacent to this are n-type AA!
o, s Gao, i As As there is the first blocking layer 14, the current is blocked by the first blocking layer 14 and the second blocking layer 15, and finally the n-type AI6.10a11.
The p-type Al.4Ga64As second cladding layer 13 is formed through the striped window formed in the lAs first block layer 14.
n-type Ale, t*Gao, and asAB are implanted into the active layer 12 through the . The carriers injected into the active layer diffuse in the horizontal and lateral directions of the active layer, form a gain distribution, and start laser oscillation. At this time, as mentioned earlier, since the carrier diffusion length in the active layer is short, the gain distribution is mainly formed in the part of the active layer under the striped window formed in the first block layer 14. becomes steep, and as a result, the gain is high only in the lower part of the striped window, and the outside becomes a loss region.

一方光は活性層からしみ出し垂直方向に広がる。On the other hand, light seeps out of the active layer and spreads in the vertical direction.

この時第2クラツド層13にしみ出した光は、第2クラ
ッド層13に隣接してp形ガイド層18、n形kl@、
、Gao、@ As第1ブロック層14があり、光はこ
の層にまで広すする。さらに第1ブロック層14に隣接
してn形Ga As第2ブロック層15があるがこの層
は屈折率が第1ブロック層より高く光をひき込むばかり
でなく、レーザ発振光に対してバンドギャップが狭く〜
10000cIIL 以上の光の吸収層になっている。
At this time, the light seeping into the second cladding layer 13 is transmitted to the p-type guide layer 18, the n-type kl@,
, Gao, @As There is a first blocking layer 14, and the light spreads to this layer. Furthermore, there is an n-type GaAs second block layer 15 adjacent to the first block layer 14, but this layer not only has a higher refractive index than the first block layer and draws in light, but also has a band gap with respect to the laser oscillation light. is narrow~
It is a layer that absorbs light of 10,000 cIIL or more.

従って光は第2ブロック層15にひきこまれそこで大き
な吸収損失をうける事になる。その結果この第2ブロッ
ク層15にあけた窓にわたって正の屈折率差Δη8が生
じる。
Therefore, the light is drawn into the second blocking layer 15 and suffers a large absorption loss there. As a result, a positive refractive index difference Δη8 occurs across the window formed in the second block layer 15.

その値は本実施例においてはΔηB=5X10  にな
る事が本発明者の計算結果より明らかになった。
The inventor's calculation results revealed that the value is ΔηB=5×10 in this example.

以上の結果、本実施例の構造においては第1ブロック層
14にあけた狭い窓幅程度の利得分布に対し第2ブロッ
ク層15にあけたそれより広い窓幅にわたって光が広か
やそこでは正の屈折率ガイディング機構が作りつけられ
ている事になる。ところでキャリアが活性層に注入され
利得分布が形成されると屈折率のキャリア密度に対する
負の依存性のため屈折率は減少する。しかしその値は3
〜4×10 程度であるので本実施例ではレーザ発振時
では1〜2×10 の屈折率が作りつけられておりこの
正の屈折率ガイディングと前に述べた第2ブロック層に
よる光の急激な吸収との相乗効果により基本横モード発
振を維持する事ができる。
As a result of the above, in the structure of this embodiment, the gain distribution is similar to the narrow window width formed in the first block layer 14, but the light is spread over a wider window width formed in the second block layer 15, and there is a difference in the gain distribution. This means that a refractive index guiding mechanism is built in. However, when carriers are injected into the active layer and a gain distribution is formed, the refractive index decreases due to the negative dependence of the refractive index on the carrier density. But its value is 3
Since the refractive index is approximately 4×10 2 , in this example, a refractive index of 1 to 2×10 2 is built in during laser oscillation, and this positive refractive index guiding and the sudden change of light due to the second blocking layer described earlier The fundamental transverse mode oscillation can be maintained due to the synergistic effect with absorption.

