JPH06315829A - Beveling method for cut-resistant material - Google Patents

Beveling method for cut-resistant material

Info

Publication number
JPH06315829A
JPH06315829A JP10576093A JP10576093A JPH06315829A JP H06315829 A JPH06315829 A JP H06315829A JP 10576093 A JP10576093 A JP 10576093A JP 10576093 A JP10576093 A JP 10576093A JP H06315829 A JPH06315829 A JP H06315829A
Authority
JP
Japan
Prior art keywords
electrolytic solution
electrode
auxiliary electrode
wafer
difficult
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10576093A
Other languages
Japanese (ja)
Inventor
Hiroshige Arai
浩成 荒井
Hidehiko Maehata
英彦 前畑
Hiroyuki Daiku
博之 大工
Masanori Tsukahara
正徳 塚原
Akio Komura
明夫 小村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP10576093A priority Critical patent/JPH06315829A/en
Publication of JPH06315829A publication Critical patent/JPH06315829A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

PURPOSE:To prevent the excessive sticking of an electrolyte and prevent the roughing on the surface of a wafer by providing an electrolyte coating member on an auxiliary electrode when coating the outer periphery edge section of a disk-like cut-resistant material with the electrolyte, applying voltage between a main electrode and the auxiliary electrode, and applying electrolytic polishing to the edge section. CONSTITUTION:A disk-like silicon wafer A is supported on a rotary shaft body rotated around the vertical axis by a chuck device 2, a disk-like main electrode 3 is arranged at a prescribed position corresponding to the outer periphery edge section B of the wafer A, and an auxiliary electrode 4 rotated by a hollow rotary shaft section 9 is arranged at a position in the upstream apart by the prescribed distance in the rotating direction. The auxiliary electrode 4 has a hollow box body formed with many electrode feed holes 6 on a front wall section 5a, a sponge body 7 is provided on the front side of the box body 5, and a storage section 8 of an electrolyte D is provided at the lower section. The wafer A and both electrodes 3, 4 are rotated, the electrolyte D seeps from the auxiliary electrode 4, voltage is applied between both electrodes 3, 4, and electrolytic polishing is applied to the outer periphery edge section B.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電解研磨加工方法によ
り、円板状難削材の外周エッジ部を研磨するベベリング
加工方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a beveling method for polishing an outer peripheral edge portion of a disc-shaped difficult-to-cut material by an electrolytic polishing method.

【0002】[0002]

【従来の技術】従来、絶縁性難削材として、例えばアル
ミナ、ジルコニア、炭化ケイ素などを加工することによ
り形成されるセラミックス材があり、またガラス、シリ
コンインゴットから切り出されたシリコンウエハなどが
ある。
2. Description of the Related Art Heretofore, as insulating difficult-to-cut materials, there are ceramic materials formed by processing alumina, zirconia, silicon carbide, etc., and also glass, silicon wafers cut out from silicon ingots, etc.

【0003】ところで、このような難削材は、硬くて脆
い性質を有し、機械部品や半導体部品に使用するために
は、機械的な加工を施さなければならず、このような加
工を施すためには、例えばダイヤモンド工具などを使用
する必要があり、加工コストが高くつくという欠点があ
った。
By the way, such a difficult-to-cut material has properties of being hard and brittle, and in order to be used for mechanical parts and semiconductor parts, it must be mechanically processed, and such processing is carried out. Therefore, it is necessary to use, for example, a diamond tool, which has a drawback that the processing cost is high.

【0004】そこで、最近、電気化学液、すなわち電解
液中で生じる電解放電作用を利用して、上記難削材を電
気的に加工する方法、すなわち電解研磨による加工方法
が提案されている。
Therefore, recently, there has been proposed a method for electrically processing the above-mentioned difficult-to-cut material, that is, a processing method by electrolytic polishing, utilizing an electrolytic discharge action generated in an electrochemical solution, that is, an electrolytic solution.

【0005】この電解研磨方法は、電解放電作用に伴う
熱化学的作用によって難削材を加工する方法で、例えば
ダイヤモンド工具などを使用するものに比べて、難削材
を安価に加工することができものである。
This electrolytic polishing method is a method of processing a difficult-to-cut material by a thermochemical action associated with an electrolytic discharge action, and can process the difficult-to-cut material at a lower cost than that using a diamond tool, for example. It is a product.

