JPH06322452A - Method for classifying and recovering valuable metal from used secondary lithium battery - Google Patents

Method for classifying and recovering valuable metal from used secondary lithium battery

Info

Publication number
JPH06322452A
JPH06322452A JP13242093A JP13242093A JPH06322452A JP H06322452 A JPH06322452 A JP H06322452A JP 13242093 A JP13242093 A JP 13242093A JP 13242093 A JP13242093 A JP 13242093A JP H06322452 A JPH06322452 A JP H06322452A
Authority
JP
Japan
Prior art keywords
magnetic
nickel
cobalt
materials
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13242093A
Other languages
Japanese (ja)
Other versions
JP3434318B2 (en
Inventor
Isao Abe
功 阿部
Daizo Tomioka
大造 富岡
Yasuhiro Okajima
靖弘 岡島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP13242093A priority Critical patent/JP3434318B2/en
Publication of JPH06322452A publication Critical patent/JPH06322452A/en
Application granted granted Critical
Publication of JP3434318B2 publication Critical patent/JP3434318B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To provide the method for inexpensively classifying and recovering valuable metals from used secondary batteries. CONSTITUTION:The used secondary batteries are crushed and the crushed matter obtd. in such a manner is separated to magnetic materials and nonmagnetic materials by primary magnetic sepn. The nonmagnetic materials are roasted at 500 to 1000 deg.C in a nonoxidizing atmosphere or in a reducing atmosphere, by which the nonmagnetic materials are reduced. The roasted matter obtd. in such a manner is separated to magnetic materials and nonmagnetic materials by secondary magnetic sepn. As a result, the valuable metals, such as nickel and cobalt, are easily classified and recovered from the used secondary batteries. The classified and recovered magnetic materials are extremely good nickel and cobalt raw materials.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は使用済みリチウム二次電
池よりの有価金属の分別回収方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for separately collecting valuable metals from a used lithium secondary battery.

【0002】[0002]

【従来の技術】使用電圧が高く、長期信頼性を有し、且
つ廃棄後の公害の危険性のない二次電池の一つとしてリ
チウム二次電池がある。このリチウム二次電池は一般
に、LiCo(1-X)MnXO2やLiXMO2(MはCoまたはNi)で示さ
れる複合酸化物をアルミ箔に塗布して正極とし、主とし
て炭素質材料を銅箔に塗布して負極とし、正極と負極と
の間、及び正極の外側または負極の外側に微孔性ポリプ
ロピレンを設け、これらを巻物として鉄製の外装缶にい
れている。また、リードとしては金属ニッケル箔を用い
ている。
2. Description of the Related Art There is a lithium secondary battery as one of secondary batteries having a high operating voltage, long-term reliability and no risk of pollution after disposal. This lithium secondary battery is generally composed of a carbonaceous material mainly composed of carbonaceous material, which is obtained by coating a composite oxide represented by LiCo (1-X) Mn X O 2 or Li X MO 2 (M is Co or Ni) on an aluminum foil. Is applied to a copper foil to form a negative electrode, and microporous polypropylene is provided between the positive electrode and the negative electrode and on the outer side of the positive electrode or the outer side of the negative electrode, and these are wound into an iron outer can. Further, a metallic nickel foil is used as the lead.

【0003】このように、リチウム二次電池はニッケ
ル、コバルトといった希少金属ばかりでなく、鉄や銅も
多量に使用されている。しかしながら、これらの有価金
属は分別回収されることなく廃棄されているのが実状で
ある。その理由は、未だこのようなリチウム二次電池よ
りこれらの有価金属を分別回収する手段が開発されてい
ないことである。
As described above, in the lithium secondary battery, not only rare metals such as nickel and cobalt but also iron and copper are used in large amounts. However, the reality is that these valuable metals are discarded without being separately collected. The reason is that the means for separating and recovering these valuable metals from such a lithium secondary battery has not been developed yet.

【0004】[0004]

【発明が解決しようとする課題】本発明は上記状況に鑑
みなされたものであり、使用済みリチウム二次電池より
安価に上記有価金属、特にニッケル及びコバルトを分別
回収し得る方法の提供を目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and an object thereof is to provide a method capable of separately collecting the valuable metals, particularly nickel and cobalt, at a lower cost than a used lithium secondary battery. To do.