本実施例の構造では光の広がりの幅が利得分布の幅にく
らべて広いので光は利得領域からその外部の損失領域ま
で広がっておりこれは等測的には可飽和吸収体をもって
いる事になり自励振動を生じやすくなる。本発明の構造
では更にキャリア拡散長が屈折率分布の幅と利得分布幅
を決定するキャリア注入領域幅との半分以下であるとと
もにレーザ発振時での屈折率が比較的小さいため自励振
動を助長する効果を屯つ。
In the structure of this example, the width of the spread of light is wider than the width of the gain distribution, so the light spreads from the gain region to the loss region outside it, which is isometrically equivalent to having a saturable absorber. Therefore, self-excited vibration is likely to occur. Furthermore, in the structure of the present invention, the carrier diffusion length is less than half the width of the carrier injection region that determines the width of the refractive index distribution and the gain distribution width, and the refractive index during laser oscillation is relatively small, which promotes self-oscillation. The effect of

すなわちまずキャリア拡散長が短かいから、注入キャリ
ア密度分布の変動がはげしくなり、これに伴なって基本
横モードの幅が大きく変動しその収縮と拡大が生じその
結果自励振動の大金さが助長される。本発明者の解析結
果によれば本実施例の構造においてキャリア拡散長1μ
mと2μmとを用いて計算した結果キャリア拡散長1μ
mの自励振動は2μmの5.5〜6倍になる事が明らか
になった。
In other words, first of all, because the carrier diffusion length is short, the fluctuation of the injected carrier density distribution becomes severe, and along with this, the width of the fundamental transverse mode fluctuates greatly, causing its contraction and expansion, and as a result, a large amount of self-excited vibration occurs. encouraged. According to the analysis results of the present inventor, the carrier diffusion length is 1μ in the structure of this example.
The carrier diffusion length is 1μ as a result of calculation using m and 2μm.
It was revealed that the self-excited vibration of m is 5.5 to 6 times that of 2 μm.

さらにレーザ発振時の屈折率の大きさが比較的小さい事
も基本横モードの幅の変動を助長する。
Furthermore, the relatively small magnitude of the refractive index during laser oscillation also promotes fluctuations in the width of the fundamental transverse mode.

本発明者の解析結果によれば本実施例の構造においてキ
ャリア拡散長1μmを用いて計算した結果自励振動の第
1ピーク強度と第1の谷での強度との比率がηB = 
t、o x t o  では160に対しηB=5X1
0−”では195になる事がわかった。
According to the analysis results of the present inventor, the ratio of the first peak intensity of self-excited vibration to the intensity at the first valley is ηB = calculated using a carrier diffusion length of 1 μm in the structure of this example.
t, ox t o, ηB=5X1 for 160
I found out that 0-” would be 195.

以上のすべての相乗効果の結果、本実施例の構造では容
易に自励振動が生じその結果軸モードが多モー)”化し
軸モードのコヒーレントが低減するから反射光に対する
雑音もきわめて低く低雑音特性が得られる。従って本実
施例のレーザ素子は光読み取りに必要な低雑音レーザに
なる。
As a result of all the synergistic effects described above, self-excited vibration easily occurs in the structure of this example, resulting in the axial mode becoming multimodal and the coherence of the axial mode being reduced, resulting in extremely low noise for reflected light and low noise characteristics. Therefore, the laser element of this embodiment becomes a low-noise laser necessary for optical reading.

