JP3079287B2 - How to recover valuable resources from used lithium batteries - Google Patents

How to recover valuable resources from used lithium batteries

Info

Publication number
JP3079287B2
JP3079287B2 JP18405098A JP18405098A JP3079287B2 JP 3079287 B2 JP3079287 B2 JP 3079287B2 JP 18405098 A JP18405098 A JP 18405098A JP 18405098 A JP18405098 A JP 18405098A JP 3079287 B2 JP3079287 B2 JP 3079287B2
Authority
JP
Japan
Prior art keywords
magnetic
crushed
copper
separated
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18405098A
Other languages
Japanese (ja)
Other versions
JPH11242967A (en
Inventor
二八 園田
洋一 高沢
志郎 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Original Assignee
Nippon Mining and Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining and Metals Co Ltd filed Critical Nippon Mining and Metals Co Ltd
Priority to JP18405098A priority Critical patent/JP3079287B2/en
Publication of JPH11242967A publication Critical patent/JPH11242967A/en
Application granted granted Critical
Publication of JP3079287B2 publication Critical patent/JP3079287B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は使用済みリチウム電
池からの有価物回収方法に関するものである。リチウム
電池は、小型、軽量、体積当りのエネルギ密度大などの
特長を有しているために、携帯電話、PHS,ビデオカ
メラ、ノートパソコンなどの電源として使用されてい
る。
The present invention relates to a method for recovering valuable resources from a used lithium battery. Lithium batteries are used as power sources for mobile phones, PHSs, video cameras, notebook computers, and the like because of their features such as small size, light weight, and high energy density per volume.

【0002】リチウム電池の主たる構成部品は、アルミ
ニウム製ケース、銅箔からなる負極極板、アルミ箔に金
属酸リチウム(金属=Mo,Co,Ni、Snなど)を
塗布した正極板、ポリエチレン等からなるセパレータな
どである。金属酸リチウムに含まれているMo,Co,
Niなどは有価金属であるために、幾つかの回収方法が
提案されている。
The main components of a lithium battery are an aluminum case, a negative electrode plate made of copper foil, a positive electrode plate made of aluminum foil coated with lithium metal oxide (metal: Mo, Co, Ni, Sn, etc.), polyethylene, etc. And the like. Mo, Co, contained in lithium metal oxide
Since Ni and the like are valuable metals, some recovery methods have been proposed.

【0003】[0003]

【従来の技術】特開平6−322452号公報による
と、使用済みリチウム二次電池の破砕物を磁選して分別
された金属ニッケルなどの磁性物を除いた破砕物を非酸
化性雰囲気で焙焼しもしくは還元性雰囲気で還元焙焼
し、得られた焙焼物を磁選することが提案されている。
上記方法における非酸化性雰囲気中での焙焼はセパレー
ター、負極材の炭素などとして含まれている炭素質物質
により金属酸化物を還元するための工程であり、また、
最後の磁選はニッケル、コバルトを銅などより分離する
ための工程である。
2. Description of the Related Art According to Japanese Patent Application Laid-Open No. 6-322452, a crushed product of a used lithium secondary battery, which is separated by magnetic separation from magnetic materials such as metallic nickel, is roasted in a non-oxidizing atmosphere. Or reduction roasting in a reducing atmosphere and subjecting the resulting roasted product to magnetic separation have been proposed.
Roasting in a non-oxidizing atmosphere in the above method is a step for reducing the metal oxide by a carbonaceous substance contained as separator, carbon of the negative electrode material, etc.,
The last magnetic separation is a process for separating nickel and cobalt from copper and the like.

【0004】特開平6−346160号公報によると、
使用済みリチウム二次電池を焙焼することによって結着
剤、溶剤などを除去し、焙焼物を破砕し、篩別して篩下
を製錬の原料とすることが提案されている。
According to Japanese Patent Application Laid-Open No. 6-346160,
It has been proposed that a used lithium secondary battery is roasted to remove a binder, a solvent, and the like, and the roasted product is crushed and sieved to use the sieved material as a raw material for smelting.

