JPH0632372B2 - Printed wiring board, manufacturing method thereof, and adhesive for electroless plating - Google Patents

Printed wiring board, manufacturing method thereof, and adhesive for electroless plating

Info

Publication number
JPH0632372B2
JPH0632372B2 JP10404488A JP10404488A JPH0632372B2 JP H0632372 B2 JPH0632372 B2 JP H0632372B2 JP 10404488 A JP10404488 A JP 10404488A JP 10404488 A JP10404488 A JP 10404488A JP H0632372 B2 JPH0632372 B2 JP H0632372B2
Authority
JP
Japan
Prior art keywords
heat
adhesive
resistant resin
fine powder
wiring board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10404488A
Other languages
Japanese (ja)
Other versions
JPH01275682A (en
Inventor
亮 榎本
元雄 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP10404488A priority Critical patent/JPH0632372B2/en
Priority to DE19893913966 priority patent/DE3913966B4/en
Priority to US07/344,968 priority patent/US5055321A/en
Publication of JPH01275682A publication Critical patent/JPH01275682A/en
Publication of JPH0632372B2 publication Critical patent/JPH0632372B2/en
Priority to US08/253,582 priority patent/US5589255A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • H05K3/4661Adding a circuit layer by direct wet plating, e.g. electroless plating; insulating materials adapted therefor
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • C23C18/1639Substrates other than metallic, e.g. inorganic or organic or non-conductive
    • C23C18/1641Organic substrates, e.g. resin, plastic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/22Roughening, e.g. by etching
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0154Polyimide
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0209Inorganic, non-metallic particles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0212Resin particles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/095Conductive through-holes or vias
    • H05K2201/09563Metal filled via
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/07Treatments involving liquids, e.g. plating, rinsing
    • H05K2203/0756Uses of liquids, e.g. rinsing, coating, dissolving
    • H05K2203/0773Dissolving the filler without dissolving the matrix material; Dissolving the matrix material without dissolving the filler
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/07Treatments involving liquids, e.g. plating, rinsing
    • H05K2203/0779Treatments involving liquids, e.g. plating, rinsing characterised by the specific liquids involved
    • H05K2203/0786Using an aqueous solution, e.g. for cleaning or during drilling of holes
    • H05K2203/0796Oxidant in aqueous solution, e.g. permanganate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/10Using electric, magnetic and electromagnetic fields; Using laser light
    • H05K2203/107Using laser light
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0017Etching of the substrate by chemical or physical means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0017Etching of the substrate by chemical or physical means
    • H05K3/0026Etching of the substrate by chemical or physical means by laser ablation
    • H05K3/0032Etching of the substrate by chemical or physical means by laser ablation of organic insulating material
    • H05K3/0035Etching of the substrate by chemical or physical means by laser ablation of organic insulating material of blind holes, i.e. having a metal layer at the bottom
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/18Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material
    • H05K3/181Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/18Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material
    • H05K3/181Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating
    • H05K3/182Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating characterised by the patterning method
    • H05K3/184Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating characterised by the patterning method using masks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/42Plated through-holes or plated via connections
    • H05K3/425Plated through-holes or plated via connections characterised by the sequence of steps for plating the through-holes or via connections in relation to the conductive pattern
    • H05K3/426Plated through-holes or plated via connections characterised by the sequence of steps for plating the through-holes or via connections in relation to the conductive pattern initial plating of through-holes in substrates without metal
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • H05K3/465Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits by applying an insulating layer having channels for the next circuit layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、プリント配線板製造のために用いる無電解め
っき用接着剤に関し、特に耐熱性,電気絶縁性,化学的
安定性および接着性に優れた接着剤とこの接着剤を用い
たプリント配線板とそれの製造方法に関するものであ
る。
TECHNICAL FIELD The present invention relates to an adhesive for electroless plating used for manufacturing a printed wiring board, and particularly to heat resistance, electrical insulation, chemical stability and adhesiveness. The present invention relates to an excellent adhesive, a printed wiring board using the adhesive, and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

近年、エレクトロニクスの進歩はめざましく、これに伴
い電子機器のより一層の小型化あるいは高速化が図られ
ている。このために、プリント配線板、特にICやLS
Iなどの部品を装着したプリント配線板については、フ
ァインパターンによる高密度化および高い信頼性が求め
られている。
In recent years, the progress of electronics has been remarkable, and accordingly, electronic devices have been further downsized or speeded up. To this end, printed wiring boards, especially ICs and LSs
A printed wiring board on which components such as I are mounted is required to have high density and high reliability by fine patterns.

従来、プリント配線板への導体回路の形成技術として
は、基板に銅箔を積層した後、フォトエッチングする形
式のエッチドフォイル方法と呼ばれる方法が代表的であ
る。この方法は、基板との密着性に優れた導体回路を形
成することができるという特徴があるが、一方では銅箔
の厚さが厚いためにエッチングにより高精度のファイン
パターンが得難いという大きな欠点があり、さらに製造
工程も複雑で効率が良くないなどの諸問題があった。
Conventionally, as a technique for forming a conductor circuit on a printed wiring board, a method called an etched foil method in which a copper foil is laminated on a substrate and then photoetched is typical. This method is characterized in that it can form a conductor circuit with excellent adhesion to the substrate, but on the other hand, it has a major drawback that it is difficult to obtain a high-precision fine pattern by etching because the copper foil is thick. However, there are various problems such as the manufacturing process is complicated and the efficiency is low.

そこで最近では、配線板に導体回路を形成するために、
ジエン系合成ゴムを含む接着剤を基板表面に塗布して接
着層を形成し、この接着層の表面を粗化した後、無電解
めっきを施して導体回路を形成するアディティブ法が採
用されている。
Therefore, recently, in order to form a conductor circuit on a wiring board,
An additive method is used in which an adhesive containing diene-based synthetic rubber is applied to the surface of a substrate to form an adhesive layer, the surface of this adhesive layer is roughened, and then electroless plating is applied to form a conductor circuit. .

しかしながら、この既知方法の下で使用されている接着
剤は組成中に合成ゴムを含むため、例えば高温時に密着
強度が大きく低下したり、はんだ付けの際に無電解めっ
き膜がふくれるなどの欠点があり、また耐熱性が低く、
表面抵抗などの電気特性が充分でない欠点があり、使用
範囲がかなり制限されている。
However, since the adhesive used under this known method contains a synthetic rubber in its composition, there are drawbacks such as a large decrease in adhesion strength at high temperature and a swelling of the electroless plating film during soldering. Yes, low heat resistance,
There is a drawback that electric properties such as surface resistance are not sufficient, and the range of use is considerably limited.