【0006】ところで、図3に示すように、この電解研
磨方法により、例えば難削材に穴開け加工を行う場合に
は、まず電解質を水に溶かして得られる電解液D中に、
難削材である被加工物Fを浸すとともに、棒状の主電極
31を、その先端部が被加工物Fの加工位置に接触する
ようになし、かつ板状の補助電極32を被加工物Fから
少し離れた位置で電解液D中に配置する。
By the way, as shown in FIG. 3, for example, when making a hole in a difficult-to-cut material by this electrolytic polishing method, first, in an electrolytic solution D obtained by dissolving an electrolyte in water,
The workpiece F, which is a difficult-to-cut material, is dipped, and the rod-shaped main electrode 31 is formed so that its tip end contacts the processing position of the workpiece F, and the plate-shaped auxiliary electrode 32 is formed on the workpiece F. It is placed in the electrolytic solution D at a position slightly away from.

【0007】次に、両電極31,32間に電源33を接
続して所定値の直流または交流電圧Vを印加するととも
に、主電極31の先端部を被加工物F側に押し付ける。
この時、電圧の上昇にしたがって、主電極31近傍の電
解強度Eが上昇し、この電解強度Eの上昇に伴って、図
4の実線fにて示すように、電解液D中を流れる電流I
が増加し、電解作用が進む。
Next, a power source 33 is connected between the electrodes 31 and 32 to apply a DC or AC voltage V having a predetermined value, and the tip of the main electrode 31 is pressed against the workpiece F side.
At this time, the electrolytic strength E near the main electrode 31 increases as the voltage increases, and as the electrolytic strength E increases, the current I flowing in the electrolytic solution D is increased as shown by the solid line f in FIG.
Is increased and the electrolytic action proceeds.

【0008】ところで、電流Iが流れないとき、および
少ないときにおける不動態領域の間は、図4(a)に示
すように、主電極31の近傍では何の変化も生じない
が、電流Iが増加して電解が始まると、図4(b)に示
すように、主電極31の近傍において、水素H2 、酸素
2 および空気などの微小な気泡が、主電極31を取り
巻くように発生し始める。
By the way, as shown in FIG. 4A, no change occurs in the vicinity of the main electrode 31 between the passivity region when the current I does not flow and when the current I is low, but the current I does not flow. When the electrolysis is increased and starts, as shown in FIG. 4 (b), minute bubbles such as hydrogen H 2 , oxygen O 2 and air are generated in the vicinity of the main electrode 31 so as to surround the main electrode 31. start.

【0009】そして、電流Iの増加にしたがって、図4
(c)に示すように、気泡が次第に大きくなるとともに
浮上を初め、電流Iがさらに増加すると、図4(d)に
示すように、電解により気泡の発生が激しくなり、主電
極31を大きな気泡が取り巻くとともに、浮上する気泡
の量が多くなる。
Then, as the current I increases, as shown in FIG.
As shown in FIG. 4C, when the bubbles gradually become larger and start to float and the current I further increases, as shown in FIG. 4D, the generation of bubbles becomes more intense due to electrolysis, and the main electrode 31 becomes larger. The amount of air bubbles that float around the surface increases with the surrounding area.

【0010】さらに、電流Iが図4(d)の場合よりも
増加すると、主電極31近傍の電解強度Eが気泡の絶縁
破壊強度を越えると、いわゆる絶縁破壊が生じると、図
4(e)に示すように、絶縁破壊により微細な気泡が多
数発生し、このとき電流Iが急激に減少するとともに、
放電発光と発熱とが生じる。
Further, when the electric current I increases more than in the case of FIG. 4D, if the electrolytic strength E near the main electrode 31 exceeds the dielectric breakdown strength of bubbles, so-called dielectric breakdown occurs, and FIG. 4E. As shown in, a large number of fine bubbles are generated due to the dielectric breakdown, and at this time, the current I sharply decreases and
Discharge light emission and heat generation occur.