【0005】[0005]

【発明が解決しようとする課題】前掲特開平6−322
452号公報では、使用済みリチウム二次電池を直接破
砕しているが、この破砕は焙焼物の破砕と比べて困難で
ある。さらに、焙焼の負担を軽減するために焙焼経ずに
破砕物を直接磁選しているので、非磁性物と磁性物を分
離する磁選が焙焼前後で2回行われている。次に、特開
平6−346160号公報の方法ではニッケル,コバル
トの回収は製錬工程に委ねられるために、熱エネルギの
面で改善の余地がある。又、ケースのアルミニウムと負
極の銅は、従来法では、共に非磁性物として回収される
ために、回収物を非鉄製錬の原料として利用することは
困難である。
Problems to be Solved by the Invention JP-A-6-322, cited above.
In Japanese Patent No. 452, a used lithium secondary battery is directly crushed, but this crushing is more difficult than crushing of a roasted product. Furthermore, since the crushed material is directly magnetically separated without roasting in order to reduce the burden of roasting, magnetic separation for separating a non-magnetic material and a magnetic material is performed twice before and after roasting. Next, in the method disclosed in JP-A-6-346160, the recovery of nickel and cobalt is left to the smelting process, so that there is room for improvement in terms of thermal energy. In addition, the aluminum of the case and the copper of the negative electrode are both recovered as non-magnetic substances in the conventional method, so that it is difficult to use the recovered substances as raw materials for non-ferrous smelting.

【0006】[0006]

【課題を解決するための手段】本発明は、粉砕を容易に
しかつ1回の磁選で磁性物と非磁性物とに十分に分別で
き、かつアルミニウムと銅も十分に分別できるような方
法で使用済みリチウム電池から有価金属を回収すること
を目的としており、アルミニウム製ケースに内蔵された
使用済みリチウム電池を該アルミニウム製ケースととも
に焙焼し、得られた焙焼物を粉砕し,磁選して磁性物と
非磁性物に分別し、さらに渦電流を発生させた非磁性物
に磁石からの磁界を印加することにより非磁性物を該磁
石から反発させることにより、主としてアルミニウムか
らなる破砕粉と主として銅からなる破砕粉とに分別する
ことを特徴とする使用済みリチウム電池からの有価物回
収方法を提供するものである。以下、本発明の方法を詳
しく説明する。
DISCLOSURE OF THE INVENTION The present invention is used in such a manner that it can be easily pulverized, and that magnetic and non-magnetic substances can be sufficiently separated by a single magnetic separation, and that aluminum and copper can also be sufficiently separated. The purpose is to recover valuable metals from used lithium batteries. The used lithium batteries contained in the aluminum case are roasted together with the aluminum case, and the obtained roasted product is pulverized and magnetically separated by magnetic separation. By separating the non-magnetic material from the non-magnetic material, and applying a magnetic field from a magnet to the non-magnetic material that has generated the eddy current, the non-magnetic material is repelled from the magnet. Another object of the present invention is to provide a method for recovering valuable resources from a used lithium battery, which is characterized in that it is separated into crushed powder. Hereinafter, the method of the present invention will be described in detail.

【0007】リチウム電池15個の重量は約300gで
あり、その中にはCoが約50g,Cuが約30〜40
g,Alが約90〜100g含まれる。まず、本発明の
方法においては使用済みリチウム電池をアルミニウム製
ケースとともに焙焼することによって、ポリプロピレ
ン、n−メチル−2−ピロリドンなどの有機物を分解、
燃焼、揮発させるとともに還元ガスとなるCOを発生さ
せる。焙焼温度は低過ぎると、有機物の分解により発生
するCOガスによる金属酸リチウムの還元が不充分とな
り、かつ破砕の負担が大きくなり、一方高過ぎると焙焼
物が溶融凝固してその破砕が困難になるので、550℃
以下が好ましく、より好ましくは500〜550℃であ
る。
The weight of 15 lithium batteries is about 300 g, in which about 50 g of Co and about 30 to 40 Cu are contained.
g and Al are contained in about 90 to 100 g. First, in the method of the present invention, a spent lithium battery is roasted together with an aluminum case to decompose organic substances such as polypropylene and n-methyl-2-pyrrolidone.
Combustion, volatilization, and generation of CO as a reducing gas. If the roasting temperature is too low, the reduction of lithium metal oxide by the CO gas generated by decomposition of organic substances becomes insufficient and the burden of crushing increases, while if it is too high, the roasted material melts and solidifies, making it difficult to crush it. 550 ℃
The following is preferred, and more preferably 500 to 550 ° C.