また、こうした無電解めっきによる導体パターンを形成
するために用いる「プリント配線板用樹脂組成物」につ
いては、特開昭53−140344号公報に開示されているもの
などがある。しかしながら、この組成物は、該組成物中
の球状粒子を形成する熱硬化性樹脂成分が蝕刻されない
もの、すなわち、酸化剤に対して不溶性であ。蝕刻粗化
されて得られる基板上の接着層が20μm程度の凹凸と
なるため、この接着層の上に形成される導体は微細パタ
ーンのものが得難く、パターン間の絶縁性も不良となり
易く、さらに耐熱性や電気特性に劣るから、部品などを
実装する上においても好ましくないなどの欠点があっ
た。
Further, as the "resin composition for printed wiring board" used for forming such a conductor pattern by electroless plating, there is one disclosed in JP-A-53-140344. However, this composition is one in which the thermosetting resin component forming the spherical particles in the composition is not etched, i.e. insoluble in oxidizing agents. Since the adhesive layer on the substrate obtained by the etching roughening has irregularities of about 20 μm, it is difficult to obtain a conductor having a fine pattern as the conductor formed on this adhesive layer, and the insulating property between the patterns is likely to be poor. Further, it is inferior in heat resistance and electric characteristics, so that there is a defect that it is not preferable when mounting parts and the like.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

以上説明したように、従来、耐熱性,電気特性および基
板と無電解めっき膜との密着性などがともに優れ、しか
も取扱いの簡単な無電解めっき用接着剤というのは未だ
知られていないし、またこのような接着剤を用いたプリ
ント配線板の製造は未だ試みられていないのが実情であ
る。
As described above, conventionally, an adhesive for electroless plating, which has excellent heat resistance, electrical characteristics, adhesion between the substrate and the electroless plating film, and is easy to handle, has not yet been known. The fact is that the manufacture of printed wiring boards using such an adhesive has not been attempted yet.

これに対し、本発明者らは先に、前述の如き欠点を解消
すべく種々研究し、特願昭60−118898号(特開昭61−27
6875号)にかかる発明を提案した。
On the other hand, the present inventors have previously conducted various studies in order to eliminate the above-mentioned drawbacks, and disclosed Japanese Patent Application No. 60-118898 (Japanese Patent Application Laid-Open No. 61-2798).
6875).

しかしながら、この先行して提案した接着剤は、耐熱性
樹脂微粉末とマトリックス耐熱性樹脂の酸化剤に対する
溶解性に顕著な差がないとアンカーが不明確に成り易い
という解決課題を残していた。
However, the previously proposed adhesive has a problem that the anchor tends to become unclear unless there is a significant difference in the solubility between the heat-resistant resin fine powder and the matrix heat-resistant resin in the oxidizing agent.

本発明の目的は、従来の無電解めっき用接着剤が有する
前述の如き欠点および先行技術が抱えている課題を解消
し、耐熱性,電気特性および無電解めっき膜との密着性
に極めて優れ、かつ比較的容易に実施できる無電解めっ
き用接着剤およびこの接着剤を用いた有利なプリント配
線板とそれの製造方法を提案するところにある。
The object of the present invention is to solve the above-mentioned drawbacks and problems associated with the prior art that the conventional electroless plating adhesive has, and to have excellent heat resistance, electrical characteristics, and adhesion to an electroless plating film, Further, the present invention proposes an adhesive for electroless plating which can be implemented relatively easily, an advantageous printed wiring board using this adhesive, and a manufacturing method thereof.

〔課題を解決するための手段〕[Means for Solving the Problems]

そこで本発明者らは、本発明者らが先行して提案した前
記発明の改良を目指し、より一層明確なアンカーを容易
に形成することのできる接着剤を開発すべく鋭意研究し
た結果、耐熱性樹脂微粉末として、平均粒径2μm以下
の微粒子を凝集させてなる2次粒子を用いることによ
り、前述の課題を解消することができることを新規に知
見し、本発明を完成するに到った。すなわち、 酸化剤に対して可溶性の、予め硬化処理した耐熱性樹脂
微粉末を、硬化処理することにより酸化剤に対して難溶
性となる性質を有する未硬化の耐熱性樹脂液中に分散さ
せてなる接着剤と、 基板上に、この接着剤を塗布して乾燥硬化させることに
より接着層を形成し、前記接着層の表面部分に分散して
いる前記微粉末の少なくとも一部を溶解除去して接着層
の表面を粗化し、次いで無電解めっきを施すことを特徴
とする配線板の製造方法において、前記耐熱性樹脂微粉
末として、平均粒径2μm以下の微粒子を凝集させてな
る2次粒子を用いると、本発明にかかるプリント配線板
が有利に製造できる。
Therefore, the inventors of the present invention have aimed to improve the invention previously proposed by the present inventors, and as a result of earnest research to develop an adhesive capable of easily forming a more definite anchor, as a result, heat resistance The present invention has been newly discovered that the aforementioned problems can be solved by using secondary particles obtained by aggregating fine particles having an average particle diameter of 2 μm or less as the resin fine powder, and completed the present invention. That is, a pre-cured heat-resistant resin fine powder that is soluble in an oxidizer is dispersed in an uncured heat-resistant resin liquid that has a property of being hardly soluble in an oxidant by a curing treatment. And an adhesive layer formed on the substrate by applying the adhesive agent and drying and curing the adhesive layer, and at least a part of the fine powder dispersed on the surface portion of the adhesive layer is dissolved and removed. In the method for producing a wiring board, which comprises roughening the surface of the adhesive layer and then performing electroless plating, secondary particles obtained by aggregating fine particles having an average particle diameter of 2 μm or less are used as the heat-resistant resin fine powder. When used, the printed wiring board according to the present invention can be advantageously manufactured.

このようにして得られる本発明にかかるプリント配線板
は、基板上に、酸化剤に対して可溶性である硬化処理し
た耐熱性樹脂微粉末を、硬化処理することにより酸化剤
に対して難溶性となる性質を有する未硬化の耐熱性樹脂
液中に分散させてなる無電解めっき用接着剤層を設け、
この接着剤層を介してめっき導体層を形成してなるプリ
ント配線板において、前記接着剤層の耐熱性樹脂微粉末
として、平均粒径2μm以下の微粒子を凝集させること
により得られる2次粒子からなるものを用いたことを特
徴とするものである。
The thus-obtained printed wiring board according to the present invention has a cured heat-resistant resin fine powder that is soluble in an oxidant on the substrate and is hardly soluble in the oxidant by a curing treatment. An adhesive layer for electroless plating, which is dispersed in an uncured heat-resistant resin liquid having the following properties, is provided,
In a printed wiring board in which a plated conductor layer is formed via this adhesive layer, from the secondary particles obtained by aggregating fine particles having an average particle size of 2 μm or less as the heat-resistant resin fine powder of the adhesive layer. It is characterized by using the following.