【0011】そして、発熱により、被加工物Fに対する
熱化学的作用が顕著になり、この作用により、被加工物
Fに穴開けがなされる。このときの被加工物Fの除去量
Wは、図4の実線gに示すようになる。
Due to the heat generation, the thermochemical action on the workpiece F becomes remarkable, and this action causes the workpiece F to be perforated. The removal amount W of the workpiece F at this time is as shown by the solid line g in FIG.

【0012】なお、図3において、41は浮上する微細
気泡、42は絶縁破壊によって生じた微細気泡を示す。
このような電解研磨方法により、被加工物としてシリコ
ンウエハの外周部のエッジ部を研磨加工する場合には、
図5に示すように、電解液Dが入れられた容器51内
に、補助電極53を挿入配置し、回転支持軸54側に支
持されたシリコンウエハ(以下、単にウエハAという)
Aの一部を電解液Dに浸すとともに、ウエハAの外周エ
ッジ部Bに、主電極52の先端部を接触させて、主電極
52と電解液Dとの間で放電を行わせることにより、外
周エッジ部Bの研磨加工が行われていた。
In FIG. 3, reference numeral 41 is a floating fine bubble, and 42 is a fine bubble generated by dielectric breakdown.
When the edge portion of the outer peripheral portion of the silicon wafer is polished as a workpiece by such an electrolytic polishing method,
As shown in FIG. 5, a silicon wafer in which an auxiliary electrode 53 is inserted and arranged in a container 51 in which an electrolytic solution D is placed and which is supported on a rotation support shaft 54 side (hereinafter, simply referred to as wafer A)
By immersing part of A in the electrolytic solution D and bringing the tip of the main electrode 52 into contact with the outer peripheral edge portion B of the wafer A to cause discharge between the main electrode 52 and the electrolytic solution D, The peripheral edge B was polished.

【0013】[0013]

【発明が解決しようとする課題】ところで、上述したよ
うな電解研磨方法によると、ウエハAを電解液Dに浸し
て回転させるため、図6に示すように、ウエハAの外周
エッジ部B以外の周縁部Cにも、電解液Dが付着し、こ
の周縁部Cにおいても、放電熱により熱化学反応が生
じ、この周縁部Cの表面が荒れてしまうという問題があ
る。
By the way, according to the electrolytic polishing method as described above, since the wafer A is immersed in the electrolytic solution D and rotated, as shown in FIG. The electrolytic solution D also adheres to the peripheral portion C, and a thermochemical reaction also occurs in the peripheral portion C due to discharge heat, which causes a problem that the surface of the peripheral portion C is roughened.

【0014】なお、このような問題を解消する方法とし
て、外周エッジ部B以外の部分を絶縁塗料などの被覆材
で覆うことも考えられるが、大量に加工する場合には、
1枚毎に被覆材を被覆しなければならず実用的ではな
い。
As a method for solving such a problem, it is conceivable to cover a portion other than the outer peripheral edge portion B with a coating material such as insulating paint, but in the case of processing a large amount,
This is not practical because the coating material must be coated on each sheet.

【0015】そこで、本発明は上記問題を解消し得る難
削材のベベリング加工方法を提供することを目的とす
る。
Therefore, an object of the present invention is to provide a method for beveling a difficult-to-cut material which can solve the above problems.

【0016】[0016]

【課題を解決するための手段】上記課題を解決するた
め、本発明の難削材のベベリング加工方法は、回転自在
に支持された円板状の難削材の外周エッジ部に電解液を
塗布し、この電解液が塗布された外周エッジ部に主電極
と補助電極とを接触させるとともに、これら両電極間に
電解液を介して電圧を印加させ、主電極の先端部に発生
する放電熱により、上記難削材の外周エッジ部を研磨す
る際に、上記主電極として回転される円板状の電極を使
用し、補助電極として中空にされかつ難削材との接触す
る側の壁部に電解液の供給穴が形成された箱状体を使用
するとともに、上記供給穴が形成された壁部に電解液の
塗布部材を配置し、かつ上記補助電極内に電解液を供給
するとともに塗布部材を外周エッジ部に押圧して難削材
の外周エッジ部を研磨する加工方法である。
In order to solve the above-mentioned problems, a method of beveling a difficult-to-cut material according to the present invention is to apply an electrolytic solution to the outer peripheral edge portion of a disk-shaped difficult-to-cut material that is rotatably supported. Then, the main electrode and the auxiliary electrode are brought into contact with the outer peripheral edge portion coated with this electrolytic solution, and a voltage is applied between these electrodes via the electrolytic solution, so that the discharge heat generated at the tip of the main electrode causes , When polishing the outer peripheral edge portion of the difficult-to-cut material, use a disk-shaped electrode that is rotated as the main electrode, and make it hollow as an auxiliary electrode and on the wall portion on the side that contacts the difficult-to-cut material. A box-shaped body having a supply hole for the electrolytic solution is used, and a coating member for the electrolytic solution is arranged on the wall portion where the supply hole is formed, and the coating member is used for supplying the electrolytic solution into the auxiliary electrode. The outer edge of the difficult-to-cut material by pressing against the outer edge. It is a processing method for.

