JPH06315828A - Beveling method for cut-resistant material - Google Patents

Beveling method for cut-resistant material

Info

Publication number
JPH06315828A
JPH06315828A JP10575993A JP10575993A JPH06315828A JP H06315828 A JPH06315828 A JP H06315828A JP 10575993 A JP10575993 A JP 10575993A JP 10575993 A JP10575993 A JP 10575993A JP H06315828 A JPH06315828 A JP H06315828A
Authority
JP
Japan
Prior art keywords
auxiliary electrode
wafer
difficult
outer peripheral
peripheral edge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10575993A
Other languages
Japanese (ja)
Inventor
Hiroshige Arai
浩成 荒井
Hidehiko Maehata
英彦 前畑
Hiroyuki Daiku
博之 大工
Masanori Tsukahara
正徳 塚原
Akio Komura
明夫 小村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP10575993A priority Critical patent/JPH06315828A/en
Publication of JPH06315828A publication Critical patent/JPH06315828A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To perform electrolytic polishing and abrasive polishing at the same time by providing a nonwoven fabric containing abrasive grains on an auxiliary electrode side when coating the outer periphery edge section of a disk-like cut-resistant material with an electrolyte, applying voltage between a main electrode and the auxiliary electrode, and applying electrolytic polishing to the edge section. CONSTITUTION:A disk-like silicon wafer A is supported on a rotary shaft body 1 rotated around the vertical axis by a chuck device 2, a needle-like main electrode is arranged at the prescribed position corresponding to the outer periphery edge section B of the wafer A, and an auxiliary electrode 4 rotated by a hollow rotary shaft section 7 is arranged at a position in the upstream apart by the prescribed distance in the rotating direction. The auxiliary electrode 4 has a hollow disk-like box body 5 formed with many electrolyte feed holes 6 on a lower wall face section 5, and a nonwoven fabric 8 containing many abrasive grains G is provided on the lower wall face section 5a. The wafer A and the auxiliary electrode 4 are rotated, an electrolyte seeps from the auxiliary electrode 4, voltage is applied between both electrodes, and electrolytic polishing is applied to the outer periphery edge section B of the wafer A.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電解研磨加工方法によ
り、円板状難削材の外周エッジ部を研磨するベベリング
加工方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a beveling method for polishing an outer peripheral edge portion of a disc-shaped difficult-to-cut material by an electrolytic polishing method.

【0002】[0002]

【従来の技術】従来、絶縁性難削材として、例えばアル
ミナ、ジルコニア、炭化ケイ素などを加工することによ
り形成されるセラミックス材があり、またガラス、シリ
コンインゴットから切り出されたシリコンウエハなどが
ある。
2. Description of the Related Art Heretofore, as insulating difficult-to-cut materials, there are ceramic materials formed by processing alumina, zirconia, silicon carbide, etc., and also glass, silicon wafers cut out from silicon ingots, etc.

【0003】ところで、このような難削材は、硬くて脆
い性質を有し、機械部品や半導体部品に使用するために
は、機械的な加工を施さなければならず、このような加
工を施すためには、例えばダイヤモンド工具などを使用
する必要があり、加工コストが高くつくという欠点があ
った。
By the way, such a difficult-to-cut material has properties of being hard and brittle, and in order to be used for mechanical parts and semiconductor parts, it must be mechanically processed, and such processing is carried out. Therefore, it is necessary to use, for example, a diamond tool, which has a drawback that the processing cost is high.

【0004】そこで、最近、電気化学液、すなわち電解
液中で生じる電解放電作用を利用して、上記難削材を電
気的に加工する方法、すなわち電解研磨による加工方法
が提案されている。
Therefore, recently, there has been proposed a method for electrically processing the above-mentioned difficult-to-cut material, that is, a processing method by electrolytic polishing, utilizing an electrolytic discharge action generated in an electrochemical solution, that is, an electrolytic solution.