〔作 用〕[Work]

本発明にかかる無電解めっき用接着剤は、酸化剤により
溶解することができる予め硬化処理された耐熱性樹脂微
粉末を、硬化処理することにより酸化剤に対して難溶性
となる性質を有する未硬化の耐熱性樹脂液中に分散させ
てなるものにおいて、前記耐熱性樹脂微粉末として平均
粒径2μm以下の微粒子を凝集させることにより得られ
る2次粒子からなるものである。
The adhesive for electroless plating according to the present invention has a property that it becomes hardly soluble in an oxidant when the heat-resistant resin fine powder that has been previously hardened and can be dissolved by the oxidant is hardened. The heat-resistant resin fine powder, which is dispersed in a hardening heat-resistant resin liquid, comprises secondary particles obtained by aggregating fine particles having an average particle diameter of 2 μm or less.

プリント配線板の無電解めっきに際してこのような接着
剤を用いる理由は、基板と無電解めっき膜との密着強度
が高くなり、ひいては導体パターンの信頼性の高いもの
が得られるからである。すなわち、予め硬化処理された
耐熱性樹脂微粉末を耐熱性樹脂液中に分散させたもの
を、基板上に塗布し乾燥硬化させると、マトリックスを
形成する耐熱性樹脂(以下、マトリックスを形成する耐
熱性樹脂のことを「マトリックス耐熱性樹脂」という)
中に耐熱性樹脂微粉末が均一に分散した状態の接着層が
形成される。そして、一方では前記耐熱性樹脂微粉末と
前記マトリックス耐熱性樹脂とは酸化剤に対する溶解性
に差異をもたせてあるために、前記接着層を酸化剤で処
理した場合、接着層の表面部分に分散している微粉末の
うち酸化剤に対して可溶性のあるのものだけが溶解除去
される。その結果、接着層の表面に明確なアンカーが形
成され、接着層の表面を粗化できる。しかもその効果
は、第2図に示すように、前記耐熱性樹脂微粉末として
微粒子を凝集させてなる2次粒子を用いているため、ア
ンカー自体の形状をより複雑にすることができるからで
ある。
The reason why such an adhesive is used in the electroless plating of a printed wiring board is that the adhesion strength between the substrate and the electroless plated film is increased, and as a result, a highly reliable conductor pattern can be obtained. That is, when heat-resistant resin fine powder that has been previously cured is dispersed in a heat-resistant resin liquid, the heat-resistant resin that forms a matrix when applied on a substrate and dried and cured (hereinafter, heat-resistant resin that forms a matrix) Resin is called "matrix heat resistant resin")
An adhesive layer is formed in which the heat-resistant resin fine powder is uniformly dispersed. On the other hand, since the heat-resistant resin fine powder and the matrix heat-resistant resin have different solubilities with respect to an oxidizing agent, when the adhesive layer is treated with an oxidizing agent, it is dispersed in the surface portion of the adhesive layer. Only the fine powder that is soluble in the oxidizing agent is dissolved and removed. As a result, a clear anchor is formed on the surface of the adhesive layer, and the surface of the adhesive layer can be roughened. Moreover, the effect is that, as shown in FIG. 2, since the secondary particles formed by aggregating fine particles are used as the heat resistant resin fine powder, the shape of the anchor itself can be made more complicated. .

さて、本発明に使用する耐熱性樹脂微粉末は、予め硬化
処理されたものである。この耐熱性樹脂微粉末につい
て、硬化処理されていないものを用いると、耐熱性樹脂
液あるいはこの樹脂を溶剤を用いて溶解した液中に添加
した場合に液中に溶解してしまう。したがって、このよ
うな未硬化樹脂微粉末を含む接着剤を基板に塗布し乾燥
硬化すると、マトリックス耐熱性樹脂と耐熱性樹脂微粉
末が共融した状態の接着層となる。その結果として、上
述した酸化剤の処理に当たって、接着層がほぼ均一に溶
解され、粗面化に必要な接着層表面の選択的な溶解除去
ができなくなり、明確なアンカーの形成を阻むこととな
る。
Now, the heat-resistant resin fine powder used in the present invention has been previously cured. If the heat-resistant resin fine powder that is not cured is used, it will dissolve in the liquid when the heat-resistant resin liquid or the liquid obtained by dissolving this resin in a solvent is added. Therefore, when an adhesive containing such uncured resin fine powder is applied to a substrate and dried and cured, an adhesive layer in which the matrix heat-resistant resin and the heat-resistant resin fine powder are eutectic is formed. As a result, in the treatment with the above-mentioned oxidizing agent, the adhesive layer is almost uniformly dissolved, and it becomes impossible to selectively dissolve and remove the adhesive layer surface necessary for roughening, which hinders the formation of a clear anchor. .

これに対し、この耐熱性樹脂微粉末が予め硬化処理され
ていると、耐熱性樹脂液あるいはこの樹脂を溶解する溶
剤に対して難溶性となるため、マトリックス耐熱性樹脂
液中に耐熱性樹脂微粉末が均一に分散している状態の接
着剤を得ることができ、その結果、前述のように明確で
しかも均一なアンカーの形成を容易にすることができる
のである。
On the other hand, if the heat-resistant resin fine powder is hardened in advance, it becomes insoluble in the heat-resistant resin liquid or the solvent that dissolves this resin, and therefore the heat-resistant resin fine powder is added to the matrix heat-resistant resin liquid. It is possible to obtain an adhesive in which the powder is uniformly dispersed, and as a result, it is possible to facilitate the formation of a clear and uniform anchor as described above.

かかる耐熱性樹脂微粉末としては、耐熱性と電気絶縁性
に優れ、通常の薬品に対して安定であり、予め硬化処理
することにより耐熱性樹脂液あるいはこの樹脂を溶解す
る溶剤に対して難溶性となすことができ、さらにクロム
酸などの酸化剤により溶解することができるものを用い
る。例えば、エポキシ樹脂,ポリエステル樹脂,ビスマ
レイミド−トリアジン樹脂のなかから選ばれるいずれか
少なくとも1種である。なかでも、前記エポキシ樹脂は
特性的にも優れており最も好適である。
As such a heat-resistant resin fine powder, it has excellent heat resistance and electrical insulation, is stable to ordinary chemicals, and is hardly soluble in a heat-resistant resin liquid or a solvent that dissolves this resin by pre-curing treatment. A material that can be dissolved and can be dissolved by an oxidizing agent such as chromic acid is used. For example, at least one selected from an epoxy resin, a polyester resin, and a bismaleimide-triazine resin. Among them, the epoxy resin is excellent in characteristics and is most suitable.