第1図実施例の構造では両反射端面近傍において活性層
12、p形kl 6.4 Ga @、@ As第2クラ
ッド層13、n形kl16.@ ()aLI A5第1
ブロック層14は共撮器長て方向ではガイド層18に隣
接しており、更にとのガイド層1Bは共振器全長にわた
って一定の層厚でつながっている。従って共振器中央部
分の溝の領域にわたって広がった光はもれる事なく両反
射端面近傍では隣接したガイド層18内へと進行してい
く。この反射端面近傍のガイド層1Bは垂直方向ではガ
イド層18より屈折率の小さい第1クラッド層11と第
3クラッド層19とに挾みこまれており、水平横方向で
も大部分が第3クラッド層19で挾まれており光導波路
を形成している。従って光は広がる事もなくガイド層1
8の凸状部分内を集光して進行する。本実施例ではガイ
ド層18のバンドギャップはレーザ発振光に対して15
7 meV以上広がっているのでガイド層18を進行す
る光が吸収損失をうける事はない。こうしてガイド層1
B内を進行した光は反射端面で反射され再び光導波路機
能をもつガイド層18内を損失をうける事なく戻シ活性
層12に入り再励起されるので低閾値、高効率でレーザ
発振をする事ができる。
In the structure of the embodiment shown in FIG. 1, an active layer 12, a p-type kl 6.4 Ga @, @As second cladding layer 13, an n-type kl 16 . @ ()aLI A5 1st
The block layer 14 is adjacent to the guide layer 18 in the longitudinal direction of the resonator, and the guide layer 1B is connected to the guide layer 18 with a constant layer thickness over the entire length of the resonator. Therefore, the light spread over the groove area in the center of the resonator does not leak and travels into the adjacent guide layer 18 in the vicinity of both reflective end faces. In the vertical direction, the guide layer 1B near the reflective end face is sandwiched between the first cladding layer 11 and the third cladding layer 19, which have a smaller refractive index than the guide layer 18, and in the horizontal and lateral directions, most of the guide layer 1B is sandwiched between the first cladding layer 11 and the third cladding layer 19, which have a lower refractive index than the guide layer 18. 19, forming an optical waveguide. Therefore, the light does not spread and the guide layer 1
The light condenses within the convex portion of No. 8 and travels. In this embodiment, the band gap of the guide layer 18 is 15 for the laser oscillation light.
Since it spreads over 7 meV, the light traveling through the guide layer 18 will not suffer any absorption loss. In this way, guide layer 1
The light that has traveled through B is reflected by the reflective end face, returns to the guide layer 18 with an optical waveguide function without any loss, enters the active layer 12, and is reexcited, resulting in laser oscillation with a low threshold and high efficiency. I can do things.

本実施例の構造では、両反射端面近傍がレーザ発振光に
対してバンドギャップの広いガイド層になっているので
、光学損傷(COD)の生じる光出力レベルを著しく上
昇させる事ができる。すなわち、通常の半導体レーザで
はキャリア注入による励起領域となる活性層端面が反射
端面として露出してお9、そこでは表面再結合を生じ空
乏層化してバンドギャップが縮少している。大光出力発
掘をさせると、この縮少したバンドギャップにより光の
吸収を生じ、そこで発熱して融点近くまで温度が上昇し
、ついには光学損傷を生じる。これに対し本実施例の構
造では両反射端面近傍は非励起領域になっているばかり
でなく、レーザ発振光はバンドギャップ差が157 m
eV以上も広い層を透過して発振するので、反射端面近
傍での光の吸収がなく光学損傷の生じる光出力レベルを
1桁以上上昇させる事ができ、大光出力発掘が可能とな
る。
In the structure of this embodiment, since the vicinity of both reflective end faces serves as a guide layer with a wide bandgap for laser oscillation light, the optical output level at which optical damage (COD) occurs can be significantly increased. That is, in a normal semiconductor laser, the end face of the active layer, which becomes an excitation region due to carrier injection, is exposed as a reflective end face9, where surface recombination occurs and becomes a depletion layer, reducing the band gap. When a large optical output is produced, this narrowed bandgap causes absorption of light, which generates heat and raises the temperature to near the melting point, eventually causing optical damage. On the other hand, in the structure of this example, not only the vicinity of both reflective end faces is a non-excitation region, but also the band gap difference of the laser oscillation light is 157 m.
Since it oscillates by passing through a layer wider than eV, there is no light absorption near the reflective end face, and the optical output level at which optical damage occurs can be increased by more than one order of magnitude, making it possible to discover a large optical output.

なお、上記実施例ではn形Ga As基板を用いたがp
nを反転させても本発明は実現できる。また実施例はk
l Ga As/Ga Asダブルヘテロ接合結晶材料
について説明したが、その他の結晶材料例えばlmGa
P/AIJnP# InGaA8P/ InGaP r
InGaAB P/ In P * kl GB As
 Sb/ C)a AB sb等数多くの結晶材料の半
導体レーザにも本発明は適用できる。
Note that although an n-type GaAs substrate was used in the above embodiment, a p-type GaAs substrate was used.
The present invention can be realized even if n is inverted. Also, the example is k
Although the lGaAs/GaAs double heterojunction crystal material has been described, other crystalline materials such as lmGa
P/AIJnP# InGaA8P/ InGaP r
InGaAB P/ In P * kl GB As
The present invention can also be applied to semiconductor lasers made of many crystal materials such as Sb/C)a AB sb.