【0005】この電解研磨方法は、電解放電作用に伴う
熱化学的作用によって難削材を加工する方法で、例えば
ダイヤモンド工具などを使用するものに比べて、難削材
を安価に加工することができものである。
This electrolytic polishing method is a method of processing a difficult-to-cut material by a thermochemical action associated with an electrolytic discharge action, and can process the difficult-to-cut material at a lower cost than that using a diamond tool, for example. It is a product.

【0006】ところで、図3に示すように、この電解研
磨方法により、例えば難削材に穴開け加工を行う場合に
は、まず電解質を水に溶かして得られる電解液D中に、
難削材である被加工物Fを浸すとともに、棒状の主電極
31を、その先端部が被加工物Fの加工位置に接触する
ようになし、かつ板状の補助電極32を被加工物Fから
少し離れた位置で電解液D中に配置する。
By the way, as shown in FIG. 3, for example, when making a hole in a difficult-to-cut material by this electrolytic polishing method, first, in an electrolytic solution D obtained by dissolving an electrolyte in water,
The workpiece F, which is a difficult-to-cut material, is dipped, and the rod-shaped main electrode 31 is formed so that its tip end contacts the processing position of the workpiece F, and the plate-shaped auxiliary electrode 32 is formed on the workpiece F. It is placed in the electrolytic solution D at a position slightly away from.

【0007】次に、両電極31,32間に電源33を接
続して所定値の直流または交流電圧Vを印加するととも
に、主電極31の先端部を被加工物F側に押し付ける。
この時、電圧の上昇にしたがって、主電極31近傍の電
解強度Eが上昇し、この電解強度Eの上昇に伴って、図
4の実線fにて示すように、電解液D中を流れる電流I
が増加し、電解作用が進む。
Next, a power source 33 is connected between the electrodes 31 and 32 to apply a DC or AC voltage V having a predetermined value, and the tip of the main electrode 31 is pressed against the workpiece F side.
At this time, the electrolytic strength E near the main electrode 31 increases as the voltage increases, and as the electrolytic strength E increases, the current I flowing in the electrolytic solution D is increased as shown by the solid line f in FIG.
Is increased and the electrolytic action proceeds.

【0008】ところで、電流Iが流れないとき、および
少ないときにおける不動態領域の間は、図4(a)に示
すように、主電極31の近傍では何の変化も生じない
が、電流Iが増加して電解が始まると、図4(b)に示
すように、主電極31の近傍において、水素H2 、酸素
2 および空気などの微小な気泡が、主電極31を取り
巻くように発生し始める。
By the way, as shown in FIG. 4A, no change occurs in the vicinity of the main electrode 31 between the passivity region when the current I does not flow and when the current I is low, but the current I does not flow. When the electrolysis is increased and starts, as shown in FIG. 4 (b), minute bubbles such as hydrogen H 2 , oxygen O 2 and air are generated in the vicinity of the main electrode 31 so as to surround the main electrode 31. start.

【0009】そして、電流Iの増加にしたがって、図4
(c)に示すように、気泡が次第に大きくなるとともに
浮上を初め、電流Iがさらに増加すると、図4(d)に
示すように、電解により気泡の発生が激しくなり、主電
極31を大きな気泡が取り巻くとともに、浮上する気泡
の量が多くなる。
Then, as the current I increases, as shown in FIG.
As shown in FIG. 4C, when the bubbles gradually become larger and start to float and the current I further increases, as shown in FIG. 4D, the generation of bubbles becomes more intense due to electrolysis, and the main electrode 31 becomes larger. The amount of air bubbles that float around the surface increases with the surrounding area.

【0010】さらに、電流Iが図4(d)の場合よりも
増加すると、主電極31近傍の電解強度Eが気泡の絶縁
破壊強度を越えると、いわゆる絶縁破壊が生じると、図
4(e)に示すように、絶縁破壊により微細な気泡が多
数発生し、このとき電流Iが急激に減少するとともに、
放電発光と発熱とが生じる。
Further, when the electric current I increases more than in the case of FIG. 4D, if the electrolytic strength E near the main electrode 31 exceeds the dielectric breakdown strength of bubbles, so-called dielectric breakdown occurs, and FIG. 4E. As shown in, a large number of fine bubbles are generated due to the dielectric breakdown, and at this time, the current I sharply decreases and
Discharge light emission and heat generation occur.