この微粉末を硬化処理する方法としては、加熱により硬
化させる方法あるいは触媒を添加して硬化させる方法な
どを用いることができるが、なかでも加熱硬化させる方
法は最も実用的である。
As a method for curing the fine powder, a method of curing by heating or a method of curing by adding a catalyst can be used. Among them, the method of curing by heating is the most practical.

なお、酸化剤による処理に当たっては、例えばクロム
酸、クロム酸塩、過マンガン酸塩、オゾンなどの酸化剤
を用いる。特にクロム酸と硫酸の混酸水溶液は有利に使
用することができる。
In the treatment with an oxidizing agent, an oxidizing agent such as chromic acid, chromate salt, permanganate, ozone, etc. is used. Particularly, a mixed acid aqueous solution of chromic acid and sulfuric acid can be advantageously used.

さて、本発明においては、上記耐熱性樹脂微粉末につい
て、特に平均粒径が2μm以下の微粒子を凝集させるこ
とによって得られる2次粒子とした第1図に示すような
形状のものを用いる。このような形状の微粉末を用いる
と、酸化剤による処理に伴う溶解除去によって形成され
るアンカーの形状を複雑なものにすることができる。す
なわち、凝集させてない(2次粒状でない)第3図に示
すような1次粒子を用いた場合に形成されるアンカー
(第4図示)に比べ、本発明のものは形状をより複雑に
することができ、高いピール強度、プル強度などの密着
強度と安定性が得られるからである。ただし、平均粒径
が2μmを超える粒子を凝集させてなる2次粒子化した
微粉末では、形成されるアンカーの深さが深くなりすぎ
てファインパターンの形成には好ましくない。したがっ
て、本発明の該樹脂微粉末は、平均粒径が2μm以下の
微粒子を凝集させて2次粒子にすることが重要であり、
特に1μm以下のものを用いることが好適である。な
お、この耐熱性樹脂微粉末の表面には、マトリックス耐
熱性樹脂との接合を良くするために、マトリックスに溶
解しない程度に、半硬化層または未反応官能基を付与し
てもよい。
In the present invention, the heat-resistant resin fine powder has a shape as shown in FIG. 1 which is a secondary particle obtained by aggregating fine particles having an average particle diameter of 2 μm or less. By using the fine powder having such a shape, the shape of the anchor formed by dissolution and removal accompanying the treatment with the oxidizing agent can be complicated. That is, the present invention makes the shape more complicated than the anchor (shown in FIG. 4) formed when primary particles as shown in FIG. 3 which are not aggregated (not secondary particles) are used. It is possible to obtain high adhesion strength such as peel strength and pull strength and stability. However, fine powder formed into secondary particles by agglomerating particles having an average particle diameter of more than 2 μm is not preferable for forming a fine pattern because the anchor formed is too deep. Therefore, in the resin fine powder of the present invention, it is important to aggregate fine particles having an average particle diameter of 2 μm or less into secondary particles,
In particular, it is preferable to use one having a thickness of 1 μm or less. A semi-cured layer or an unreacted functional group may be provided on the surface of the heat-resistant resin fine powder so as not to dissolve in the matrix in order to improve the bonding with the matrix heat-resistant resin.

さて、上述のように粒径2μm以下の微粉末を凝集させ
ることによって形成する2次粒子の粒度としては、平均
粒径が10μm以下の大きさにするが、より好ましくは
5μm以下の大きさがよい。その理由は、平均粒径が1
0μmよりも大きいと、前述の如き溶解除去によってて
形成されるアンカーの密度が低くなり、かつ不均一にな
り易いためである。その結果、密着強度と製品の信頼性
が低下し、さらには接着層表面の凹凸が必要以上に激し
くなるので、導体の微細パターンが得にくく、かつ部品
などを実装する上でも不都合が生じるからである。
Now, as the particle size of the secondary particles formed by aggregating the fine powder having a particle size of 2 μm or less as described above, the average particle size is 10 μm or less, more preferably 5 μm or less. Good. The reason is that the average particle size is 1
This is because if it is larger than 0 μm, the density of anchors formed by dissolution and removal as described above becomes low and the anchors are likely to become non-uniform. As a result, the adhesion strength and the reliability of the product are reduced, and the irregularities on the surface of the adhesive layer become more intense than necessary, which makes it difficult to obtain a fine conductor pattern and causes inconvenience in mounting components. is there.

このようにして得られる2次粒子の性質としては、混合
時に解離して1次粒子に戻ることがない程度の接着力で
凝集されていることが必要である。
The properties of the secondary particles obtained in this manner are such that they are aggregated with an adhesive force to the extent that they do not dissociate during mixing and return to the primary particles.

このような2次粒子からなる耐熱性樹脂微粉末は、例え
ば、耐熱性樹脂を熱硬化させてからジェットミルや凍結
粉砕機などを用いて微粉砕したり、硬化処理する前に耐
熱性樹脂溶液を噴霧乾燥したり、あるいはより好ましい
方法である、未硬化の耐熱性樹脂エマルジョンに水溶液
硬化剤を加えて撹拌したりして得られる1次微粒子を、
熱風乾燥器などで単に加熱させるか、あるいは各種バイ
ンダーを添加,混合して乾燥させるなどして凝集させ
る。そして、その後、ボールミル、超音波分散機などを
用いて解砕し、さらに風力分級機などにより分級するこ
とにより作製する。
The heat-resistant resin fine powder composed of such secondary particles is obtained by, for example, heat-curing the heat-resistant resin and then finely pulverizing it with a jet mill or freeze pulverizer, or before heat-treating the solution. The primary fine particles obtained by spray-drying or by adding an aqueous solution curing agent to an uncured heat-resistant resin emulsion, which is a more preferable method, and stirring,
Agitation is performed by simply heating with a hot air drier or by adding various binders, mixing and drying. Then, after that, it is crushed using a ball mill, an ultrasonic disperser, or the like, and further classified by a wind force classifier, etc.

このようにして得られる耐熱性樹脂微粉末の形状は、球
形だけでなく各種の複雑な形状を有しており、これによ
り形成されるアンカーの形状もより複雑になるため、高
いピール強度、プル強度などの密着強度をもたらす。
The shape of the heat-resistant resin fine powder obtained in this way is not only spherical but also has various complicated shapes, and the shape of the anchor formed by this also becomes more complicated. Provides adhesion strength such as strength.