【0008】焙焼のための加熱炉は限定はされないが、
電気炉、重油炉などの定置炉で行うことができる。この
場合ストーカ下直火加熱定置炉を使用することができ
る。使用済みリチウム電池は1バッチ分をストーカ上に
積上げ、炉の上部からは燃焼排ガスの煙道を設けて、燃
焼ガスを適宜排出しながら焙焼を行う。使用済みリチウ
ム電池を破砕せずに焙焼した場合は、電池内部で上記し
た有機物の燃焼、COガスの発生などが起こり、電池の
ケース内の空間で酸化物の還元が進む。この焙焼により
酸化鉄、酸化ニッケル、酸化コバルトなどはほとんどが
還元され、一方銅箔、アルミニウムケースなどは金属形
態を保っている。得られる焙焼物は使用済みリチウム電
池に対して約70〜90重量%の金属粉、塊、ネット、
箔、板あるいはこれらが電池内の結合構造を一部維持し
ているものとなる。金属の他に若干の未燃焼炭素、有機
物なども含まれる。
[0008] The heating furnace for roasting is not limited,
It can be performed in a stationary furnace such as an electric furnace or a heavy oil furnace. In this case, a direct heating furnace under a stoker can be used. One batch of used lithium batteries is stacked on a stoker, and a flue of combustion exhaust gas is provided from the upper part of the furnace, and roasting is performed while appropriately discharging combustion gas. When the used lithium battery is roasted without being crushed, the above-described combustion of organic substances and generation of CO gas occur inside the battery, and the reduction of oxide proceeds in the space in the battery case. This roasting reduces most of iron oxide, nickel oxide, cobalt oxide and the like, while copper foil, aluminum case and the like maintain the metal form. The obtained roasted product contains about 70 to 90% by weight of a metal powder, a lump, a net,
Foil, plate, or these partially maintain the bonding structure in the battery. In addition to metals, some unburned carbon and organic substances are also included.

【0009】次に、焙焼物の破砕を行う。この破砕は上
記した種々の形態を有し、また寸法がまちまちな焙焼物
を適度の寸法に揃え、電池の構造を維持しているものは
粉末形態まで微細化し、次の第1次磁選で磁性物と非磁
性物とに分離し易くする操作である。破砕機としては、
限定されるものではないが、一軸破砕機などを好ましく
使用することができる。また破砕はJIS Z 880
1の標準篩で5メッシュ以下となるように行うことが好
ましい。粉砕物中の形態は、コバルトは主として粉状で
あり、アルミニウム、銅は主として板、箔、フレーク状
である。したがって以下の工程で磁選を行うと原則とし
て1回の磁選で分別を達成することができる。本発明法
による焙焼後破砕では、電池自体を直接破砕するのでは
なく焙焼により一旦ある程度破砕されかつ重量が減って
いる電池を破砕するために、破砕の負担が軽減されてい
る。また焙焼物はほとんどの割合が金属であり、破砕が
困難な炭素、有機物がほとんどなくなっており、また部
品は熱膨張により物理的に分解されているために、この
面でも破砕の負担が軽減される。
Next, the roasted material is crushed. This crushing has various forms as described above, and the roasted material having various dimensions is adjusted to an appropriate size, and the one that maintains the structure of the battery is refined to a powder form, and the next primary magnetic separation is performed. This is an operation that makes it easier to separate the material and the non-magnetic material. As a crusher,
Although not limited, a uniaxial crusher or the like can be preferably used. Crushing is JIS Z 880
It is preferable to carry out the process so that the size of one standard sieve is 5 mesh or less. In the form in the pulverized product, cobalt is mainly in powder form, and aluminum and copper are mainly in plate, foil and flake form. Therefore, if the magnetic separation is performed in the following steps, the separation can be achieved in principle by one magnetic separation. In the crushing after roasting according to the method of the present invention, the load of crushing is reduced because the batteries which have been crushed to some extent and whose weight is reduced by roasting instead of directly crushing the batteries themselves are reduced. In addition, most of the roasted products are metal, and there are almost no carbon and organic substances that are difficult to crush, and the parts are physically decomposed due to thermal expansion. You.

【0010】次の工程では磁選を行う。これは磁性物で
ある金属リチウム酸塩の焙焼物及びケースなどの鉄の焙
焼物を非磁性物から分別するための工程である。好まし
くは1100G以上の磁場の強さで磁選を行って分別さ
れる磁性物は、Coを43〜50%、Alを1〜3%を
含有している。非磁性物は、主としてアルミニウムから
なり、若干量の銅を含有し、さらに少量ではあるがコバ
ルトも随伴している。
In the next step, magnetic separation is performed. This is a step for separating a roasted metal lithium salt and a roasted iron such as a case, which are magnetic substances, from non-magnetic substances. Preferably, the magnetic material separated by performing magnetic separation with a magnetic field strength of 1100 G or more contains 43 to 50% of Co and 1 to 3% of Al. The non-magnetic material is mainly composed of aluminum, contains a small amount of copper, and is accompanied by a small amount of cobalt.