【0011】そして、発熱により、被加工物Fに対する
熱化学的作用が顕著になり、この作用により、被加工物
Fに穴開けがなされる。このときの被加工物Fの除去量
Wは、図4の実線gに示すようになる。
Due to the heat generation, the thermochemical action on the workpiece F becomes remarkable, and this action causes the workpiece F to be perforated. The removal amount W of the workpiece F at this time is as shown by the solid line g in FIG.

【0012】なお、図3において、41は浮上する微細
気泡、42は絶縁破壊によって生じた微細気泡を示す。
このような電解研磨方法により、被加工物としてシリコ
ンウエハの外周部のエッジ部を研磨加工する場合には、
図5に示すように、電解液Dが入れられた容器51内
に、補助電極53を挿入配置し、回転支持軸54側に支
持されたシリコンウエハ(以下、単にウエハAという)
Aの一部を電解液Dに浸すとともに、ウエハAの外周エ
ッジ部Bに、主電極52の先端部を接触させて、主電極
52と電解液Dとの間で放電を行わせることにより、エ
ッジ部Bの研磨加工が行われていた。
In FIG. 3, reference numeral 41 is a floating fine bubble, and 42 is a fine bubble generated by dielectric breakdown.
When the edge portion of the outer peripheral portion of the silicon wafer is polished as a workpiece by such an electrolytic polishing method,
As shown in FIG. 5, a silicon wafer in which an auxiliary electrode 53 is inserted and arranged in a container 51 in which an electrolytic solution D is placed and which is supported on a rotation support shaft 54 side (hereinafter, simply referred to as wafer A)
By immersing part of A in the electrolytic solution D and bringing the tip of the main electrode 52 into contact with the outer peripheral edge portion B of the wafer A to cause discharge between the main electrode 52 and the electrolytic solution D, The edge portion B had been polished.

【0013】[0013]

【発明が解決しようとする課題】ところで、上述したよ
うな電解研磨方法によると、その表面付近の研磨しか行
われず、例えば前処理工程で加工条痕などの傷が付いた
ように場合には、どうしても研磨が不充分になり、傷を
完全に取り除くことができないという問題があった。
By the way, according to the electrolytic polishing method as described above, only the vicinity of the surface is polished, and, for example, when scratches such as processing marks are made in the pretreatment step, There was a problem that polishing was not enough and the scratch could not be completely removed.

【0014】そこで、本発明は上記問題を解消し得る難
削材のベベリング加工方法を提供することを目的とす
る。
Therefore, an object of the present invention is to provide a method for beveling a difficult-to-cut material which can solve the above problems.

【0015】[0015]

【課題を解決するための手段】上記課題を解決するた
め、本発明の難削材のベベリング加工方法は、回転自在
に支持された円板状の難削材の外周エッジ部に電解液を
塗布し、この電解液が塗布された外周エッジ部に主電極
と補助電極とを接触させるとともに、これら両電極間に
電解液を介して電圧を印加させ、主電極の先端部に発生
する放電熱により、上記難削材の外周エッジ部を研磨す
る際に、上記補助電極として中空にされかつ難削材との
接触する側の壁面に電解液の供給穴が形成された円板状
箱体を使用するとともに、この壁面に砥粒を含む不織布
を配置し、かつ上記補助電極内に電解液を供給するとと
もに不織布側を外周エッジ部に押圧して難削材の外周エ
ッジ部を研磨する加工方法である。
In order to solve the above-mentioned problems, a method of beveling a difficult-to-cut material according to the present invention is to apply an electrolytic solution to the outer peripheral edge portion of a disk-shaped difficult-to-cut material that is rotatably supported. Then, the main electrode and the auxiliary electrode are brought into contact with the outer peripheral edge portion coated with this electrolytic solution, and a voltage is applied between these electrodes via the electrolytic solution, so that the discharge heat generated at the tip of the main electrode causes , When polishing the outer peripheral edge of the difficult-to-cut material, use a disk-shaped box body that is hollow as the auxiliary electrode and has an electrolyte supply hole formed on the wall surface on the side in contact with the difficult-to-cut material In addition, by disposing a non-woven fabric containing abrasive grains on this wall surface, and by supplying the electrolytic solution into the auxiliary electrode and pressing the non-woven fabric side to the outer peripheral edge portion, the outer peripheral edge portion of the difficult-to-cut material is polished by a processing method. is there.