次に、前記耐熱性樹脂微粉末を分散させるマトリックス
耐熱性樹脂は、耐熱性,電気絶縁性,化学的安定性およ
び接着性に優れ、かつ硬化処理することにより酸化剤に
対して難溶性となる特性を有する樹脂を用いる。例え
ば、エポキシ樹脂,エポキシ変成ポリイミド樹脂,ポリ
イミド樹脂,フェノール樹脂のなかから選ばれるいずれ
か少なくとも1種、場合によってはこれらの樹脂に感光
性を付与させたものを用いる。この感光性を付与させた
ものは、ビルドアップ配線基板の層間絶縁材用接着剤と
して好適である。
Next, the matrix heat-resistant resin in which the heat-resistant resin fine powder is dispersed has excellent heat resistance, electrical insulation, chemical stability and adhesiveness, and becomes hard to be dissolved in an oxidizer by curing treatment. A resin having characteristics is used. For example, at least one selected from an epoxy resin, an epoxy-modified polyimide resin, a polyimide resin, and a phenol resin, and those obtained by imparting photosensitivity to these resins are used. The one to which this photosensitivity is imparted is suitable as an adhesive for an interlayer insulating material of a build-up wiring board.

前述のように、前記耐熱性樹脂微粉末と、硬化処理され
た後のマトリックス耐熱性樹脂とでは、酸化剤に対する
溶解特性に大きな差異がある。したがって、前記接着層
の表面部分に分散している耐熱性樹脂微粉末を、酸化剤
を用いて溶解除去すると、前記酸化剤に対して難溶性の
マトリックス耐熱性樹脂はほとんど溶解されずに基材と
して残り、明確なアンカーが接着層の表面に形成される
こととなる。なお、同じ種類の耐熱性樹脂であっても、
例えば耐熱性樹脂微粉末として酸化剤に溶け易いエポキ
シ樹脂を用い、他方前記マトリックス耐熱性樹脂として
酸化剤に対して比較的溶け難いエポキシ樹脂を組合わせ
て使用しても同じような効果を得ることができる。
As described above, the heat-resistant resin fine powder and the matrix heat-resistant resin after being subjected to the curing treatment have a large difference in the dissolution property with respect to the oxidizing agent. Therefore, when the heat-resistant resin fine powder dispersed in the surface portion of the adhesive layer is dissolved and removed using an oxidizing agent, the matrix heat-resistant resin that is hardly soluble in the oxidizing agent is hardly dissolved and the base material Remains, and a clear anchor is formed on the surface of the adhesive layer. Even if the same kind of heat resistant resin,
For example, a similar effect can be obtained by using an epoxy resin that is easily dissolved in an oxidant as the heat-resistant resin fine powder and using a combination of epoxy resins that are relatively insoluble in the oxidant as the matrix heat-resistant resin. You can

なお、前記微粉末を分散させるための耐熱性樹脂液とし
ては、溶剤を含まない耐熱性樹脂液をそのまま使用する
ことができるが、とくに耐熱性樹脂を溶剤に溶解した耐
熱性樹脂液は低粘度であるから、微粉末を均一に分散さ
せやすく、また基板に塗布し易いので有利に使用するこ
とができる。そして、この耐熱性樹脂を溶解するのに使
用する溶剤としては、通常の溶剤、例えば、メチルエチ
ルケトン,メチルセルソルブ,エチルセルソルブ,ブチ
ルカルビトール,ブチルセルロース,テトラリン,ジメ
チルホルムアミド,ノルマルメチルピロリドンなどを用
いることができる。また、前記マトリックスとなる耐熱
性樹脂液は、例えば、シリカ,アルミナ,酸化チタン,
ジルコニアなどの無機質微粉末からなる充填剤を適宜配
合してもよい。
As the heat-resistant resin liquid for dispersing the fine powder, a heat-resistant resin liquid containing no solvent can be used as it is, but a heat-resistant resin liquid having a heat-resistant resin dissolved in the solvent has a low viscosity. Therefore, since the fine powder can be easily dispersed uniformly and can be easily applied to the substrate, it can be advantageously used. Then, as a solvent used for dissolving the heat resistant resin, an ordinary solvent such as methyl ethyl ketone, methyl cellosolve, ethyl cellosolve, butyl carbitol, butyl cellulose, tetralin, dimethylformamide, normal methylpyrrolidone is used. Can be used. The heat-resistant resin liquid that becomes the matrix is, for example, silica, alumina, titanium oxide,
A filler made of an inorganic fine powder such as zirconia may be appropriately mixed.

前記マトリックス耐熱性樹脂に対する耐熱性樹脂微粉末
の配合量は、マトリックス耐熱性樹脂固形分 100重量部
に対して2〜350 重量部の範囲内とするか、特に5〜20
0 重量部の範囲は基板と無電解めっき膜との密着強度を
高くし得るので好適である。耐熱性樹脂微粉末の配合量
が2重量部より少ないと溶解除去して形成されるアンカ
ーの密度が低くなり基板と無電解めっき膜との充分な密
着強度が得られず、一方350 重量部よりも多くなると密
着層全体がほとんど溶解されるので明確なアンカーが形
成されない。
The blending amount of the heat-resistant resin fine powder with respect to the matrix heat-resistant resin is in the range of 2 to 350 parts by weight, particularly 5 to 20 parts by weight based on 100 parts by weight of the matrix heat-resistant resin solid content.
The range of 0 parts by weight is preferable because the adhesion strength between the substrate and the electroless plated film can be increased. If the blending amount of the heat-resistant resin fine powder is less than 2 parts by weight, the density of the anchor formed by dissolution and removal becomes low, and sufficient adhesion strength between the substrate and the electroless plating film cannot be obtained. If the amount is too large, the entire adhesive layer is almost dissolved, so that no clear anchor is formed.

次に上記接着剤を用いたプリント配線板の製造方法につ
いて説明する。
Next, a method for manufacturing a printed wiring board using the above adhesive will be described.

ます、前記耐熱性樹脂微粉末をマトリックスとなる耐熱
性樹脂液中に分散させた接着剤を基板に塗布する。この
塗布の方法としては、例えば、ローラコート法,ディッ
プコート法,スプレーコート法,スピナーコート法,カ
ーテンコート法,スクリーン印刷法などの各種の手段の
いずれでもよい。
First, the substrate is coated with an adhesive agent in which the heat-resistant resin fine powder is dispersed in a heat-resistant resin liquid serving as a matrix. The coating method may be any of various means such as a roller coating method, a dip coating method, a spray coating method, a spinner coating method, a curtain coating method and a screen printing method.

この段階の処理において、塗布して乾燥硬化して基板上
に得られる接着層の厚さは、通常、2〜40μm程度であ
るが、この接着層を金属基板や多層配線板の層間絶縁膜
を兼ねて使用する場合にはそれ以上に厚く塗布すること
もできる。なお、本発明において使用する基板として
は、例えば、プラスチック基板,セラミック基板,金属
基板,フィルム基板などを使用することができ、具体的
にはガラスエポキシ基板,ガラスポリイミド基板,アル
ミナ基板,低温焼成セラミック基板,窒化アルミニウム
基板,アルミニウム基板,鉄基板,ポリイミドフィルム
基板などである。
In this stage of processing, the thickness of the adhesive layer which is applied and dried and cured on the substrate is usually about 2 to 40 μm. This adhesive layer is used as an interlayer insulating film of a metal substrate or a multilayer wiring board. When it is also used, it can be applied thicker than that. As the substrate used in the present invention, for example, a plastic substrate, a ceramic substrate, a metal substrate, a film substrate, or the like can be used, and specifically, a glass epoxy substrate, a glass polyimide substrate, an alumina substrate, a low temperature fired ceramic. Substrates, aluminum nitride substrates, aluminum substrates, iron substrates, polyimide film substrates, etc.