【0011】ところで、高周波磁界を印加された非鉄金
属中に発生する渦電流は金属の導電率に比例する。一
方、高周波磁界発生源とは別に永久磁石を非鉄金属材料
の近くに配置しておくと、渦電流の永久磁石からの磁界
との反撥作用によって粉末が跳出される。この反撥距離
は金属の導電率が大きいほど、また比重が小さいほど大
きくなる。銅とアルミニウムを比較すると、導電率は前
者が約1.54倍、比重は前者が約3.2倍後者より大
きい。これらを総合するとアルミニウムが銅より反撥距
離が大きくなる。この過程を模式的に示す図1におい
て、1は非鉄金属粉末、2は渦電流を発生させるコイ
ル、3は永久磁石、4は自然落下状態の銅破砕粉(即ち
反撥距離が少ないための分離物)、5は同様に自然落下
状態のアルミニウム破砕粉(即ち反撥距離が大きいため
の分離物)である。なお、強磁性体であるコバルト粉は
銅破砕粉4と一緒に跳出される。上記方法において交流
磁界は周波数が100〜200Hz、強度は1000〜
3000Gが好ましく、永久磁石としてはSm−Co系
磁石を好ましく使用することができる。反撥距離が大き
い分離物であるアルミニウム破砕粉5は80〜90%の
Alを含有し、残部は主としてCuであり、一方反撥距
離が小さい分離物である銅破砕粉4は30〜40%のC
uを含有し、残部は主としてCoであり、少量のAl,
Snも含有する。したがって、アルミニウム破砕粉5は
アルミニウム原料に使用され、銅破砕粉4はCo量が少
ない場合は銅原料として使用される。
The eddy current generated in a non-ferrous metal to which a high-frequency magnetic field has been applied is proportional to the conductivity of the metal. On the other hand, if a permanent magnet is arranged near the non-ferrous metal material separately from the high-frequency magnetic field generation source, the powder is repelled by the repulsive action of the eddy current with the magnetic field from the permanent magnet. The repulsion distance increases as the conductivity of the metal increases and as the specific gravity decreases. When copper and aluminum are compared, the former has a conductivity about 1.54 times that of the former, and the specific gravity is about 3.2 times that of the former. Taken together, aluminum has a greater repulsion distance than copper. In FIG. 1 schematically showing this process, 1 is a non-ferrous metal powder, 2 is a coil for generating an eddy current, 3 is a permanent magnet, and 4 is a copper crushed powder in a natural falling state (that is, a separated material for a small repulsion distance). 5) Similarly, 5 is a crushed aluminum powder in a naturally falling state (that is, a separated product having a large repulsion distance). Note that the cobalt powder, which is a ferromagnetic material, is ejected together with the crushed copper powder 4. In the above method, the alternating magnetic field has a frequency of 100 to 200 Hz and an intensity of 1000 to 100 Hz.
3000G is preferable, and as the permanent magnet, an Sm-Co-based magnet can be preferably used. The crushed aluminum powder 5 which is a isolate having a long repulsion distance contains 80 to 90% of Al, and the balance is mainly Cu, while the crushed copper powder 4 which is a isolate having a short repulsion distance has a C of 30 to 40%.
u, the balance being mainly Co, with a small amount of Al,
It also contains Sn. Therefore, the crushed aluminum powder 5 is used as an aluminum raw material, and the crushed copper powder 4 is used as a copper raw material when the amount of Co is small.

【0012】上記反発距離が小さい分離物である銅破砕
粉4のCo量が例えば10%以上と多い場合は、銅破砕
粉を磁選することによりコバルト粉を分別・回収するこ
とができる。以上のCoに関する説明はNiと置き換え
ても全く同じことである。すなわち、Niは磁性物であ
るのでCoと同様の方法で回収することができる。
When the amount of Co in the crushed copper powder 4 which is a separated product having a short repulsion distance is large, for example, 10% or more, cobalt powder can be separated and recovered by magnetically separating the crushed copper powder. The above description regarding Co is exactly the same even if it is replaced with Ni. That is, since Ni is a magnetic substance, it can be recovered in the same manner as Co.