【0016】[0016]

【作用】上記の各難削材のベベリング加工方法による
と、主電極と補助電極との間に、電解液を介して電圧を
印加して電解研磨する際に、補助電極側に、砥粒を含ん
だ不織布を設けたので、難削材を電解研磨と同時に砥粒
研磨も行うことができる。
According to the above-described beveling processing method for each difficult-to-cut material, when electropolishing is performed by applying a voltage between the main electrode and the auxiliary electrode through the electrolytic solution, abrasive grains are provided on the auxiliary electrode side. Since the contained non-woven fabric is provided, it is possible to perform the abrasive grain polishing simultaneously with the electrolytic polishing of the difficult-to-cut material.

【0017】[0017]

【実施例】以下、本発明の一実施例を図1および図2に
基づき説明する。なお、以下に説明する実施例において
は、シリコンウエハ(難削材の一例で、例えばセラミッ
ク材料、ガラス材料などで構成されたものにでも適用し
得る)を研磨する場合について説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. In the embodiments described below, the case of polishing a silicon wafer (an example of a difficult-to-cut material, which may be applied to a material made of, for example, a ceramic material or a glass material) will be described.

【0018】図1および図2において、1は円板状のシ
リコンウエハ(以下、単にウエハという)Aをチャック
装置(例えば、マグネット式のもの)2を介して水平面
内で回転自在に支持する回転軸体で、例えばモータなど
の回転駆動装置(図示せず)により回転される。
In FIGS. 1 and 2, reference numeral 1 is a rotation for rotatably supporting a disk-shaped silicon wafer (hereinafter, simply referred to as a wafer) A via a chuck device (for example, a magnet type) A in a horizontal plane. The shaft is rotated by a rotary drive device (not shown) such as a motor.

【0019】上記ウエハAの外周エッジ部Bに対応する
所定箇所には、針状の主電極3が配置されるとともに、
回転方向において所定距離だけ離れた上手側の位置に、
補助電極4が配置されている。
A needle-shaped main electrode 3 is arranged at a predetermined position corresponding to the outer peripheral edge B of the wafer A, and
At a position on the hand side that is separated by a predetermined distance in the rotation direction,
The auxiliary electrode 4 is arranged.

【0020】この補助電極4は、下壁面部5aに多数の
電解液供給穴6が形成された中空の円板状箱体5と、こ
の円板状箱体5の上壁面部5bの中心部から上方に突設
された中空の回転軸部7と、上記円板状箱体5の下壁面
部5aに取り付けられるとともに多数の砥粒Gが含まれ
た不織布8とから構成されている。
The auxiliary electrode 4 has a hollow disk-shaped box body 5 in which a large number of electrolyte solution supply holes 6 are formed in a lower wall surface section 5a, and a central portion of an upper wall surface section 5b of the disk-shaped box body 5. It is composed of a hollow rotating shaft portion 7 projecting upward from above, and a nonwoven fabric 8 attached to the lower wall surface portion 5a of the disk-shaped box body 5 and containing a large number of abrasive grains G.

【0021】また、上記補助電極4は保持装置(図示せ
ず)により回転自在に保持されるとともに、回転駆動装
置11により、回転軸部7を中心にして所定速度でもっ
て回転させられるようにしている。
The auxiliary electrode 4 is rotatably held by a holding device (not shown), and is rotated by the rotation driving device 11 at a predetermined speed around the rotary shaft portion 7. There is.

【0022】この回転駆動装置11は、回転軸部7に外
嵌固定された従動歯車12と、この従動歯車12に噛合
された駆動歯車13と、この駆動歯車13を回転させる
モータ(図示せず)とから構成されている。
The rotary drive device 11 has a driven gear 12 fitted and fixed to the rotary shaft portion 7, a drive gear 13 meshed with the driven gear 12, and a motor (not shown) for rotating the drive gear 13. ) And is composed of.