(発明の効果) 本発明の半導体レーザは、以上に説明したように、■基
本横モード発振を安定に維持する事ができる、■自励振
動を生じその粂件の許容範囲が広いので再現性よく得る
事ができる、■同一光源で光書きこみに必要な大光出力
発振も可能である、■同一光源で書きこみ読み出しがで
きるので光学系をコンパクトにする事がでべろという利
点を有する。
(Effects of the Invention) As explained above, the semiconductor laser of the present invention can: ■ Stably maintain the fundamental transverse mode oscillation; ■ Generate self-excited vibration, and have a wide tolerance range for reproducibility. It has the following advantages: 1) the same light source can produce the large optical output required for optical writing; and 2) the same light source can perform both writing and reading, making it possible to make the optical system more compact.

以上要するに、本発明によれば、安定な自励振動を生じ
低雑音特性を持つ読み取り用光源の機能と、安定な基本
横モード発振を維持し大光出力発振可能な光書きこみ用
光源との機能とを単一光源で合せもつと共に、制御性お
よび再現性のすぐれた半導体レーザが提供できる。
In summary, according to the present invention, the function of a reading light source that generates stable self-excited vibration and has low noise characteristics, and the function of an optical writing light source that maintains stable fundamental transverse mode oscillation and can oscillate a large optical output are achieved. It is possible to provide a semiconductor laser that has both functions in a single light source and has excellent controllability and reproducibility.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の斜視図、第2図、第3図及
び第4図はそれぞれ第1図のA −A’、B −B’及
びC−C’矢視@面図、第5図は第1図実施例の製造工
程においてダブルヘテロ接合構造を基板上に形成して得
た半導体積層構造を示す縦断面図、第6図は第1図実施
例の製作の過程において共振器中央部分に溝を形成して
得た半導体積層構造の中央部分における横断面図、第7
図は第1図実施例の製作の過程において両反射端面近傍
に凸部領域を設けて得た半導体積層構造を示す斜視図で
ある。 10 ・・・n形Ga As基板、11”・n形A16
.II Gao、sA8第1クラッド層、12”・n形
Alo、ts Gao、ss As活性層、13 ・p
形Alo、4 Ga@、6 As第2クラッド層、14
 ・・・n形kl @JGa O,I As第1ブoツ
ク層、15・・・n形Ga ks第2ブロック層、16
・・・1/シスト膜、17−・・レジスト膜、18−p
形AA! 、、B 、I Ga0.a B Asガイド
層、l 9 ・・・n形kl 6.@ Ga 6.5 
As第3クラツ20・・・p形Ga Asキャップ層、
21・・・Zn拡散領域、22・・・p形オーミックコ
ンタクト、23・・・n形オーミツクコンタクト。
FIG. 1 is a perspective view of one embodiment of the present invention, and FIGS. 2, 3, and 4 are views taken along arrows A-A', B-B', and C-C' in FIG. 1, respectively. , FIG. 5 is a vertical cross-sectional view showing a semiconductor stacked structure obtained by forming a double heterojunction structure on a substrate in the manufacturing process of the embodiment shown in FIG. 1, and FIG. 7th cross-sectional view of the central portion of the semiconductor stacked structure obtained by forming a groove in the central portion of the resonator;
This figure is a perspective view showing a semiconductor laminated structure obtained by providing convex regions in the vicinity of both reflective end faces in the manufacturing process of the embodiment of FIG. 1. 10...n-type Ga As substrate, 11"/n-type A16
.. II Gao, sA8 first cladding layer, 12”・n type Alo, ts Gao, ss As active layer, 13・p
Type Alo, 4 Ga@, 6 As second cladding layer, 14
... n-type kl @JGa O,I As first block layer, 15 ... n-type Ga ks second block layer, 16
...1/ cyst film, 17-... resist film, 18-p
Shape AA! ,,B,I Ga0. a B As guide layer, l 9 ... n-type kl 6. @ Ga 6.5
As third layer 20... p-type Ga As cap layer,
21...Zn diffusion region, 22...p type ohmic contact, 23...n type ohmic contact.