本発明においては、これらの基板を用い、片面配線板,
両面スルーホール配線板,例えばCu/ポリイミド多層
プリント配線板のような多層プリント配線板などを製作
することができる。なお、前記接着剤は、一般的な塗布
形式のものだけに限らず、板状あるいはフィルム状のも
のを基板表面に貼着して接着剤層を形成する形態のもの
であってもよい。
In the present invention, using these substrates, a single-sided wiring board,
A double-sided through-hole wiring board, such as a multilayer printed wiring board such as a Cu / polyimide multilayer printed wiring board, can be manufactured. Note that the adhesive is not limited to a general coating type, and may be a form in which a plate-shaped or film-shaped adhesive is attached to the surface of the substrate to form the adhesive layer.

次に、上述のようにして形成した接着層について、その
表面に分散している耐熱性樹脂微粉末の少なくともその
一部を、酸化剤を用いて溶解除去する。この溶解除去の
方法としては、前記酸化剤溶液を用い、接着層を有する
基板をその溶液中に浸漬するか、または基板に溶液をス
プレーするなどの手段によって行なう。この処理によっ
て基板の表面の、いわゆる接着層の表面を粗化すること
ができるものである。なお、耐熱性樹脂微粉末の溶解除
去を効果的なものにするために、前記接着層の表面部分
を、微粉研摩剤によるポリシングや液体ホーニングによ
って予め軽く除去することは有利な方法である。
Next, in the adhesive layer formed as described above, at least a part of the heat-resistant resin fine powder dispersed on the surface of the adhesive layer is dissolved and removed using an oxidizing agent. The dissolution and removal method is performed by using the above-mentioned oxidizing agent solution and immersing the substrate having the adhesive layer in the solution, or spraying the solution onto the substrate. By this treatment, the surface of the substrate, that is, the surface of the so-called adhesive layer can be roughened. In order to effectively dissolve and remove the heat-resistant resin fine powder, it is an advantageous method to lightly remove the surface portion of the adhesive layer beforehand by polishing with a fine powder abrasive or liquid honing.

次に、接着層表面を粗化した基板に対し無電解めっきを
施す。この無電解めっきとしては、例えば無電解めっ
き,無電解ニッケルめっき,無電解スズめっき,無電解
金めっき,無電解銀めっきなどである。特に無電解銅め
っき,無電解ニッケルめっき,無電解金めっきのいずれ
か少なくとも1種が好適である。なお、前記無電解めっ
きを施した上に、さらに異なる種類の無電解めっきある
いは電気めっきを行なったり、ハンダをコートしたりし
てもよい。
Next, electroless plating is applied to the substrate having the roughened adhesive layer surface. Examples of the electroless plating include electroless plating, electroless nickel plating, electroless tin plating, electroless gold plating, electroless silver plating and the like. In particular, at least one of electroless copper plating, electroless nickel plating, and electroless gold plating is suitable. In addition, after performing the electroless plating, different types of electroless plating or electroplating may be further performed, or solder may be coated.

なお、本発明方法の実施により得られるプリント配線板
は、その他の既知の方法で導体回路を形成することがで
き、例えば基板に無電解めっきを施してから回路をエッ
チングする方法や無電解めっきを施す際に直接回路を形
成する方法などを適用することができる。
The printed wiring board obtained by carrying out the method of the present invention can be formed with a conductor circuit by other known methods, for example, a method of subjecting the substrate to electroless plating and then etching the circuit or electroless plating. A method of directly forming a circuit or the like can be applied when applying.

〔実施例〕〔Example〕

実施例1 (1) エポキシ樹脂微粉末(東レ製、商品名:トレパー
ルEP−B,平均粒径 0.5μm)を、熱風乾燥器内にて
180 ℃で3時間加熱処理して凝集させた。この凝集させ
たエポキシ樹脂微粉末を、アセトン中に分散させ、ボー
ルミルにて5時間解砕した後、風力分級機を使用して分
級し、平均粒径3.5 μmの2次粒子からなるエポキシ樹
脂微粉末を作製した。
Example 1 (1) Epoxy resin fine powder (manufactured by Toray, trade name: Trepearl EP-B, average particle size 0.5 μm) was placed in a hot air dryer.
Heat treatment was performed at 180 ° C. for 3 hours to aggregate. The agglomerated epoxy resin fine powder is dispersed in acetone, crushed in a ball mill for 5 hours, and then classified using a wind classifier to obtain an epoxy resin fine powder composed of secondary particles having an average particle size of 3.5 μm. A powder was made.

(2) フェノールノボラック型エポキシ樹脂(油化シェ
ル製、商品名:E−154)60重量部、ビスフェノールA
型エポキシ樹脂(油化シェル製、商品名:E−1001)40
重量部、イミダゾール硬化剤(四国化成製、商品名:2
P4MHZ)4重量部、前記(1)で作製したエポキシ樹
脂微粉末50重量部からなるものに、ブチルセルソルブ溶
剤を添加しながらホモディスパー分散機で粘度120 cps
に調整し、次いで3本ロールで混練して接着剤を得た。
(2) 60 parts by weight of phenol novolac type epoxy resin (made by Yuka Shell, trade name: E-154), bisphenol A
Type Epoxy resin (made by Yuka Shell, trade name: E-1001) 40
Parts by weight, imidazole curing agent (manufactured by Shikoku Kasei, trade name: 2
P4MHZ) 4 parts by weight and 50 parts by weight of the epoxy resin fine powder prepared in (1) above, while adding a butyl cellosolve solvent, a viscosity of 120 cps with a homodisper disperser.
And then kneaded with a three-roll mill to obtain an adhesive.

(3) 前記(2)で得られた粘着剤を、ローラーコーターを
使用して銅箔が貼着されていないガラスポリイミド基板
(東芝ケミカル製、商品名:東芝デュライト積層板−E
L)に塗布した後、100 ℃で1時間、さらに150 で5時
間乾燥硬化させて厚さ20μmの接着層を形成した。
(3) A glass polyimide substrate (Toshiba Chemical, trade name: Toshiba Dulite Laminated Board-E manufactured by Toshiba Chemical Co., Ltd.) to which the adhesive obtained in (2) above is not adhered, using a roller coater.
L) and then dried and cured at 100 ° C. for 1 hour and at 150 ° C. for 5 hours to form an adhesive layer having a thickness of 20 μm.