【0023】また、上記補助電極4の回転軸部7には、
例えば回転継手(図示せず)を介して電解液供給管14
が接続されており、この回転軸部7の中空部から、円板
状箱体5の内部に電解液Dが供給されるようにしてい
る。
Further, the rotary shaft portion 7 of the auxiliary electrode 4 is
For example, the electrolytic solution supply pipe 14 via a rotary joint (not shown)
The electrolytic solution D is supplied to the inside of the disk-shaped box body 5 from the hollow portion of the rotating shaft portion 7.

【0024】さらに、上記主電極3と補助電極4との間
には電源9が接続されて、所定の電圧(直流電圧、交流
電圧、またはパルス電圧など)が印加されるようにして
いる。なお、補助電極4が回転するため、補助電極4側
と電源9側とは、回転軸部7に摺接する集電ブラシ10
を介して電気的に接続されている。
Further, a power source 9 is connected between the main electrode 3 and the auxiliary electrode 4 so that a predetermined voltage (DC voltage, AC voltage, pulse voltage or the like) is applied. Since the auxiliary electrode 4 rotates, the auxiliary electrode 4 side and the power source 9 side are in contact with the current collecting brush 10 that is in sliding contact with the rotating shaft portion 7.
Are electrically connected via.

【0025】したがって、上記構成において、ウエハA
の外周エッジ部Bを研磨する場合、まずウエハAをチャ
ック装置2を介して、回転軸体1側に保持させる。次
に、補助電極4側に、電解液供給管14を介して、電解
液(酸、アルカリ、中性の液体など)Dを供給し、電解
液Dを不織布8の表面から滲みでるようにする。
Therefore, in the above structure, the wafer A is
When polishing the outer peripheral edge portion B, the wafer A is first held on the rotary shaft 1 side via the chuck device 2. Next, the electrolytic solution (acid, alkali, neutral liquid, etc.) D is supplied to the auxiliary electrode 4 side through the electrolytic solution supply pipe 14 so that the electrolytic solution D oozes from the surface of the nonwoven fabric 8. .

【0026】次に、両電極3,4を、矢印a,bにて示
すように、対向する部分が互いに逆方向となるように回
転させるとともに、補助電極4側をウエハA側に軽く押
圧して、不織布8をウエハAの外周エッジ部Bに摺接さ
せ、そして両電極3,4間に所定の電圧を印加する。
Next, as shown by arrows a and b, both electrodes 3 and 4 are rotated so that the facing portions are opposite to each other, and the auxiliary electrode 4 side is lightly pressed to the wafer A side. Then, the nonwoven fabric 8 is brought into sliding contact with the outer peripheral edge portion B of the wafer A, and a predetermined voltage is applied between the electrodes 3 and 4.

【0027】すると、ウエハAの外周エッジ部Bには、
不織布8から滲み出た電解液Dが塗布された状態とな
り、この電解液Dを介して、両電極3,4間に電流が流
れ、そして主電極3の先端部に放電が発生し、この放電
熱により、ウエハAの外周エッジ部Bに熱的加工(熱溶
融や熱化学反応による加工)が施されるとともに、所定
の押圧力でもって摺接された不織布8により、砥粒研磨
が同時に行われる。なお、ウエハAの表面に塗布された
電解液Dの厚さは0.1mm 程度であり、したがって主電極
3の先端は、ウエハAの表面に直接接触することなく放
電が行われることになる。
Then, on the outer peripheral edge portion B of the wafer A,
The electrolytic solution D exuded from the non-woven fabric 8 is applied, a current flows between the electrodes 3 and 4 through the electrolytic solution D, and a discharge is generated at the tip of the main electrode 3. The outer peripheral edge portion B of the wafer A is subjected to thermal processing (processing by thermal melting or thermochemical reaction) by heat, and abrasive grains are simultaneously polished by the non-woven fabric 8 that is brought into sliding contact with a predetermined pressing force. Be seen. The thickness of the electrolytic solution D applied on the surface of the wafer A is about 0.1 mm, so that the tip of the main electrode 3 is discharged without directly contacting the surface of the wafer A.