Claims (1)

【特許請求の範囲】[Claims] 活性層をこの活性層よりもバンドギャップの広い材質か
らなる第1および第2のクラッド層で挾んだダブルヘテ
ロ接合構造を備え、さらに前記第2クラッド層上に第1
の溝を有する第1のブロック層を備え、この第1のブロ
ック層上に前記第1の溝よりも幅の広い第2の溝を有す
る第2のブロック層を備え、前記第1及び第2の溝を前
記第1および第2のクラッド層よりも屈折率の小さいガ
イド層で埋め込んで設けた半導体多層構造を共振器の中
央部分に有し、前記活性層、第2クラッド層並びに前記
第1及び第2のブロック層は前記共振器の両反射端面に
達せず、前記ガイド層は前記両反射端面に達した構造と
し、前記両反射端面近傍では前記共振器の長手軸に垂直
な断面において前記ガイド層が凸状の形状をなし、前記
活性層内のキャリア拡散長が前記第2の溝幅と第1の溝
幅との差の半分よりも短かいことを特徴とする半導体レ
ーザ。
It has a double heterojunction structure in which an active layer is sandwiched between first and second cladding layers made of a material with a wider band gap than the active layer, and a first cladding layer is further disposed on the second cladding layer.
a first block layer having a groove, a second block layer having a second groove wider than the first groove on the first block layer; A semiconductor multilayer structure is provided in the central part of the resonator, in which a groove is filled with a guide layer having a refractive index lower than that of the first and second cladding layers, and the active layer, the second cladding layer, and the first The second blocking layer does not reach both reflective end faces of the resonator, and the guide layer reaches both reflective end faces, and in the vicinity of both reflective end faces, the cross section perpendicular to the longitudinal axis of the resonator A semiconductor laser characterized in that the guide layer has a convex shape, and the carrier diffusion length in the active layer is shorter than half the difference between the second groove width and the first groove width.
JP702786A 1986-01-16 1986-01-16 Semiconductor laser Pending JPS62165388A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP702786A JPS62165388A (en) 1986-01-16 1986-01-16 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP702786A JPS62165388A (en) 1986-01-16 1986-01-16 Semiconductor laser

Publications (1)

Publication Number Publication Date
JPS62165388A true JPS62165388A (en) 1987-07-21

Family

ID=11654556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP702786A Pending JPS62165388A (en) 1986-01-16 1986-01-16 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPS62165388A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5661741A (en) * 1994-06-07 1997-08-26 Mitsubishi Denki Kabushiki Kaisha Semiconductor light emitting device, laser amplifier, and integrated light amplifier and wavelength variable filter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5661741A (en) * 1994-06-07 1997-08-26 Mitsubishi Denki Kabushiki Kaisha Semiconductor light emitting device, laser amplifier, and integrated light amplifier and wavelength variable filter
GB2290412B (en) * 1994-06-07 1998-10-21 Mitsubishi Electric Corp Semiconductor light emitting device, laser amplifier, and integrated light amplifier and wavelength variable filter

Similar Documents

Publication Publication Date Title
US4883771A (en) Method of making and separating semiconductor lasers
JPS62165388A (en) Semiconductor laser
JPS6362292A (en) Semiconductor laser device and manufacture thereof
JPS6184891A (en) Semiconductor laser element
JPS6251281A (en) Semiconductor laser
JPS62179191A (en) Semiconductor laser
JPS6362391A (en) Semiconductor laser
JPS6239088A (en) Semiconductor laser
JPS62165389A (en) Semiconductor laser
JPS6297389A (en) Semiconductor laser
JPS62133789A (en) Semiconductor laser
JPS6364385A (en) Semiconductor laser
JPS61234584A (en) Semiconductor laser element
JPH01286381A (en) Semiconductor laser
JPS6286783A (en) Semiconductor laser
JPS63248190A (en) Semiconductor laser
JPS6360584A (en) Semiconductor laser
JPS6120388A (en) Semiconductor laser
JPS62283690A (en) Semiconductor laser
JPS60134489A (en) Semiconductor laser device
JPH0385785A (en) Semiconductor laser element
JPH01140691A (en) Semiconductor laser
JPS59197181A (en) Semiconductor laser
JPH02178987A (en) Semiconductor laser element
JPS60189986A (en) Semiconductor laser