【0005】[0005]

【課題を解決するための手段】上記課題を解決する本発
明の方法は、使用済みリチウム二次電池を破砕し、得た
粉砕物を第1次磁選により磁性体と非磁性体とに分別
し、非磁性体を非酸化性雰囲気中、あるいは還元雰囲気
中500〜1000℃で焙焼して非磁性体を還元し、得た焼成
物を第2次磁選により磁性体と非磁性体とに分別するこ
とによりリチウム二次電池よりニッケルやコバルトとい
った有価金属を分別分別回収するものである。
According to the method of the present invention for solving the above problems, a used lithium secondary battery is crushed, and the obtained pulverized product is separated into a magnetic substance and a non-magnetic substance by primary magnetic separation. The non-magnetic material is roasted in a non-oxidizing atmosphere or in a reducing atmosphere at 500 to 1000 ° C to reduce the non-magnetic material, and the obtained fired product is separated into a magnetic material and a non-magnetic material by secondary magnetic separation. By doing so, valuable metals such as nickel and cobalt are separately collected from the lithium secondary battery.

【0006】[0006]

【作用】本発明は、第1次の磁選により缶体材料である
鉄とリード材料である金属ニッケルとを他の複合酸化
物、銅、リチウムなどの非磁性物とから分別し、非磁性
物を還元焙焼して、複合酸化物中のニッケル及びコバル
トを強磁性体である金属に変換させ、第2次の磁選で生
成した金属ニッケル及び金属コバルトを非磁性物より分
別回収しようとするものである。
The present invention separates iron, which is a can body material, and metallic nickel, which is a lead material, from other complex oxides and non-magnetic materials such as copper and lithium by the first magnetic separation. By reducing and roasting nickel to convert nickel and cobalt in the composite oxide into a metal that is a ferromagnetic substance, and to separately recover metallic nickel and metallic cobalt produced in the second magnetic separation from non-magnetic substances. Is.

【0007】第1次の磁選で予め鉄と金属ニッケルとを
非磁性物と分別しておくのは、焙焼工程での負荷を低減
するためである。このために必要とされるリチウム二次
電池の破砕方法は特に限定するものでもなく、金属シュ
レッダーを用いても、人手によるカッターを用いてもよ
い。破砕すべき大きさも、内容物と缶体とが分別できる
程度であればよく微粉砕する必要はまったくない。
The reason for preliminarily separating iron and metallic nickel from non-magnetic substances in the first magnetic separation is to reduce the load in the roasting process. The crushing method of the lithium secondary battery required for this purpose is not particularly limited, and a metal shredder or a manual cutter may be used. The size to be crushed does not have to be finely crushed at all as long as the contents and the can can be separated.

【0008】鉄とニッケルとの磁選に用いる磁選機は市
販の低磁力磁選機で良く、場合によっては通常の磁石を
用いても良い。この段階で存在する磁性体は鉄とリード
に使用されている金属ニッケルだからである。
The magnetic separator used for magnetic separation of iron and nickel may be a commercially available low magnetic force magnetic separator, and in some cases a normal magnet may be used. This is because the magnetic substance existing at this stage is iron and nickel metal used for the leads.

【0009】第1次の磁選で得られた非磁性体中には有
機物であるセパレーターや負極として用いた多量の炭素
質材料が存在する。このため、非酸化性雰囲気中で焙焼
すれば、正極に用いた複合酸化物は還元され、金属ニッ
ケルや金属コバルトが生成する。仮に、負極材料として
リチウム等の非炭素質材料を用いたリチウム二次電池を
処理するので有れば、炭素質材料等の還元材とともに非
酸化性雰囲気中で焙焼するか、還元雰囲気中で焙焼しな
ければならないのは言うまでもないことである。
In the non-magnetic material obtained by the first magnetic separation, a large amount of carbonaceous material used as a separator or an anode, which is an organic substance, exists. Therefore, when roasted in a non-oxidizing atmosphere, the composite oxide used for the positive electrode is reduced and metallic nickel or metallic cobalt is produced. If a lithium secondary battery using a non-carbonaceous material such as lithium as the negative electrode material is processed, it should be roasted in a non-oxidizing atmosphere together with a reducing agent such as a carbonaceous material, or in a reducing atmosphere. It goes without saying that it must be roasted.