【0028】このように、電解研磨と同時に砥粒を含ん
だ不織布による砥粒研磨が行われるため、従来のよう
に、電解研磨だけの場合と異なり、研磨厚みを充分厚く
することができるので、例えば前処理工程で発生した3
〜5μm 程度の深さの加工条痕を、確実に取り除くこと
ができる。
As described above, since the abrasive grain polishing using the non-woven fabric containing the abrasive grains is performed simultaneously with the electrolytic polishing, the polishing thickness can be made sufficiently thick unlike the conventional case where only the electrolytic polishing is performed. For example, 3 generated in the pretreatment process
It is possible to reliably remove the machining streaks with a depth of about 5 μm.

【0029】また、印加電圧、ウエハおよび補助電極の
回転数、および不織布側に含ませられる砥粒の径を調整
することにより、加工度の制御を行うことができる。さ
らに、電解液は、単に、ウエハに塗布する程度で良いの
で、電解液自体の消費量が少なくて済むとともに、湿式
研磨であるため、粉塵の発生を抑制することもできる。
Further, the working degree can be controlled by adjusting the applied voltage, the number of revolutions of the wafer and the auxiliary electrode, and the diameter of the abrasive grains contained on the non-woven fabric side. Further, since the electrolytic solution may be simply applied to the wafer, the consumption of the electrolytic solution itself can be small, and since it is wet polishing, generation of dust can be suppressed.

【0030】ここで、具体的加工例について説明する。
なお、被加工物である難削材として、直径が4インチの
シリコンウエハを使用した。
Here, a specific processing example will be described.
A silicon wafer having a diameter of 4 inches was used as a difficult-to-cut material which is a workpiece.

【0031】主電極として、直径が0.3mm のタングステ
ン針を使用し、補助電極として、銅板により直径が100m
m のものを製作して使用した。また、加工条件として、
10%中性塩の電解液を使用し、印加電圧をDC200V
とし、ウエハの回転数を1〜100rpmとし、補助電極の回
転数を1〜200rpmとした。
A tungsten needle with a diameter of 0.3 mm is used as the main electrode, and a copper plate with a diameter of 100 m is used as the auxiliary electrode.
I made and used the one of m. Also, as processing conditions,
Use 10% neutral salt electrolyte and apply voltage of DC200V
The wafer rotation speed was 1 to 100 rpm, and the auxiliary electrode rotation speed was 1 to 200 rpm.

【0032】以上の条件で、約1分間ウエハのベベリン
グ加工、すなわち面取り加工を行ったところ、加工条痕
が除去し得る充分な研磨が確認された。ところで、上記
実施例においては、ウエハの片面を研磨する構成として
説明したが、例えば補助電極をウエハの両側に配置する
ことにより、その両面の外周エッジ部を同時に研磨する
こともできる。
Under the above conditions, the wafer was subjected to beveling processing, that is, chamfering, for about 1 minute. As a result, it was confirmed that the polishing was sufficient to remove the processing scratches. By the way, in the above-described embodiment, the structure in which one side of the wafer is polished has been described, but by arranging the auxiliary electrodes on both sides of the wafer, the outer peripheral edge portions of both sides can be simultaneously polished.

【0033】また、上記実施例においては、主電極とし
て針状のものを使用したが、例えば棒状電極、くし状電
極、または板状電極を使用することもできる。
In the above embodiment, the needle-shaped electrode was used as the main electrode, but a rod-shaped electrode, a comb-shaped electrode, or a plate-shaped electrode can also be used.