(4) 前記(3)で得られた基板を、クロム酸(Cr2O3)500g/
水溶液からなる酸化剤に70℃で15分間浸漬して接着層
の表面を粗化してから、中和溶液(シプレイ製、商品
名:PM950)に浸漬し水洗した。
(4) Chromic acid (Cr 2 O 3 ) 500 g / the substrate obtained in (3) above.
The surface of the adhesive layer was roughened by immersing it in an oxidizing agent composed of an aqueous solution at 70 ° C. for 15 minutes, and then immersing in a neutralizing solution (manufactured by Shipley, trade name: PM950) and washing with water.

(5) 前記(4)で得られた接着層の表面を粗化した基板
に、パラジウム触媒(シプレイ社製、商品名:キャタポ
ジット44)を付与して接着層の表面を活性化させ、下記
に示す組成のアディティブ法用無電解めっき液に11時間
浸漬して、めっき膜の厚さ25μmの無電解銅めっきを施
した。
(5) The substrate obtained by roughening the surface of the adhesive layer obtained in (4) above, activates the surface of the adhesive layer by applying a palladium catalyst (manufactured by Shipley, trade name: Cataposit 44), It was immersed in an electroless plating solution for additive method having the composition shown in 11 hours for 11 hours to perform electroless copper plating with a plating film thickness of 25 μm.

硫酸銅(CuSO4・5H2O) 0.06 モル/ ホルマリン(37%) 0.30 モル/ 苛性ソーダ(NaOH) 0.35 モル/ EDTA 0.12 モル/ 添加剤 少々 めっき温度:70〜72℃ pH:12.4 上述のようにして製造した配線板は、さらに硫化銅めっ
き浴中で電気めっき厚さ35μmの銅めっきを施した。
Copper sulfate (CuSO 4 .5H 2 O) 0.06 mol / formalin (37%) 0.30 mol / caustic soda (NaOH) 0.35 mol / EDTA 0.12 mol / additive A little plating temperature: 70-72 ℃ pH: 12.4 As described above The produced wiring board was further subjected to copper plating with an electroplating thickness of 35 μm in a copper sulfide plating bath.

このようにして製造したプリント配線板について、ま
ず、基板と銅めっき膜との密着強度を JIS−C−6481の
方法で測定した。その結果、ピール強度は1.85kg/cmで
あった。また100 ℃の煮沸水に2時間浸漬することによ
る接着層の表面抵抗の変化は、初期値7×1014Ω・cm
に対して3×1013Ω・cmであった。さらに、表面温度
を300 ℃に保持したホットプレートに配線板の表面を密
着させて10分間加熱する耐熱性試験を行なったところ、
何の異常も認められなかった。
With respect to the printed wiring board thus manufactured, first, the adhesion strength between the substrate and the copper plating film was measured by the method of JIS-C-6481. As a result, the peel strength was 1.85 kg / cm. The change in surface resistance of the adhesive layer after immersion in boiling water at 100 ℃ for 2 hours is 7 × 10 14 Ω · cm.
Was 3 × 10 13 Ω · cm. Furthermore, when a heat resistance test was conducted in which the surface of the wiring board was brought into close contact with a hot plate whose surface temperature was kept at 300 ° C and heated for 10 minutes,
No abnormality was found.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明によれば、耐熱性,電気特
性および基板と無電解めっき膜との密着性がともに極め
て優れ、とくに表面粗化に対する作用やアンカー効果に
も著しく優れるプリント配線板への無電解めっき用接着
剤を提供できる。
As described above, according to the present invention, a printed wiring board having excellent heat resistance, electrical characteristics, and adhesion between a substrate and an electroless plating film is provided, and particularly, an effect for surface roughening and an anchor effect are also excellent. The adhesive for electroless plating can be provided.

しかも、このような接着剤の採用により、プリント配線
板の製造に際しても、表面粗化のために複雑な工程を経
る必要がなく、したがって、導体パターンの形成が容易
に実施できる。
Moreover, by adopting such an adhesive, it is not necessary to go through complicated steps for surface roughening even when manufacturing a printed wiring board, and therefore the conductor pattern can be easily formed.

この意味において本発明は、利用分野も高密度で高精度
のプリント配線板,ハイブリットIC配線板,LSIを
実装する多層配線板などと広く適用され得るから、産業
上極めて有用である。
In this sense, the present invention can be widely applied to a high-density and high-precision printed wiring board, a hybrid IC wiring board, a multilayer wiring board on which an LSI is mounted, and the like, and therefore the present invention is industrially very useful.

【図面の簡単な説明】[Brief description of drawings]