【0017】[0017]

【作用】上記の難削材のベベリング加工方法によると、
補助電極に設けられた塗布部材により、研磨すべき難削
材の外周エッジ部にだけ、電解液を塗布するようにした
ので、電解液が余分な部分に付着することが無く、また
主電極として回転する円板状のものを使用したので、難
削材を電解研磨と同時に機械的研磨も行うことができ
る。
[Operation] According to the above beveling method for difficult-to-cut materials,
With the coating member provided on the auxiliary electrode, the electrolytic solution is applied only to the outer peripheral edge portion of the difficult-to-cut material to be polished, so that the electrolytic solution does not adhere to an excessive portion and also serves as the main electrode. Since a rotating disk-shaped material is used, it is possible to perform mechanical polishing as well as electrolytic polishing of difficult-to-cut materials.

【0018】[0018]

【実施例】以下、本発明の一実施例を図1および図2に
基づき説明する。なお、以下に説明する実施例において
は、シリコンウエハ(難削材の一例で、例えばセラミッ
ク材料、ガラス材料などで構成されたものにでも適用し
得る)を研磨する場合について説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. In the embodiments described below, the case of polishing a silicon wafer (an example of a difficult-to-cut material, which may be applied to a material made of, for example, a ceramic material or a glass material) will be described.

【0019】図1および図2において、1は円板状のシ
リコンウエハ(以下、単にウエハという)Aをチャック
装置(例えば、真空式のもの)2を介して水平面内で回
転自在に支持する回転軸体で、例えばモータなどの回転
駆動装置(図示せず)により回転される。
In FIGS. 1 and 2, reference numeral 1 is a rotation for rotatably supporting a disk-shaped silicon wafer (hereinafter, simply referred to as a wafer) A through a chuck device (for example, vacuum type) 2 in a horizontal plane. The shaft is rotated by a rotary drive device (not shown) such as a motor.

【0020】上記ウエハAの外周エッジ部Bに対応する
所定箇所には、円板状の主電極3が配置されるととも
に、回転方向において所定距離だけ離れた上手側の位置
に、補助電極4が配置されている。
A disk-shaped main electrode 3 is arranged at a predetermined position corresponding to the outer peripheral edge B of the wafer A, and an auxiliary electrode 4 is provided at a position on the hand side which is separated by a predetermined distance in the rotation direction. It is arranged.

【0021】この補助電極4は、前壁部5aに多数の電
解液の供給穴6が形成された中空の箱状体5と、この箱
状体5の前壁部5aの前側に配置された電解液塗布用の
スポンジ体(塗布部材の一例)7と、上記箱状体5の下
部に設けられた電解液の貯溜部8とから構成され、また
上記箱状体5の後壁部5bには、箱状体5の内部に電解
液Dを供給するための電解液供給管9が接続されるとと
もに、上記貯溜部8の底壁部には電解液排出管10が接
続されている。
The auxiliary electrode 4 is arranged on the front side of the front wall portion 5a of the hollow box-shaped body 5 having a large number of electrolyte supply holes 6 formed in the front wall portion 5a. It is composed of a sponge body (one example of a coating member) 7 for applying an electrolytic solution, and an electrolytic solution storage portion 8 provided in the lower portion of the box-shaped body 5, and also on a rear wall portion 5b of the box-shaped body 5. An electrolytic solution supply pipe 9 for supplying the electrolytic solution D is connected to the inside of the box-shaped body 5, and an electrolytic solution discharge pipe 10 is connected to the bottom wall of the storage section 8.