【0013】以下、本発明を実施するためのフローチャ
ートを参照してより具体的に説明する。使用済みリチウ
ム電池を原料10とし、電気炉もしくは重油炉などの焙
焼炉11に例えば400kg装入する。焙焼された有価
金属含有物が数トンに達したら破砕機12により磁選に
適する寸法への破砕を行う。破砕片は、コンベヤと電磁
石を要素とする第1次磁選機16によりポータブルコン
ベアー15を経て磁性物は磁性物コンテナバック17に
収容する。非磁性物は渦電流選別機18に移送し、渦電
流と磁石からの磁界による分別を行う。分別されたアル
ミニウム破砕粉末5はアルミ粉コンテナバック19に収
容する。銅破砕粉4は第2次磁選機20により分別処理
することにより、分別物をそれぞれ磁性物コンテナバッ
ク21及び非磁性物コンテナバック22に収容する。な
お13は集塵設備、14は吸引ファンである。
Hereinafter, the present invention will be described more specifically with reference to a flowchart for carrying out the present invention. A used lithium battery is used as a raw material 10, and for example, 400 kg is charged into a roasting furnace 11 such as an electric furnace or a heavy oil furnace. When the roasted valuable metal content reaches several tons, the crusher 12 crushes it to a size suitable for magnetic separation. The crushed pieces are passed through a portable conveyor 15 by a primary magnetic separator 16 having a conveyor and an electromagnet as elements, and the magnetic material is stored in a magnetic material container bag 17. The non-magnetic material is transferred to the eddy current sorter 18, where the eddy current is separated from the eddy current by a magnetic field from a magnet. The separated aluminum crushed powder 5 is stored in an aluminum powder container bag 19. The crushed copper powder 4 is separated by the secondary magnetic separator 20 to store the separated materials in the magnetic material container bag 21 and the nonmagnetic material container bag 22, respectively. Reference numeral 13 denotes a dust collecting facility, and 14 denotes a suction fan.

【0014】[0014]

【作用】上述のように、本発明における工程順序は次の
ような特徴を有する。(イ)磁選のために必要な破砕の
前に焙焼を行うことにより、発生ガスによる還元や熱膨
張による電池部品の分解をもたらしている。このように
焙焼を破砕及び以降の工程に有利に利用している。ま
た、(ロ)渦電流と磁石による選別の前に磁選を行うこ
とにより、銅破砕粉中へのCoなどの磁性金属の混入を
少なくしている。以下、実験室規模で行った有価金属回
収法によりさらに詳しく本発明を説明する。
As described above, the process sequence in the present invention has the following features. (A) By performing roasting before crushing required for magnetic separation, reduction by generated gas and decomposition of battery parts due to thermal expansion are brought about. Thus, the roasting is advantageously used in the crushing and subsequent steps. Further, (b) the magnetic separation is performed before the selection by the eddy current and the magnet, so that the mixing of the magnetic metal such as Co into the crushed copper powder is reduced. Hereinafter, the present invention will be described in more detail by a valuable metal recovery method performed on a laboratory scale.

【0015】[0015]

【実施例】原料とした使用済みリチウム電池の金属組成
は下記のとおりであった。
EXAMPLES The metal composition of a used lithium battery as a raw material was as follows.

【0016】[0016]

【表1】 [Table 1]

【0017】原料323gを550℃で30分間小型キ
ルンで焙焼したところ、54gの重量減となったが、金
属組成は変化しなかった。次に磁選(磁場1100G)
を行い磁性物92gと、非磁性物175gを得た。それ
ぞれの組成は表2及び表3のとおりである。磁選による
損失は0.6gであった。
When 323 g of the raw material was roasted in a small kiln at 550 ° C. for 30 minutes, the weight was reduced by 54 g, but the metal composition was not changed. Next, magnetic selection (magnetic field 1100G)
Was performed to obtain 92 g of a magnetic substance and 175 g of a nonmagnetic substance. The respective compositions are as shown in Tables 2 and 3. The loss due to magnetic separation was 0.6 g.