【0034】[0034]

【発明の効果】以上のように本発明のベベリング加工方
法によると、主電極と補助電極との間に、電解液を介し
て電圧を印加して電解研磨する際に、補助電極側に、砥
粒を含んだ不織布を設けたので、難削材を電解研磨と同
時に砥粒研磨も行うことができるので、難削材の表面
に、深い傷がある場合でも、確実に取り除くことができ
る。
As described above, according to the beveling processing method of the present invention, when a voltage is applied between the main electrode and the auxiliary electrode through the electrolytic solution to perform electrolytic polishing, the auxiliary electrode side is ground. Since the non-woven material containing particles is provided, the hard-to-cut material can be electrolytically polished and abrasive-grain polished at the same time. Therefore, even if the surface of the hard-to-cut material has deep scratches, it can be reliably removed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例における難削材のベベリング
加工方法を説明する一部切欠側面図である。
FIG. 1 is a partially cutaway side view illustrating a method of beveling a difficult-to-cut material according to an embodiment of the present invention.

【図2】同実施例における難削材のベベリング加工方法
を説明する平面図である。
FIG. 2 is a plan view illustrating a method of beveling a difficult-to-cut material in the example.

【図3】従来例における電解研磨の原理を説明する要部
断面図である。
FIG. 3 is a sectional view of relevant parts for explaining the principle of electrolytic polishing in a conventional example.

【図4】同電解研磨の原理を説明するための電流および
電解強度と被加工物の除去量との関係を示すグラフであ
る。
FIG. 4 is a graph showing the relationship between the current and electrolytic strength and the removal amount of the workpiece for explaining the principle of the same electrolytic polishing.

【図5】従来例における難削材のベベリング加工方法を
説明する一部切欠斜視図である。
FIG. 5 is a partially cutaway perspective view illustrating a beveling method for a difficult-to-cut material in a conventional example.

【符号の説明】[Explanation of symbols]

A ウエハ B 外周エッジ部 D 電解液 G 砥粒 1 回転軸体 3 主電極 4 補助電極 5 円板状箱体 6 供給穴 7 回転軸部 8 不織布 9 電源 14 電解液供給管 A Wafer B Outer peripheral edge D Electrolyte G Abrasive grains 1 Rotating shaft body 3 Main electrode 4 Auxiliary electrode 5 Disc box 6 Supply hole 7 Rotating shaft 8 Nonwoven fabric 9 Power supply 14 Electrolyte supply pipe

───────────────────────────────────────────────────── フロントページの続き (72)発明者 塚原 正徳 大阪府大阪市此花区西九条5丁目3番28号 日立造船株式会社内 (72)発明者 小村 明夫 大阪府大阪市此花区西九条5丁目3番28号 日立造船株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Masanori Tsukahara, 5-3-8 Nishikujo, Konohana-ku, Osaka-shi, Osaka Prefecture (72) Hitachi Shipbuilding Co., Ltd. (72) Akio Komura 5--9, Nishikujo, Konohana-ku, Osaka No. 28 in Hitachi Shipbuilding Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】回転自在に支持された円板状の難削材の外
周エッジ部に電解液を塗布し、この電解液が塗布された
外周エッジ部に主電極と補助電極とを接触させるととも
に、これら両電極間に電解液を介して電圧を印加させ、
主電極の先端部に発生する放電熱により、上記難削材の
外周エッジ部を研磨する際に、上記補助電極として中空
にされかつ難削材との接触する側の壁面に電解液の供給
穴が形成された円板状箱体を使用するとともに、この壁
面に砥粒を含む不織布を配置し、かつ上記補助電極内に
電解液を供給するとともに不織布側を外周エッジ部に押
圧して難削材の外周エッジ部を研磨することを特徴とす
る難削材のベベリング加工方法。
1. An electrolytic solution is applied to an outer peripheral edge of a disc-shaped difficult-to-cut material rotatably supported, and a main electrode and an auxiliary electrode are brought into contact with the outer peripheral edge applied with the electrolytic solution. , Voltage is applied between these electrodes via the electrolytic solution,
When the outer peripheral edge of the difficult-to-cut material is polished by the discharge heat generated at the tip of the main electrode, an electrolyte supply hole is formed in the wall surface of the side that is hollow as the auxiliary electrode and is in contact with the difficult-to-cut material. Using a disk-shaped box body in which is formed, a non-woven fabric containing abrasive grains is placed on this wall surface, and an electrolyte solution is supplied to the auxiliary electrode and the non-woven fabric side is pressed against the outer peripheral edge portion to make difficult cutting. A method for beveling a difficult-to-cut material, which comprises polishing an outer peripheral edge portion of the material.
JP10575993A 1993-05-07 1993-05-07 Beveling method for cut-resistant material Pending JPH06315828A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10575993A JPH06315828A (en) 1993-05-07 1993-05-07 Beveling method for cut-resistant material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10575993A JPH06315828A (en) 1993-05-07 1993-05-07 Beveling method for cut-resistant material