【0022】また、上記主電極3と補助電極4との間に
は電源11が接続されて、所定の電圧(直流電圧、交流
電圧、またはパルス電圧など)が印加されるようにして
いる。なお、主電極3が回転するため、主電極3側と電
源11側とは、その回転軸部3aに摺接する集電ブラシ
12を介して電気的に接続されている。
A power source 11 is connected between the main electrode 3 and the auxiliary electrode 4 so that a predetermined voltage (DC voltage, AC voltage, pulse voltage or the like) is applied. Since the main electrode 3 rotates, the main electrode 3 side and the power source 11 side are electrically connected to each other via the current collecting brush 12 that is in sliding contact with the rotating shaft portion 3a.

【0023】したがって、上記構成において、ウエハA
の外周エッジ部Bを研磨する場合、まずウエハAをチャ
ック装置2を介して、回転軸体1側に保持させる。次
に、補助電極4側に、電解液供給管9を介して、電解液
(酸、アルカリ、中性の液体など)Dを供給し、スポン
ジ体7の表面から滲み出させる。
Therefore, in the above structure, the wafer A
When polishing the outer peripheral edge portion B, the wafer A is first held on the rotary shaft 1 side via the chuck device 2. Next, the electrolytic solution (acid, alkali, neutral liquid, etc.) D is supplied to the auxiliary electrode 4 side through the electrolytic solution supply pipe 9, and exudes from the surface of the sponge body 7.

【0024】次に、主電極3とウエハAとを、矢印a,
bにて示すように、対向する部分が互いに逆方向となる
ように回転させ、補助電極4に電解液Dを供給しなが
ら、ウエハA側に軽く押圧する。
Next, the main electrode 3 and the wafer A are separated by arrows a,
As indicated by b, the parts facing each other are rotated so as to be opposite to each other, and the electrolyte D is supplied to the auxiliary electrode 4 while being lightly pressed to the wafer A side.

【0025】すると、スポンジ体7が凹み、ウエハAの
外周エッジ部Bの部分に両側から摺接して、スポンジ体
7から電解液Dが滲み出て、外周エッジ部Bにだけ電解
液Dが塗布される。
Then, the sponge body 7 is dented and comes into sliding contact with the outer peripheral edge portion B of the wafer A from both sides. To be done.

【0026】そして、この状態で両電極3,4間に所定
の電圧を印加すると、外周エッジ部Bに塗布された電解
液Dを介して、両電極3,4間に電流が流れ、主電極3
との接触部(この場合、殆ど点接触の状態である)に放
電が発生し、この放電熱により、ウエハAの外周エッジ
部Bに熱的加工(熱溶融や熱化学反応による加工)が施
されるとともに、この主電極3の摺接により、機械的擦
過作用による機械的研磨が同時に行われる。
When a predetermined voltage is applied between the electrodes 3 and 4 in this state, a current flows between the electrodes 3 and 4 through the electrolytic solution D applied to the outer peripheral edge portion B, and the main electrode Three
An electric discharge is generated at a contact portion (in this case, it is almost in a point contact state), and the discharge heat causes the outer peripheral edge portion B of the wafer A to be thermally processed (processing by thermal melting or thermochemical reaction). At the same time, the sliding contact of the main electrode 3 simultaneously performs mechanical polishing by mechanical abrasion.

【0027】このように、補助電極4により、ウエハA
の研磨部分である外周エッジ部Bだけに電解液Dが塗布
されるため、従来のように、難削材の一部を電解液の中
に浸す場合に比べて、電解液が余分な部分に付着するこ
とが無くなり、したがって外周エッジ部以外の表面が荒
れるのを防止することができる。
Thus, the auxiliary electrode 4 allows the wafer A
Since the electrolytic solution D is applied only to the outer peripheral edge portion B which is the polished portion of the electrolytic solution, the electrolytic solution is applied to an extra portion as compared with the conventional case where a part of the difficult-to-cut material is immersed in the electrolytic solution. It is possible to prevent the surface from being roughened, except for the peripheral edge portion.