【0010】焙焼温度は、低いとニッケルやコバルトの
還元が進まず、高すぎると銅箔が溶解し、金属ニッケル
や金属コバルトといった磁性物と銅やリチウム塩などと
いった非磁性物との分別が困難になる。このため、焙焼
温度は500〜1000℃とする。この焙焼によりリチウムは
炭酸リチウム、酸化リチウムそしてアルミン酸リチウム
の混合物になる。そして、ニッケルやコバルトは強磁性
体である金属ニッケルや金属コバルトとになり、銅箔と
過剰分のカーボンはそのままの状態となっている。そし
て、それぞれの形状は、銅が箔状になっている以外何れ
も粉末状である。よって、得られた焼成物を更に磁選に
かければ、ニッケル及びコバルトを磁性物として分別回
収することができる。用いる磁選機としては、乾式の磁
選機でも良く湿式の磁選機でも良い。
If the roasting temperature is low, the reduction of nickel and cobalt will not proceed, and if it is too high, the copper foil will dissolve, and the magnetic substances such as metallic nickel and cobalt will be separated from the non-magnetic substances such as copper and lithium salt. It will be difficult. Therefore, the roasting temperature is set to 500 to 1000 ° C. This roasting turns lithium into a mixture of lithium carbonate, lithium oxide and lithium aluminate. Then, nickel and cobalt become metallic nickel and metallic cobalt, which are ferromagnetic materials, and the copper foil and the excess carbon remain as they are. And each shape is powdery except that copper is foil-shaped. Therefore, if the obtained fired product is further subjected to magnetic separation, nickel and cobalt can be separated and recovered as magnetic substances. The magnetic separator used may be a dry type magnetic separator or a wet type magnetic separator.

【0011】なお、ニッケル及びコバルトの回収率を高
くするためには磁選機の磁力を高くすればよいが、この
場合には非磁性体との分別性は悪化する。しかし、湿式
磁選を行うと被磁選物中の溶解性不純分が溶解除去で
き、かつニッケル粒子やコバルト粒子が洗われて金属表
面が露出するため、ニッケル及びコバルトの回収率と分
別性とを高くすることができる。
In order to increase the recovery rate of nickel and cobalt, the magnetic force of the magnetic separator may be increased, but in this case, the separability from the non-magnetic material is deteriorated. However, when wet magnetic separation is performed, soluble impurities in the magnetic material to be magnetically separated can be dissolved and removed, and nickel particles and cobalt particles are washed to expose the metal surface, so that the recovery rate and the separability of nickel and cobalt are high. can do.

【0012】本発明の方法で得られた第2次の磁選物に
はアルミン酸リチウム等のリチウム化合物の混入が避け
られず、そのまま金属ニッケルや金属コバルトとして利
用できる状態にはいたらない。しかし、この磁選物は酸
で容易に溶解するために、良好なニッケル製錬原料とす
る事が可能である。また、銅泊と他のリチュウム塩との
分別は非磁性物を篩別によってもよく、酸溶解して分別
しても良い。
The secondary magnetic product obtained by the method of the present invention is inevitably mixed with a lithium compound such as lithium aluminate, and cannot be used as it is as metallic nickel or metallic cobalt. However, since this magnetically selected material is easily dissolved by acid, it can be used as a good nickel smelting raw material. Further, the separation of the copper salt and the other lithium salt may be carried out by sieving a non-magnetic substance, or may be carried out by acid dissolution for separation.

【0013】[0013]