Publications (1)

Publication Number Publication Date
JPH06315828A true JPH06315828A (en) 1994-11-15

Family

ID=14416153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10575993A Pending JPH06315828A (en) 1993-05-07 1993-05-07 Beveling method for cut-resistant material

Country Status (1)

Country Link
JP (1) JPH06315828A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000340530A (en) * 1999-05-27 2000-12-08 Toshiba Corp Semiconductor device and manufacture thereof
JP2002254248A (en) * 2001-02-28 2002-09-10 Sony Corp Electrochemical machining device
US7208076B2 (en) 2001-09-11 2007-04-24 Ebara Corporation Substrate processing apparatus and method
CN102975113A (en) * 2012-12-29 2013-03-20 苏州市职业大学 Efficient plane polishing electrolytic grinding tool
CN107775506A (en) * 2017-09-28 2018-03-09 瑞声科技(新加坡)有限公司 Polishing disk
JP2019046838A (en) * 2017-08-30 2019-03-22 株式会社ディスコ Edge polishing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000340530A (en) * 1999-05-27 2000-12-08 Toshiba Corp Semiconductor device and manufacture thereof
JP2002254248A (en) * 2001-02-28 2002-09-10 Sony Corp Electrochemical machining device
US7208076B2 (en) 2001-09-11 2007-04-24 Ebara Corporation Substrate processing apparatus and method
CN102975113A (en) * 2012-12-29 2013-03-20 苏州市职业大学 Efficient plane polishing electrolytic grinding tool
JP2019046838A (en) * 2017-08-30 2019-03-22 株式会社ディスコ Edge polishing method
CN107775506A (en) * 2017-09-28 2018-03-09 瑞声科技(新加坡)有限公司 Polishing disk

Similar Documents

Publication Publication Date Title
EP1722925B1 (en) Insulated pad conditioner and method of using same
KR900001663B1 (en) Method for grinding the surface of a semiconductor wafer
JPH06315828A (en) Beveling method for cut-resistant material
JP6656327B2 (en) Work processing equipment
JPH06315829A (en) Beveling method for cut-resistant material
JPH06315830A (en) Beveling method for cut-resistant material
KR20050005389A (en) Polishing Method and Polishing System, and Method for Fabricating Semiconductor Device
JP7385985B2 (en) Blade processing equipment and blade processing method
JPS63102859A (en) Chamfering and contouring method of semiconductor board
JPH06210520A (en) Method of beveling work to hard-to-cut material
JPH09187815A (en) Under-liquid cutting method and device
JP6434113B2 (en) Work processing apparatus and work processing method
JP4013240B2 (en) Processing method for work made of brittle materials
JPH06315827A (en) Beveling method for cut-resistant material
JPS62136032A (en) Working method for back surface of semiconductor wafer
JP6253206B2 (en) Blade processing apparatus and blade processing method
JPH06246544A (en) Hard-to-cut material beveling method
JP2950064B2 (en) Electrolytic dressing type grinding machine
JPH11221765A (en) Gringing device and grinding method
JPH06315826A (en) Beveling method for silicon wafer
JPH06210523A (en) Method of beveling work for hard-to-cut material
JPS61188024A (en) Polishing method of internal wall of hole in hard and fragile conductive material work
JPH06210522A (en) Method of beveling work for hard-to-cut material
JPH11221766A (en) Grinding device and glass plate end face grinding method using grinding device
JPH08323619A (en) Cleaning method for grinding wheel, and grinding device