第1図は、微粒子を凝集させてなる本発明で用いる2次
粒子の正面図、 第2図は、前記2次粒子を用いることにより接着層表面
に形成されるアンカーの形状を示す部分断面図、 第3図は、従来例における1次粒子の正面図、 第4図は、前記1次粒子を用いることにより接着層表面
に形成される従来例アンカーの形状を示す部分断面図で
ある。
FIG. 1 is a front view of secondary particles used in the present invention formed by aggregating fine particles, and FIG. 2 is a partial cross-sectional view showing the shape of an anchor formed on the surface of an adhesive layer by using the secondary particles. FIG. 3 is a front view of primary particles in a conventional example, and FIG. 4 is a partial cross-sectional view showing a shape of a conventional anchor formed on the surface of an adhesive layer by using the primary particles.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】基板上に、酸化剤に対して可溶性である硬
化処理した耐熱性樹脂微粉末を、硬化処理することによ
り酸化剤に対して難溶性となる性質を有する未硬化の耐
熱性樹脂液中に分散させてなる無電解めっき用接着剤層
を設け、この接着剤層を介してめっき導体層を形成して
なるプリント配線板において、前記接着剤層の耐熱性樹
脂微粉末として、平均粒径2μm以下の微粒子を凝集さ
せることにより得られる2次粒子からなるものを用いた
ことを特徴とするプリント配線板。
1. An uncured heat-resistant resin having a property of being hardened to a oxidizer by curing a hardened heat-resistant resin fine powder that is soluble in an oxidizer on a substrate. In a printed wiring board provided with an adhesive layer for electroless plating which is dispersed in a liquid, and a plated conductor layer is formed through this adhesive layer, the heat-resistant resin fine powder of the adhesive layer is used as an average. A printed wiring board comprising a secondary particle obtained by aggregating fine particles having a particle diameter of 2 μm or less.
【請求項2】基板上に、酸化剤により溶解することがで
きる硬化処理した、平均粒径2μm以下の微粒子を凝集
させることにより得られた2次粒子からなる耐熱性樹脂
微粉末を、硬化処理することにより酸化剤に対して難溶
性となる性質を有する未硬化の耐熱性樹脂液中に分散さ
せてなる接着剤を塗布し、乾燥硬化させることにより接
着剤層を形成し、前記接着剤層の表面をこの部分に分散
している前記耐熱性樹脂微粉末の一部を溶解除去するこ
とにより粗化し、次いで粗化された前記接着剤層表面の
上に無電解めっきを施してプリント配線板を製造するこ
とを特徴とするプリント配線板の製造方法。
2. A heat-resistant resin fine powder comprising secondary particles obtained by aggregating fine particles having an average particle diameter of 2 μm or less, which are hardened by an oxidizing agent, on a substrate, and hardened. By applying an adhesive which is dispersed in an uncured heat-resistant resin liquid having a property of being hardly soluble in an oxidizing agent, and drying and curing to form an adhesive layer, and the adhesive layer Surface is roughened by dissolving and removing a part of the heat resistant resin fine powder dispersed in this portion, and then electroless plating is performed on the roughened adhesive layer surface to form a printed wiring board. A method for manufacturing a printed wiring board, comprising:
【請求項3】請求項2に記載の接着剤として、板状ある
いはフィルム状のものを用いることを特徴とするプリン
ト配線板の製造方法。
3. A method for manufacturing a printed wiring board, characterized in that a plate-shaped or film-shaped adhesive is used as the adhesive according to claim 2.
【請求項4】酸化剤に対して可溶性である硬化処理した
耐熱性樹脂微粉末を、硬化処理することにより酸化剤に
対して難溶性となる性質を有する未硬化の耐熱性樹脂液
中に分散させてなる無電解めっき用接着剤において、前
記耐熱性樹脂微粉末として、平均粒径2μm以下の微粒
子を凝集させることにより得られる2次粒子からなるも
のを用いることを特徴とする無電解めっき用接着剤。
4. A cured heat-resistant resin fine powder that is soluble in an oxidant is dispersed in an uncured heat-resistant resin liquid that has a property of being hardly soluble in an oxidant when cured. In the adhesive for electroless plating thus obtained, as the heat-resistant resin fine powder, an adhesive composed of secondary particles obtained by aggregating fine particles having an average particle diameter of 2 μm or less is used. adhesive.
【請求項5】請求項4に記載の接着剤において、前記2
次粒子の粒度を平均粒径で10μm以下にしたことを特徴
とする無電解めっき用接着剤。
5. The adhesive according to claim 4, wherein
An adhesive for electroless plating, wherein the average particle size of the secondary particles is 10 μm or less.
【請求項6】請求項4に記載の接着剤が、板状もしくは
フィルム状のものである無電解めっき用接着剤。
6. An adhesive for electroless plating, wherein the adhesive according to claim 4 is plate-shaped or film-shaped.
JP10404488A 1988-04-28 1988-04-28 Printed wiring board, manufacturing method thereof, and adhesive for electroless plating Expired - Lifetime JPH0632372B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP10404488A JPH0632372B2 (en) 1988-04-28 1988-04-28 Printed wiring board, manufacturing method thereof, and adhesive for electroless plating
DE19893913966 DE3913966B4 (en) 1988-04-28 1989-04-27 Adhesive dispersion for electroless plating, and use for producing a printed circuit
US07/344,968 US5055321A (en) 1988-04-28 1989-04-28 Adhesive for electroless plating, printed circuit boards and method of producing the same
US08/253,582 US5589255A (en) 1988-04-28 1994-06-03 Adhesive for electroless plating, printed circuit boards and method of producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10404488A JPH0632372B2 (en) 1988-04-28 1988-04-28 Printed wiring board, manufacturing method thereof, and adhesive for electroless plating

Publications (2)

Publication Number Publication Date
JPH01275682A JPH01275682A (en) 1989-11-06
JPH0632372B2 true JPH0632372B2 (en) 1994-04-27

Family

ID=14370219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10404488A Expired - Lifetime JPH0632372B2 (en) 1988-04-28 1988-04-28 Printed wiring board, manufacturing method thereof, and adhesive for electroless plating

Country Status (1)

Country Link
JP (1) JPH0632372B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3007648B2 (en) * 1990-02-01 2000-02-07 イビデン株式会社 Method for manufacturing adhesive printed wiring board for electroless plating and printed wiring board

Also Published As

Publication number Publication date
JPH01275682A (en) 1989-11-06

Similar Documents

Publication Publication Date Title
US5021472A (en) Adhesive for electroless plating and method of preparation of circuit board using this adhesive
JPH0455555B2 (en)
JPH0734505B2 (en) Multilayer printed wiring board and manufacturing method thereof
JPS61276875A (en) Adhesive for electroless plating and production of wiring board using said adhesive
JP3217477B2 (en) Manufacturing method of printed wiring board
JP3138520B2 (en) Multilayer printed wiring board and method of manufacturing the same
JPH0632372B2 (en) Printed wiring board, manufacturing method thereof, and adhesive for electroless plating
JPH028283A (en) Adhesive for nonelectrolytic plating
JP3090973B2 (en) Method of forming adhesive layer for additive printed wiring board
JP3007648B2 (en) Method for manufacturing adhesive printed wiring board for electroless plating and printed wiring board
JP2877993B2 (en) Adhesive for wiring board, method for manufacturing printed wiring board using this adhesive, and printed wiring board
JPH0564714B2 (en)
JPH07188935A (en) Adhesive having excellent anchor characteristic and printed circuit board formed by using this adhesive and its production
JP3115435B2 (en) Adhesives and printed wiring boards
JP3219827B2 (en) Heat-resistant resin particles for anchor formation, adhesive for electroless plating, method for manufacturing printed wiring board using this adhesive, and printed wiring board
JPH05299837A (en) Multilayer printed wiring board and manufacture thereof
JPH0649851B2 (en) Adhesive for electroless plating
JP3076680B2 (en) Adhesive for wiring board, method for manufacturing printed wiring board using this adhesive, and printed wiring board
JP2877992B2 (en) Adhesive for wiring board, method for manufacturing printed wiring board using this adhesive, and printed wiring board
JPH0533840B2 (en)
JPH0651868B2 (en) Heat-resistant resin particles for forming anchor of adhesive used in electroless plating and method for producing the same
JP3124628B2 (en) Adhesive sheet for wiring board
JPH08337880A (en) Method for roughening adhesive for electroless plating and production of printed circuit board
JPH01166598A (en) Multi-layer printed circuit board and manufacture therefor
JPH0651867B2 (en) Adhesive for electroless plating and method for producing printed wiring board using this adhesive

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080427

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090427

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090427

Year of fee payment: 15