【0018】[0018]

【表2】 [Table 2]

【0019】[0019]

【表3】 [Table 3]

【0020】続いて、非磁性物を交流磁場(120H
z,2000G)を発生する電磁コイル及び希土類永久
磁石を使用してアルミニウム破砕粉(93g)及び銅破
砕粉(82g)に分離した。それぞれの組成を表4及び
5に示す。
Subsequently, the non-magnetic material is subjected to an alternating magnetic field (120 H
(2000 g), using a magnetic coil and a rare earth permanent magnet to separate into crushed aluminum powder (93 g) and crushed copper powder (82 g). The compositions are shown in Tables 4 and 5.

【0021】[0021]

【表4】 [Table 4]

【0022】[0022]

【表5】 [Table 5]

【0023】また、銅破砕粉を同様に磁選し、表6に示
す磁性物(20g)及び表7に示す非磁性物(62g)
を得た。
The crushed copper powder was similarly subjected to magnetic separation, and a magnetic substance (20 g) shown in Table 6 and a non-magnetic substance (62 g) shown in Table 7 were obtained.
I got

【0024】[0024]

【表6】 [Table 6]

【0025】[0025]

【表7】 [Table 7]

【0026】以上説明したように本発明によると、コバ
ルトは第1次磁選の磁性物として回収され、また場合に
よって渦電流分別により分別された銅破砕粉を第2次磁
選して磁性物として回収することができる。銅は第1次
磁選の非磁性物をさらに渦電流分別すると反撥が少ない
分離物として回収され、一方アルミニウムは第1次磁選
の非磁性物をさらに渦電流分別すると、大きく反撥した
分離物として回収される。
As described above, according to the present invention, cobalt is recovered as a magnetic material for primary magnetic separation, and in some cases, crushed copper powder separated by eddy current separation is recovered as magnetic material for secondary magnetic separation. can do. Copper is recovered as a segregated material with less repulsion when the non-magnetic material of the primary magnetic separation is further separated by eddy current, while aluminum is recovered as a strongly repelled separated material when the non-magnetic material of the primary magnetic separation is further separated by eddy current. Is done.

【0027】[0027]

【発明の効果】(1)使用済みリチウム電池の1回の破
砕で有価物を回収することができる。 (2)使用済みリチウム電池を原形から破砕せず、既に
焙焼により粉化したものを破砕するので破砕の負担が軽
減される。 (3)回収されたコバルト分は純度が35%以上である
ので、コバルト原料として使用可能である。なお少量の
アルミニウムが随伴しているが、酸化により簡単に除去
される。 (4)銅とアルミニウムの分離が可能であり、銅分は転
炉、自溶炉などの銅製錬の原料となり、またアルミニウ
ム分は電解炉などで溶解される原料となる。 (5)以上まとめると、本発明方法を実施の際のランニ
ングコストが少ない。また回収材料も非常に価値が高
く、材料メーカー、鉄鋼メーカー、非鉄製錬業への販売
に適するものである。
(1) It is possible to recover valuable resources by crushing a used lithium battery once. (2) Since the used lithium battery is not crushed from its original form, but crushed what has already been powdered by roasting, the burden of crushing is reduced. (3) Since the recovered cobalt content has a purity of 35% or more, it can be used as a cobalt raw material. Although a small amount of aluminum accompanies, it is easily removed by oxidation. (4) Copper and aluminum can be separated, the copper content being a raw material for copper smelting in converters, flash smelting furnaces and the like, and the aluminum content being a raw material to be melted in an electrolytic furnace and the like. (5) In summary, the running cost when implementing the method of the present invention is low. The recovered materials are also very valuable and suitable for sale to material manufacturers, steel manufacturers and non-ferrous smelters.

【図面の簡単な説明】[Brief description of the drawings]

【図1】渦電流により銅破砕粉とアルミ粉に分別する方
法の説明図である。
FIG. 1 is an explanatory diagram of a method for separating copper crushed powder and aluminum powder by eddy current.

【図2】本発明法を実施する方法のフローシートであ
る。
FIG. 2 is a flow sheet of a method for carrying out the method of the present invention.