【0028】また、電解研磨と同時に機械的研磨が行わ
れるため、電解研磨だけの場合と異なり、研磨厚みを充
分厚くすることができるので、例えば前処理工程で発生
した3〜5μm 程度の深さの加工条痕を、確実に取り除
くことができる。
Further, since mechanical polishing is performed simultaneously with electrolytic polishing, the polishing thickness can be made sufficiently thick, unlike the case of only electrolytic polishing. For example, the depth of about 3 to 5 μm generated in the pretreatment step can be achieved. The processing streaks of can be reliably removed.

【0029】さらに、印加電圧、ウエハおよび主電極の
回転数、および主電極の押付力を調整することにより、
加工度の制御を行うことができる。ここで、具体的加工
例について説明する。
Furthermore, by adjusting the applied voltage, the number of rotations of the wafer and the main electrode, and the pressing force of the main electrode,
The degree of processing can be controlled. Here, a specific processing example will be described.

【0030】なお、被加工物である難削材として、直径
が4インチのシリコンウエハを使用した。また、主電極
として、直径が30mmのタングステン板材を使用し、加工
条件として、10%中性塩の電解液を使用し、印加電圧を
DC200Vとし、ウエハの回転数を1〜100rpmとし、
かつ補助電極の回転数を200rpmとした。
A silicon wafer having a diameter of 4 inches was used as a difficult-to-cut material which is a work piece. Further, as the main electrode, a tungsten plate material having a diameter of 30 mm is used, as a processing condition, an electrolytic solution of 10% neutral salt is used, an applied voltage is DC 200 V, a rotation speed of the wafer is 1 to 100 rpm,
The rotation speed of the auxiliary electrode was 200 rpm.

【0031】以上の条件で、約1分間のベベリング加
工、すなわち面取り加工を行ったところ、外周エッジ部
以外の部分に侵食が見られず、また加工条痕が除去し得
る充分な研磨が確認された。
When the beveling process, that is, the chamfering process, was carried out for about 1 minute under the above conditions, no corrosion was observed in the parts other than the outer peripheral edge part, and sufficient polishing was confirmed to be able to remove the processing scratches. It was

【0032】ところで、上記実施例においては、塗布部
材としてスポンジ体を使用したが、例えば不織布を使用
することもできる。
By the way, although a sponge body is used as the coating member in the above-mentioned embodiment, a non-woven fabric may be used, for example.

【0033】[0033]

【発明の効果】以上のように本発明のベベリング加工方
法によると、主電極と補助電極との間に、電解液を介し
て電圧を印加して電解研磨する際に、補助電極側に、難
削材の外周エッジ部に電解液を塗布する塗布部材を設け
たので、難削材の一部を電解液の中に浸す場合に比べ
て、電解液が余分な部分に付着することが無くなり、し
たがって外周エッジ部以外の表面が荒れるのを防止する
ことができる。
As described above, according to the beveling processing method of the present invention, when electropolishing is performed by applying a voltage between the main electrode and the auxiliary electrode through the electrolytic solution, it is difficult to make the auxiliary electrode side. Since the coating member for coating the electrolytic solution is provided on the outer peripheral edge of the cutting material, the electrolytic solution is prevented from adhering to an extra portion as compared with the case where a part of the difficult-to-cut material is immersed in the electrolytic solution. Therefore, it is possible to prevent the surface other than the outer peripheral edge portion from being roughened.

【0034】また、主電極として回転する円板状のもの
を使用したので、難削材を電解研磨と同時に機械的研磨
も行うことができるので、難削材の表面に、深い傷があ
る場合でも、確実に取り除くことができる。
Further, since the rotating disk-shaped one is used as the main electrode, the difficult-to-cut material can be subjected to electrolytic polishing and mechanical polishing at the same time. But you can definitely get rid of it.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例における難削材のベベリング
加工方法を説明する側面図である。
FIG. 1 is a side view illustrating a method of beveling a difficult-to-cut material according to an embodiment of the present invention.

【図2】同実施例における難削材のベベリング加工方法
を説明する平面図である。
FIG. 2 is a plan view illustrating a method of beveling a difficult-to-cut material in the example.

【図3】従来例における電解研磨の原理を説明する要部
断面図である。
FIG. 3 is a sectional view of relevant parts for explaining the principle of electrolytic polishing in a conventional example.

【図4】同電解研磨の原理を説明するための電流および
電解強度と被加工物の除去量との関係を示すグラフであ
る。
FIG. 4 is a graph showing the relationship between the current and electrolytic strength and the removal amount of the workpiece for explaining the principle of the same electrolytic polishing.

【図5】従来例における難削材のベベリング加工方法を
説明する一部切欠斜視図である。
FIG. 5 is a partially cutaway perspective view illustrating a beveling method for a difficult-to-cut material in a conventional example.

【図6】従来例のベベリング加工方法により研磨された
シリコンウエハの研磨状態を説明する側面図である。
FIG. 6 is a side view illustrating a polished state of a silicon wafer polished by a conventional beveling method.

【符号の説明】[Explanation of symbols]

A ウエハ B 外周エッジ部 D 電解液 1 回転軸体 3 主電極 4 補助電極 5 箱状体 6 供給穴 7 スポンジ体 9 電解液供給管 11 電源 A Wafer B Outer peripheral edge D Electrolyte 1 Rotating shaft 3 Main electrode 4 Auxiliary electrode 5 Box-like body 6 Supply hole 7 Sponge body 9 Electrolyte supply pipe 11 Power supply

───────────────────────────────────────────────────── フロントページの続き (72)発明者 塚原 正徳 大阪府大阪市此花区西九条5丁目3番28号 日立造船株式会社内 (72)発明者 小村 明夫 大阪府大阪市此花区西九条5丁目3番28号 日立造船株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Masanori Tsukahara, 5-3-8 Nishikujo, Konohana-ku, Osaka-shi, Osaka Prefecture (72) Hitachi Shipbuilding Co., Ltd. (72) Akio Komura 5--9, Nishikujo, Konohana-ku, Osaka No. 28 in Hitachi Shipbuilding Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】回転自在に支持された円板状の難削材の外
周エッジ部に電解液を塗布し、この電解液が塗布された
外周エッジ部に主電極と補助電極とを接触させるととも
に、これら両電極間に電解液を介して電圧を印加させ、
主電極の先端部に発生する放電熱により、上記難削材の
外周エッジ部を研磨する際に、上記主電極として回転さ
れる円板状の電極を使用し、補助電極として中空にされ
かつ難削材との接触する側の壁部に電解液の供給穴が形
成された箱状体を使用するとともに、上記供給穴が形成
された壁部に電解液の塗布部材を配置し、かつ上記補助
電極内に電解液を供給するとともに塗布部材を外周エッ
ジ部に押圧して難削材の外周エッジ部を研磨することを
特徴とする難削材のベベリング加工方法。
1. An electrolytic solution is applied to an outer peripheral edge of a disc-shaped difficult-to-cut material rotatably supported, and a main electrode and an auxiliary electrode are brought into contact with the outer peripheral edge applied with the electrolytic solution. , Voltage is applied between these electrodes via the electrolytic solution,
When the outer peripheral edge of the difficult-to-cut material is polished by the discharge heat generated at the tip of the main electrode, a disk-shaped electrode that is rotated as the main electrode is used, and it is made hollow and difficult as the auxiliary electrode. While using a box-shaped body in which the supply hole for the electrolytic solution is formed in the wall portion on the side in contact with the cutting material, the coating member for the electrolytic solution is arranged in the wall portion in which the supply hole is formed, and the above-mentioned auxiliary A beveling method for a difficult-to-cut material, comprising supplying an electrolytic solution into an electrode and pressing an application member against the outer-edge material to polish the outer-edge material.
JP10576093A 1993-05-07 1993-05-07 Beveling method for cut-resistant material Pending JPH06315829A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10576093A JPH06315829A (en) 1993-05-07 1993-05-07 Beveling method for cut-resistant material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10576093A JPH06315829A (en) 1993-05-07 1993-05-07 Beveling method for cut-resistant material

Publications (1)

Publication Number Publication Date
JPH06315829A true JPH06315829A (en) 1994-11-15

Family

ID=14416175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10576093A Pending JPH06315829A (en) 1993-05-07 1993-05-07 Beveling method for cut-resistant material

Country Status (1)

Country Link
JP (1) JPH06315829A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6722964B2 (en) 2000-04-04 2004-04-20 Ebara Corporation Polishing apparatus and method
US7208076B2 (en) 2001-09-11 2007-04-24 Ebara Corporation Substrate processing apparatus and method
KR100745055B1 (en) * 2001-06-21 2007-08-01 주식회사 하이닉스반도체 Method for manufacturing semiconductor device
JP2012024983A (en) * 2010-07-21 2012-02-09 Shibuya Kogyo Co Ltd Method and device for chamfering brittle material
US20120055905A1 (en) * 2009-05-14 2012-03-08 Picodrill Sa method of smoothing and/or bevelling an edge of a substrate
CN110756926A (en) * 2019-10-17 2020-02-07 南京航空航天大学 Electric spark electrolysis continuous machining method and tool for efficiently milling plane
CN111515482A (en) * 2020-04-27 2020-08-11 北京工业大学 Metal-based grinding wheel precision forming and shaping method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6722964B2 (en) 2000-04-04 2004-04-20 Ebara Corporation Polishing apparatus and method
US6935932B2 (en) 2000-04-04 2005-08-30 Ebara Corporation Polishing apparatus and method
US7108589B2 (en) 2000-04-04 2006-09-19 Ebara Corporation Polishing apparatus and method
KR100745055B1 (en) * 2001-06-21 2007-08-01 주식회사 하이닉스반도체 Method for manufacturing semiconductor device
US7208076B2 (en) 2001-09-11 2007-04-24 Ebara Corporation Substrate processing apparatus and method
US20120055905A1 (en) * 2009-05-14 2012-03-08 Picodrill Sa method of smoothing and/or bevelling an edge of a substrate
US9114467B2 (en) * 2009-05-14 2015-08-25 Picodrill Sa Method of smoothing and/or bevelling an edge of a substrate
JP2012024983A (en) * 2010-07-21 2012-02-09 Shibuya Kogyo Co Ltd Method and device for chamfering brittle material
CN110756926A (en) * 2019-10-17 2020-02-07 南京航空航天大学 Electric spark electrolysis continuous machining method and tool for efficiently milling plane
CN110756926B (en) * 2019-10-17 2021-04-20 南京航空航天大学 Electric spark electrolysis continuous machining method for milling plane
CN111515482A (en) * 2020-04-27 2020-08-11 北京工业大学 Metal-based grinding wheel precision forming and shaping method

Similar Documents

Publication Publication Date Title
EP1722925B1 (en) Insulated pad conditioner and method of using same
JP2002528649A5 (en)
TWI277473B (en) Electrolytic processing apparatus and method, fixing method, fixing structure for ion exchanging member
JP2002528649A (en) Method and apparatus for performing electrochemical-mechanical mechanical deposition
US6783657B2 (en) Systems and methods for the electrolytic removal of metals from substrates
JPH06315829A (en) Beveling method for cut-resistant material
JPH05131365A (en) Method and device for seting grinding wheel
JPH06315828A (en) Beveling method for cut-resistant material
JPH06315830A (en) Beveling method for cut-resistant material
JP4644954B2 (en) Polishing equipment
KR20050005389A (en) Polishing Method and Polishing System, and Method for Fabricating Semiconductor Device
JPH06315827A (en) Beveling method for cut-resistant material
JPH06210520A (en) Method of beveling work to hard-to-cut material
JPS62136032A (en) Working method for back surface of semiconductor wafer
JPH06315826A (en) Beveling method for silicon wafer
CN113478032B (en) Electrolytic machining electrode for high-aspect-ratio groove and machining method
CN114088497B (en) Preparation device and method of titanium alloy EBSD sample
TWI837380B (en) How to make ring-shaped grindstone
JPH06246544A (en) Hard-to-cut material beveling method
JP2950064B2 (en) Electrolytic dressing type grinding machine
JPS5914111Y2 (en) Electrolytic buffing compound polishing device
JP2004216542A (en) Electrochemical machining device and electrochemical machining method
JPH06210521A (en) Method of beveling work to hard-to-cut material
JP3636913B2 (en) Electrolytic in-process dressing grinding method and electrolytic in-process dressing grinding apparatus
KR100791907B1 (en) Polishing apparatus