【実施例】次に本発明の実施例について述べる (実施例1)直径20mm、長さ50mmの円筒形の使用済みリ
チウム二次電池1個を金属シュレッダーで粉砕し、残留
磁束密度0.8Wb/m2の市販のアルニコ磁石を粉砕物中に挿
入し強磁性物Aを分別した。得られた非磁性物を管状炉
を用いて、窒素気流中、700℃で1時間焙焼した。焙焼
後、得られた焼成物を前記アルニコ磁石を用い生成した
強磁性物Bを分別した。得られた強磁性物(A+B)と
非磁性物とをそれぞれ王水に溶解し、得られた溶液中の
ニッケルとコバルトとを分析し、強磁性物と非磁性物と
への分配率を求めた。その結果、リチウム二次電池中の
ニッケル総量0.015gの93%が強磁性物中に分配し、コ
バルト総量5.42gの98.7%が強磁性物に分配されている
ことがわかった。
EXAMPLES Next, examples of the present invention will be described. (Example 1) One used lithium secondary battery having a cylindrical shape with a diameter of 20 mm and a length of 50 mm was crushed with a metal shredder to obtain a residual magnetic flux density of 0.8 Wb / m. Ferromagnetic material A was separated by inserting a commercially available Alnico magnet No. 2 into the ground material. The obtained non-magnetic material was roasted at 700 ° C. for 1 hour in a nitrogen stream using a tubular furnace. After roasting, the obtained fired product was separated into ferromagnetic substances B produced using the alnico magnet. The obtained ferromagnetic material (A + B) and the non-magnetic material are each dissolved in aqua regia, the nickel and cobalt in the obtained solution are analyzed, and the distribution ratio between the ferromagnetic material and the non-magnetic material is obtained. It was As a result, it was found that 93% of 0.015 g of total nickel in the lithium secondary battery was distributed in the ferromagnetic material, and 98.7% of total cobalt of 5.42 g was distributed in the ferromagnetic material.

【0014】(実施例2)焙焼温度を800℃とした以外
は実施例1と同様にしてニッケルとコバルトの分配率を
調べた。その結果、リチウム二次電池中のニッケル総量
0.015gの90%が強磁性物中に分配し、コバルト総量5.4
2gの94%が強磁性物に分配されていることがわかっ
た。
Example 2 The distribution ratio of nickel and cobalt was examined in the same manner as in Example 1 except that the roasting temperature was 800 ° C. As a result, the total amount of nickel in the lithium secondary battery
90% of 0.015g is distributed in the ferromagnetic material, and the total amount of cobalt is 5.4.
It was found that 2% of 94% was distributed in the ferromagnetic material.

【0015】(実施例3)焼成物を150mlの水に投入
し、攪拌し次いで固液分離し、固形物を磁選した以外は
実施例1と同様にしてニッケルとコバルトの分配率を調
べた。その結果、リチウム二次電池中のニッケル総量0.
015gの94%が強磁性物中に分配し、コバルト総量5.42
gの99.3%が強磁性物に分配されていることがわかっ
た。これは、水中で攪拌することにより、各粒子表面が
洗われ、表面にニッケル金属やコバルト金属が露出する
割合が高くなったためと思われる。この結果は湿式磁選
を行った場合に対応する。
(Example 3) The distribution ratio of nickel and cobalt was examined in the same manner as in Example 1 except that the fired product was put into 150 ml of water, stirred, and then solid-liquid separated, and the solid product was magnetically separated. As a result, the total amount of nickel in the lithium secondary battery was 0.
94% of 015g is distributed in the ferromagnetic material, and the total amount of cobalt is 5.42.
It was found that 99.3% of g was distributed in the ferromagnetic material. This is considered to be because the surface of each particle was washed by stirring in water, and the proportion of nickel metal or cobalt metal exposed on the surface was increased. This result corresponds to the case of performing wet magnetic separation.

【0016】[0016]

【発明の効果】本発明の方法によれば、使用済みリチウ
ム二次電池よりニッケル、コバルトなどの有価金属を簡
単に分別回収でき、分別回収したニッケルとコバルトと
は優良なニッケル、コバルト原料となる。
According to the method of the present invention, valuable metals such as nickel and cobalt can be easily separated and collected from a used lithium secondary battery, and the separated nickel and cobalt are excellent nickel and cobalt raw materials. .

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 使用済みリチウム二次電池よりニッケ
ル、コバルトなどの有価金属を回収するに方法におい
て、(1)リチウム二次電池を破砕し、得た粉砕物を第1
次磁選により磁性体と非磁性体とに分別する工程、(2)
得られた非磁性体を非酸化性雰囲気中、あるいは還元雰
囲気中500〜1000℃で焙焼して非磁性体を還元する工
程、(3)得た焼成物を第2次磁選により磁性体と非磁性
体とに分別する工程、からなることを特徴とする使用済
みリチウム二次電池からの有価金属の分別回収方法。
1. A method for recovering valuable metals such as nickel and cobalt from a used lithium secondary battery, comprising: (1) crushing the lithium secondary battery and
The step of separating magnetic material and non-magnetic material by the following magnetic separation, (2)
A step of reducing the non-magnetic material by roasting the obtained non-magnetic material in a non-oxidizing atmosphere or in a reducing atmosphere at 500 to 1000 ° C., (3) the obtained fired product is made into a magnetic material by secondary magnetic separation. A method for separately collecting valuable metals from a used lithium secondary battery, which comprises a step of separating into a non-magnetic material.
JP13242093A 1993-05-12 1993-05-12 Separation and recovery of valuable metals from used lithium secondary batteries Expired - Lifetime JP3434318B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13242093A JP3434318B2 (en) 1993-05-12 1993-05-12 Separation and recovery of valuable metals from used lithium secondary batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13242093A JP3434318B2 (en) 1993-05-12 1993-05-12 Separation and recovery of valuable metals from used lithium secondary batteries

Publications (2)

Publication Number Publication Date
JPH06322452A true JPH06322452A (en) 1994-11-22
JP3434318B2 JP3434318B2 (en) 2003-08-04

Family

ID=15080965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13242093A Expired - Lifetime JP3434318B2 (en) 1993-05-12 1993-05-12 Separation and recovery of valuable metals from used lithium secondary batteries

Country Status (1)

Country Link
JP (1) JP3434318B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6120927A (en) * 1998-03-17 2000-09-19 Kabushiki Kaisha Toshiba Method of recovering lithium from batteries
US6261712B1 (en) 1998-06-30 2001-07-17 Kabushiki Kaisha Toshiba Method of reclaiming cathodic active material of lithium ion secondary battery
FR2868603A1 (en) * 2004-04-06 2005-10-07 Recupyl Sa Sa METHOD FOR RECYCLING BATTERY MIXTURES AND BATTERIES BASED ON LITHIUM ANODE
JP2011124127A (en) * 2009-12-11 2011-06-23 Toyota Motor Corp Method and device for recycling battery pack
ITVI20100232A1 (en) * 2010-08-10 2012-02-11 Fortom Chimica S R L PROCEDURE FOR THE RECOVERY OF CONSTITUTING MATERIALS BATTERIES, RECHARGEABLE LITHIUM CELLS AND / OR BATTERIES, AND USE OF RECOVERED CATHODIC MATERIAL
CN102856610A (en) * 2012-08-28 2013-01-02 奇瑞汽车股份有限公司 Pretreatment method for recycling scrap lithium ion battery
CN103031441A (en) * 2011-09-30 2013-04-10 武汉格林美资源循环有限公司 Recycling method for metallic elements in waste nickel-hydrogen batteries
US8696785B2 (en) 2008-06-19 2014-04-15 Toyota Jidosha Kabushiki Kaisha Method and apparatus for recycling battery pack
JP2018078024A (en) * 2016-11-09 2018-05-17 Dowaエコシステム株式会社 Recovery method of valuables from lithium ion secondary battery
JP2020129505A (en) * 2019-02-09 2020-08-27 三菱マテリアル株式会社 Method of processing used lithium-ion battery
WO2021177200A1 (en) * 2020-03-06 2021-09-10 Dowaエコシステム株式会社 Method for concentrating valuable metal contained in lithium ion secondary battery
JP2021141060A (en) * 2020-03-06 2021-09-16 Dowaエコシステム株式会社 Method for concentrating valuable metal included in lithium-ion secondary battery
US20220344735A1 (en) * 2021-04-22 2022-10-27 Hyo Soo AHN Separation method of black powder of automotive waste secondary battery

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6120927A (en) * 1998-03-17 2000-09-19 Kabushiki Kaisha Toshiba Method of recovering lithium from batteries
US6261712B1 (en) 1998-06-30 2001-07-17 Kabushiki Kaisha Toshiba Method of reclaiming cathodic active material of lithium ion secondary battery
FR2868603A1 (en) * 2004-04-06 2005-10-07 Recupyl Sa Sa METHOD FOR RECYCLING BATTERY MIXTURES AND BATTERIES BASED ON LITHIUM ANODE
WO2005101564A1 (en) * 2004-04-06 2005-10-27 Recupyl Method for the mixed recycling of lithium-based anode batteries and cells
US7820317B2 (en) 2004-04-06 2010-10-26 Recupyl Method for the mixed recycling of lithium-based anode batteries and cells
US8696785B2 (en) 2008-06-19 2014-04-15 Toyota Jidosha Kabushiki Kaisha Method and apparatus for recycling battery pack
JP2011124127A (en) * 2009-12-11 2011-06-23 Toyota Motor Corp Method and device for recycling battery pack
ITVI20100232A1 (en) * 2010-08-10 2012-02-11 Fortom Chimica S R L PROCEDURE FOR THE RECOVERY OF CONSTITUTING MATERIALS BATTERIES, RECHARGEABLE LITHIUM CELLS AND / OR BATTERIES, AND USE OF RECOVERED CATHODIC MATERIAL
CN103031441A (en) * 2011-09-30 2013-04-10 武汉格林美资源循环有限公司 Recycling method for metallic elements in waste nickel-hydrogen batteries
CN103031441B (en) * 2011-09-30 2014-03-26 武汉格林美资源循环有限公司 Recycling method for metallic elements in waste nickel-hydrogen batteries
CN102856610A (en) * 2012-08-28 2013-01-02 奇瑞汽车股份有限公司 Pretreatment method for recycling scrap lithium ion battery
JP2018078024A (en) * 2016-11-09 2018-05-17 Dowaエコシステム株式会社 Recovery method of valuables from lithium ion secondary battery
JP2020129505A (en) * 2019-02-09 2020-08-27 三菱マテリアル株式会社 Method of processing used lithium-ion battery
WO2021177200A1 (en) * 2020-03-06 2021-09-10 Dowaエコシステム株式会社 Method for concentrating valuable metal contained in lithium ion secondary battery
JP2021141060A (en) * 2020-03-06 2021-09-16 Dowaエコシステム株式会社 Method for concentrating valuable metal included in lithium-ion secondary battery
US20220344735A1 (en) * 2021-04-22 2022-10-27 Hyo Soo AHN Separation method of black powder of automotive waste secondary battery

Also Published As

Publication number Publication date
JP3434318B2 (en) 2003-08-04

Similar Documents

Publication Publication Date Title
KR102473000B1 (en) Method for recovering valuables from used lithium ion batteries
JP6859598B2 (en) How to recover valuables from used lithium-ion batteries
JP5651462B2 (en) Method of recovering valuable material from lithium ion secondary battery and recovered material containing valuable material
JP3563897B2 (en) Method for recovering nickel and cobalt from used lithium secondary battery
JP3918041B2 (en) Method for recovering metals from used nickel-metal hydride batteries
JP2019135321A (en) Method for recovering valuable metal from waste lithium-ion battery
KR20090087801A (en) Method for recovering valuable metal from lithium battery waste containing co, ni, and mn
JP3434318B2 (en) Separation and recovery of valuable metals from used lithium secondary batteries
JP2017115179A (en) Recovery method of valuable substance
JP7040196B2 (en) How to separate cobalt and aluminum
JP3079287B2 (en) How to recover valuable resources from used lithium batteries
KR100358528B1 (en) recycling method of lithium ion secondary battery
KR20220148201A (en) Valuable metal concentration method included in lithium ion secondary battery
JP3443446B2 (en) Method for recovering cobalt from used lithium secondary battery
JP2023518880A (en) Reuse of batteries by reduction and carbonylation
JP6676124B1 (en) Method of recovering valuable resources from lithium ion secondary batteries
JPH1046266A (en) Method for recovering cobalt from spent secondary battery
JP4287749B2 (en) Method for recovering useful elements from rare earth-transition metal alloy scrap
JP7268382B2 (en) How to dispose of used lithium-ion batteries
JP2000067935A (en) Valuable matter recovering method from waste nickel- hydrogen secondary battery
JP3448392B2 (en) Method for recovering cobalt, copper and lithium from used lithium secondary batteries
KR100438473B1 (en) Process of recovering valuable metal
JPH1088250A (en) Method for recovering valuable metal from used nickel-hydrogen secondary battery
JP4418129B2 (en) Collection method of valuable metals
JP3516478B2 (en) Effective Metal Recovery Method from Nickel Metal Hydride Battery

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090530

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090530

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100530

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110530

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110530

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120530

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130530

Year of fee payment: 10

EXPY Cancellation because of completion of term