【符号の説明】[Explanation of symbols]

2 磁界発生コイル 3 永久磁石 4 銅破砕粉 5 アルミニウム破砕粉 10 原料 11 焙焼炉 12 破砕機 17 第1次磁選機 18 渦電流選別機 20 第2次磁選機 2 Magnetic field generating coil 3 Permanent magnet 4 Copper crushed powder 5 Aluminum crushed powder 10 Raw material 11 Roasting furnace 12 Crusher 17 Primary magnetic separator 18 Eddy current separator 20 Secondary magnetic separator

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平7−245126(JP,A) 特開 昭51−52561(JP,A) 西独国特許出願公開4424825(DE, A1) 米国特許5352270(US,A) (58)調査した分野(Int.Cl.7,DB名) H01M 10/54 B03C 1/00 - 1/30 B09B 5/00 C22B 7/00 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-7-245126 (JP, A) JP-A-51-52561 (JP, A) West German Patent Application Publication No. 4424825 (DE, A1) US Patent 5,352,270 (US , A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 10/54 B03C 1/00-1/30 B09B 5/00 C22B 7/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 アルミニウム製ケースに内蔵された使用
済みリチウム電池を該アルミニウム製ケースととも焙焼
し、得られた焙焼物を破砕し、磁選して磁性物と非磁性
物に分別し、さらに渦電流を発生させた非磁性物に磁石
からの磁界を印加して、該磁性物から該磁石から反撥さ
せることにより、主としてアルミニウムからなる破砕粉
と主として銅からなる破砕粉とに分別し、さらに前記主
として銅からなる破砕粉を磁選することにより主として
コバルトからなる磁性物と、主として銅からなる非磁性
物とに分別することを特徴とする使用済みリチウム電池
からの有価物回収方法。
1. A used lithium battery contained in an aluminum case is roasted together with the aluminum case, and the obtained roasted product is crushed, magnetically separated and separated into a magnetic material and a non-magnetic material. By applying a magnetic field from a magnet to the non-magnetic material that has generated the eddy current and repelling the magnet from the magnetic material, the powder is separated into crushed powder mainly composed of aluminum and crushed powder mainly composed of copper, A method for recovering valuable resources from a used lithium battery, wherein the crushed powder mainly composed of copper is separated into a magnetic substance mainly composed of cobalt and a non-magnetic substance mainly composed of copper by magnetic separation.
JP18405098A 1997-12-25 1998-06-30 How to recover valuable resources from used lithium batteries Expired - Fee Related JP3079287B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18405098A JP3079287B2 (en) 1997-12-25 1998-06-30 How to recover valuable resources from used lithium batteries

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP35695297 1997-12-25
JP9-356952 1997-12-25
JP18405098A JP3079287B2 (en) 1997-12-25 1998-06-30 How to recover valuable resources from used lithium batteries

Publications (2)

Publication Number Publication Date
JPH11242967A JPH11242967A (en) 1999-09-07
JP3079287B2 true JP3079287B2 (en) 2000-08-21

Family

ID=26502251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18405098A Expired - Fee Related JP3079287B2 (en) 1997-12-25 1998-06-30 How to recover valuable resources from used lithium batteries

Country Status (1)

Country Link
JP (1) JP3079287B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018139445A1 (en) 2017-01-24 2018-08-02 三菱マテリアル株式会社 Method for recovering valuable material from used lithium-ion battery
WO2019102764A1 (en) 2017-11-22 2019-05-31 住友金属鉱山株式会社 Method for treating lithium ion battery waste

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3450684B2 (en) * 1997-12-25 2003-09-29 日鉱金属株式会社 How to recover valuable resources from used lithium batteries
FR2868603B1 (en) * 2004-04-06 2006-07-14 Recupyl Sa Sa METHOD FOR RECYCLING BATTERY MIXTURES AND BATTERIES BASED ON LITHIUM ANODE
JP4909907B2 (en) 2006-02-02 2012-04-04 川崎重工業株式会社 Recovery method and recovery device for recovering valuable material from lithium secondary battery
JP5139167B2 (en) * 2008-06-19 2013-02-06 トヨタ自動車株式会社 Battery pack recycling method and battery pack recycling apparatus
CN103380220B (en) * 2011-02-18 2015-03-11 住友金属矿山株式会社 Valuable metal recovery method
JP5434935B2 (en) * 2011-02-18 2014-03-05 住友金属鉱山株式会社 Valuable metal recovery method
JP5569457B2 (en) * 2011-04-15 2014-08-13 住友金属鉱山株式会社 Valuable metal recovery method
KR101275849B1 (en) * 2011-05-13 2013-06-17 엘에스니꼬동제련 주식회사 Pretreatment method for recycling of lithium ion batteries
JP2013080595A (en) * 2011-10-03 2013-05-02 Dowa Eco-System Co Ltd Method for recovering valuable from lithium ion secondary battery
CN103370427B (en) 2011-11-28 2015-07-01 住友金属矿山株式会社 Method for recovering valuable metal
CN103045870B (en) * 2013-01-05 2014-03-26 深圳市泰力废旧电池回收技术有限公司 Method for comprehensively recycling valuable metal from abandoned lithium ion batteries
JP6469362B2 (en) * 2014-05-14 2019-02-13 松田産業株式会社 Method for recovering valuable materials from lithium ion secondary batteries
JP6708468B2 (en) * 2015-04-17 2020-06-10 Jx金属株式会社 Lithium-ion battery treatment method
JP6859598B2 (en) * 2016-03-18 2021-04-14 三菱マテリアル株式会社 How to recover valuables from used lithium-ion batteries
EP3688834A4 (en) * 2017-09-28 2021-03-24 Recyclage Lithion Inc. Lithium-ion batteries recycling process
CN109261517A (en) * 2018-10-23 2019-01-25 河南小威环境科技有限公司 A kind of method and system of waste lithium cell copper aluminium separation
CN110396600A (en) * 2019-07-29 2019-11-01 先进储能材料国家工程研究中心有限责任公司 The lithium recovery process of waste and old lithium ion battery
CN116323998A (en) * 2020-10-19 2023-06-23 关东电化工业株式会社 Method for recovering lithium and method for producing lithium carbonate
CN114570520A (en) * 2022-01-04 2022-06-03 虔东稀土集团股份有限公司 Method for recovering rare earth elements

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018139445A1 (en) 2017-01-24 2018-08-02 三菱マテリアル株式会社 Method for recovering valuable material from used lithium-ion battery
KR20190110543A (en) 2017-01-24 2019-09-30 미쓰비시 마테리알 가부시키가이샤 Valuables collection method from used lithium ion battery
US11088406B2 (en) 2017-01-24 2021-08-10 Mitsubishi Materials Corporation Method for recovering valuable material from used lithium-ion battery
WO2019102764A1 (en) 2017-11-22 2019-05-31 住友金属鉱山株式会社 Method for treating lithium ion battery waste
KR20200044878A (en) 2017-11-22 2020-04-29 스미토모 긴조쿠 고잔 가부시키가이샤 Method of disposing of lithium ion battery waste material

Also Published As

Publication number Publication date
JPH11242967A (en) 1999-09-07

Similar Documents

Publication Publication Date Title
JP3079287B2 (en) How to recover valuable resources from used lithium batteries
JP3079285B2 (en) How to recover valuable resources from used lithium batteries
JP6198027B1 (en) How to recover valuable materials from used lithium ion batteries
Georgi-Maschler et al. Development of a recycling process for Li-ion batteries
JP6268130B2 (en) Method for recovering valuable materials from lithium-ion batteries
KR101883100B1 (en) Method of recovering valuable metals from wasted batteries and system for the same
JP6378502B2 (en) Method for recovering valuable materials from lithium ion secondary batteries
JP6469362B2 (en) Method for recovering valuable materials from lithium ion secondary batteries
JP5651462B2 (en) Method of recovering valuable material from lithium ion secondary battery and recovered material containing valuable material
JP6840512B2 (en) How to recover valuables from lithium-ion secondary batteries
WO2021177200A1 (en) Method for concentrating valuable metal contained in lithium ion secondary battery
JP3450684B2 (en) How to recover valuable resources from used lithium batteries
JP3443446B2 (en) Method for recovering cobalt from used lithium secondary battery
JP3434318B2 (en) Separation and recovery of valuable metals from used lithium secondary batteries
JP6676124B1 (en) Method of recovering valuable resources from lithium ion secondary batteries
JP3461300B2 (en) Method for recovering valuable resources from used lithium-manganese batteries
JP2021141060A (en) Method for concentrating valuable metal included in lithium-ion secondary battery
CN102206756B (en) Method for comprehensively recycling rare earth nickel-metal hydride battery waste through direction reduction-slag-metal melting and separation
JP3448392B2 (en) Method for recovering cobalt, copper and lithium from used lithium secondary batteries
JP2020129505A (en) Method of processing used lithium-ion battery
JP7447643B2 (en) Valuable metal recovery method
WO2023204230A1 (en) Method for recovering valuable materials from lithium-ion secondary battery
JP2021091940A (en) Valuable metal recovery method from waste battery
JP2004339572A (en) Method for recovering valuable metal
Fricke et al. The disposal of portable batteries

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080623

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090623

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 11

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120623

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120623

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130623

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130623

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees